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The Dynamics of a Flexible 
Beam With a Lubricated 
Prismatic Kinematic Pair 
In this article we consider the influence of the prismatic kinematic pair lubrication 
film on the planar vibrations of a constant cross-sectional straight link that is attached 
to the joint. The main objective is to develop an analytical model that incorporates 
the effect of the lubricant film on the vibration of elastic links in mechanisms. It has 
been assumed that the beam on which the prismatic kinematic pair translates is a 
linear elastic body. Equations for the translational and rotational motions of the link 
are developed by applying Hamilton's principle. Kinetic energy that is required for 
the application of this principle has been derived by utilizing a generalized velocity 
field theory for elastic solids. This approach provides means to include the inertia 
terms directly in the equations of motion. The pressure field exerted through the 
viscous, incompressible, lubricant film is obtained from the solution of the Reynolds 
equation of lubrication. We introduce a scheme to solve the resulting two sets of 
equations for the vibrations of the link and the motion of the fluid. The pressure field 
is used to compute the external force exerted by the fluid on the link. The utility of 
the method is demonstrated by considering a planar mechanism that includes an 
elastic element with a prismatic joint. 

1 Introduction 
Structural flexibility is an important factor in the study of 

dynamics of high performance mechanical systems such as 
mechanisms, manipulator robots, drilling machines, antennas, 
etc. In general, flexible mechanical systems have several desir­
able features relative to stiff mechanisms and manipulators such 
as lower cost, higher speed, reduced power consumption, im­
proved mobility, and safer operation. Yet, in such systems posi­
tioning accuracy depends on effective elimination of oscillations 
that occur due to flexible effects. Accurate modeling of such 
effects can greatly facilitate the development of control algo­
rithms that can be used in positioning and trajectory tracking 
applications. Dynamic analysis of flexible links, however, is 
complicated by the coupling between the nonlinear rigid body 
motion and the linear elastic displacements of the link. 

The importance of modeling mechanisms systems taking into 
account the elasticity of the links has long been realized and 
reviews of the work in this area are presented in Park et al. 
(1986), Turcic and Midha (1984), Nagarajan and Turcic 
(1990). The nonlinear differential equations of motion derived, 
consider the rigid body motion and the elastic motion to influ­
ence each other and sophisticated numerical algorithms are used 
to solve the problem. 

The dynamics of elastic manipulators with prismatic joints 
has been investigated by Bufflnton and Kane (1985), Kim 
(1988), Buffinton (1992), and Guran et al (1996). They exam­
ine the motion of a single beam as it moves longitudinally 
over two distinct points. Equations of motion are formulated 
by treating the beam's supports as kinematical constraints im­
posed on an unrestrained beam. Gordaninejad et al. (1989) 
examine the motion of a planar robot arm consisting of one 
revolute and one prismatic joint. All coupling terms between 
the rigid and the flexible motions of the robot arm are included 
in the model based on the Timoshenko beam theory. Wicker 
and Mote (1988) studied the vibration and stability of axially 
moving materials. Yuh and Young (1991) derived a time vary-
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ing partial differential equation with boundary conditions for 
an axially moving beam in rotation. 

One shortcoming of these studies is that they do not examine 
the load from oil pressure in the revolute and prismatic joints. 
In general, a fluid is introduced between two rubbing surfaces 
in order to separate them and thus reduce their frictional forces. 
The lubrication or friction reduction of two bodies in near con­
tact is generally accomplished by a viscous fluid moving 
through a narrow but variable gap between the two bodies. The 
theory was developed by Reynolds (1886). 

Benson and Talke (1987) investigate the dynamics of a mag­
netic recording slider of a rigid disk during its transition between 
sliding and flying. The slider is modeled as a three degree-of-
freedom system, capable of lift, pitch, and roll. In addition to 
considering loads from air pressure, inertia, and the suspension 
arm, they also consider impulsive load arising from slider/disk 
collisions. 

Our model is different from these models. We study the 
effect of lubricant film in prismatic joints of mechanism on the 
vibration of elastic members. We derive the equations of motion 
by using Hamilton's principle starting from a generalized form 
of kinetic energy. The equation of motion for a single elastic 
member attached to a lubricated prismatic joint is presented. 
The fluid pressure is computed by using a simplified form of 
Reynolds equation of lubrication. The resulting partial differen­
tial equation is transformed to an ordinary integro-differential 
equation by using the finite Fourier sine transform. 

To our best knowledge this class of problems has never been 
fully discussed nor considered in any previous study in the area 
of elastodynamics. 

Finally, the vibration problem of an elastic link of a slider-
crank mechanism is considered. The equations of motion for 
the first mode of vibration are solved numerically using a Bul-
irsh-Stoer algorithm with adaptive step-size control. Several 
plots representing various aspects of the motion are presented. 

The first step of dynamic analysis is the consideration of the 
relations that govern the kinematics of the linear elastic system. 
Indeed, effective formulation of equations of motion depends 
primarily on the ability to formulate proper mathematical ex­
pressions for kinematic quantities such as the linear and angular 
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velocities and accelerations. Figure 1 depicts the linear-elastic 
body in motion in the three-dimensional space. The fixed coor­
dinate frame is shown at 0^ with the unit vectors [i , , j i , k i ] . 
A second moving frame which is attached to the border E of 
the body is shown at O with the unit vectors [i, j , k ] . For any 
given time instant, the linear-elastic body occupies the domain 
D{t). The point C is the center of mass and TC is the correspond­
ing position vector. Here we track the motion of a point P e 
D ( 0 on the body. The position vector of this point with respect 
to the moving frame is expressed in terms of the sum of two 
vectors r and u. The vector r marks the position of the particle 
subject to the rigid body motion only, whereas, the vector u 
represents the displacement as a result of elastic deformations. 
Furthermore, we attach a local vortex vector n(/-*, t) to the 
point P. This vector represents the rotational motion of the 
medium in the neighborhood of the point as a result of rigid 
body motion and elastic deformations. 

In the case of small deformations we assume uniform vortic-
ity and drop the functional dependence on position {il{r*, t) 
= w(0) - As a result of this simplification the vortex vector 
becomes the angular velocity vector that is usually defined for 
rigid bodies. Now we use Poisson's formula to derive the kine­
matic relations for velocities and accelerations. Accordingly, 
the position vector for any particle on the linear-elastic solid 
D{t) can be written as 

where 

To + r -H u, (1) 

where r* is the position vector of P in the [ i | , j i , ki] frame, 
To is the position vector of O in the [ii, j i , k, ] frame, and r is 
the position vector of P in the frame attached to the linear-
elastic body in motion. 

Differentiating Eq. (1) with respect to time yields 

(2) v = Vo + ft>XrH 1- <w X u, 

dt 

where the terms 

Vo + w X r 

corresponds to the rigid body velocity field, and 

d\x 
+ W X U 

dt 
represents the additional component that arises from the defor­
mation of the linear-elastic body. 

The kinetic energy of the linear-elastic body can be written 
as 

J J J (E 
yypdr = Trg + T^i + T,, (3) 

k i 

Trs = ^ ^ ^ + Mvo• (to X re) + jw• (Jow) (4) 

corresponds to a rigid body motion. 

--/JL(f)-(fV' (5) 

corresponds to the elastic soUd motion without rotation or trans­
lation, and 

- ' J / JJ (<o X u ) - ( w X u) + 2(vo + ft) X r) 

X I — - + W X U + 2 - — - ( w x u ) 
at / at 

pdT (6) 

is the coupling term arising from deformation and the rigid 
body motion. 

2 Equations of Motion for Rectilinear Elastic Links 

Figure 2 depicts a rectilinear kinematic link with variable 
cross-sectional area A (x). We define 

r = xi 

as the position vector of any particle on the axis of the link, 

a(t) = cj{t) = Q:i(;)i + ct2(t)i H- a,(t)k 

as the rigid body angular acceleration of the link, 

Vo(0 = Voi(Oi + î oaCOj + yoi(t)k 

as the translational velocity of the end O of the link, 

ao(0 = aoi(f)i + amit)] + aoaCOk 

as the translational acceleration of the end O of the link, and 

t(x, t) =Mx, t)i +Mx, f)j +Mx, Ok 

is the external force per unit length of the link. Also, E is the 
Young modulus, lyix) and I^(x) are the central moments of 
inertia of the bar cross-section at the axes Oy and Oz, respec­
tively. 

The equations of motions for the elastic link are developed 
by applying Hamilton's principle that can be written as 

• ' ' 0 

(V - T - W)dt = 0, (7) 

where V is the strain energy, T is the kinetic energy, and W is 
the work function. 

The strain energy can be written as 

V j>'"(i^)"-^r«"(s?)"-
Iy(x) 

and the work function 

W = f-u. 

(8) 

(9) 

Fig. 1 Linear-elastic solid in motion 

The kinetic energy 7 is given by Eqs. (3), (4) , (5), and (6). 
We note that the variational integral of the rigid body kinetic 
energy is 
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X 

Fig. 2 Rectilinear l<inematic iink 

I ' Z,dt = 0, 

for a prescribed rigid body motion. Then, using Eqs. (8) , 
and (9) along with the expression for kinetic energy Eq. (3) 
yield the equations of motion of linear-elastic displacements 
Ui(x, t), U2(x, t) and u^ix, t). These equations are given by 

EA'duJdx - EAd\/dx^ + pAd\/dt^ - pAu^{ul + UJD 

+ pAuJiU>2U2 + pAu>iU)2U3 + pAaoi — pA(u>3Vo2 ~ W2U03) 

+ pAa2U^ + pAa2U2 - 2pAu)idu2ldt — 2pA{jj2du-ildt 

- pAx(ujl + ujl)-Mx,t) = 0, (10) 

Er;d^U2/dx^ + 2EI',d'u2/dx^ + EI,d'^U2l dx" + pAd'^uJdf 

- pAu2((^i + i^i) + pAu!2i^3U} + pAu!iU>2Ui + pAo^a 

- pA(Wiiio3 + oj^Voi) + pAusX - pAa\Uz — 2pAu)^duo,ldt 

+ 2pAu)3dui/dt + pAx(u),iV2 + col) - f2(x, 0 = 0, (11) 

Er;d^u,/dx^ + 2Ei;d^u,/dx' + Elyd'u^ldx" + pAd^u^/dt^ 

- pAu^ioj] + OJI) + pAoJiLO^Ui + pAu)2UJ2U2 + pAao3 

- pA(uj2"o] - W1D02) + pAaiU2 — pAa2Ui — 2pAuj2duildt 

+ 2pAuiidu2/dt + pAxicoiUjj + ul) - Mx, t) = 0, (12) 

where primes denote differentiation with respect to x. The effect 
of rotational inertia of the cross section and the influence of 
shear forces are neglected in Eqs. (11) and (12). We neglect 
these terms because their effects on the primary modes of vibra­
tion are small. Also, if we consider uniform cross-sectional 
links, then A'(x) = i;{x) = r;ix) = I'Ax) = I'^ix) = 0. 

3 Effect of Lubrication Pressure Field on Prismatic 
Kinematic Pairs 

As shown in Fig. 3 we consider a linear-elastic link on which 
a prismatic kinematic pair moves along the of axis the member. 
A lubrication film is located in the lower interface of the Unk 
and the slider joint. Our main focus here, is the effect of the 
pressure at the fluid interface on the fundamental vibration 
modes of the elastic member in the transverse direction iu2(x, 
0 ) . Therefore, we further simplify the equations of motion by 
considering only the displacement U2ix, t). Then, carrying out 
the derivations in the previous section for this variable only 
yields 

EI^d'^U2l dx'' + pAd^U2ldt^ + u}^pAu2 + pAa^ 

+ LopAvoi + apAx — f2{x, t) = 0, (13) 

where u) = oj^. The term/2(x, t) represents the external force 
per unit length, which includes the fluid pressure and other 
external effects. 

3.1 Reynolds Equation of Lubrication. Now to develop 
the equations that represent the effect of fluid pressure, we 
define ^(X), X 6 [0, /] as the film thickness in the transverse 
direction. Using a simplified form of Reynolds equation for 
incompressible fluids, the differential equation for the pressure 
p(X, Z, t) is given by (White, 1991) 

dX 

dp 

dX 

d 
T^ r ^ + T^ U ' ^ = 6/^K(0 dZ 

dp 

dZ 
K 
dX ' 

(14) 

where fi is the dynamic viscosity and V^it) is the relative veloc­
ity between the link and the slider joint. Choosing the thickness 
of the translational joint as B (i.e. Z 6 [0, B]) and assuming 
symmetry between the link and the joint in the cross-sectional 
plane, as shown in Fig. 3, we obtain the following relations: 

p(X,B,t)=p(X,0,t) 

^iX,B,t) = ^(X,0,t). 
dZ^ ' dZ 

We average the pressure in the transverse direction so the lubri­
cant pressure distribution is reduced to a one dimensional prob­
lem introducing a variable P(X, t) given as 

P{X, t) = 
1 r 
BI' (X, Z, t)dZ. 

Substituting Eq. (15) in (14) yields 

^^9!P 3^^9idP^ di 

^ dX^ ^ dXdX '^ ^ ' dX 

(15) 

(16) 

Furthermore, using geometry we obtain 

i = U2{x* + X, t). 

The boundary conditions for P{X, t) are given as 

Z = 0 =* P(0, /) = p„,„, 

Z = / =» P{1, t) = p„„„ 

where Pam, is the atmospheric pressure. 
The general solution for the Eq. (16) is 

P(,X, t) = 6p.Vr{t)h{X, t) + ChiX, t) + C, 

Prismatic Kinematic Pair 

(17) 

Fig. 3 Flexible link with prismatic kinematic pair 
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where 

/i(X, 0 = ) dX/[H/2 - U2iX + x*m\ 

h{X, t)= \ dX/[H/2 - U2(X + x-*)]y. 

The constants C and Ci can be computed from the boundary 
conditions. The integrals /i and h are computed later by using 
Fourier transform methods. Here they are presented only in 
general forms. 

4 Solution Method for an Elastic Link in a Kinematic 
Chain 

The method of solution presented below assumes that the 
time profiles of rigid body accelerations, velocities, and the 
dynamic reaction forces at the joints are given. More specifi­
cally, the time functions in Eq. (13) Uoi, flo2, w, a, and/a are 
completely known at the onset of the computations. 

The procedure followed to solve the equations of motion take 
the following steps: 

(1) Use the rigid body joint velocities and accelerations, 
geometry of the mechanism, and the kinematic relations 
to compute the position x*it) of the translational link 
on the elastic member, force and moment reactions in 
the translational joint, 

(2) Transform Eq. (13) by applying finite Fourier sine 
transform which can be described by the following 
definition. 
Consider a function g(x) which satisfies Dirichlet's 
conditions in the interval [0, L] where it has a finite 
number of maxima, minima, and discontinuities. The 
finite Fourier sine transform of the function g(x) which 
is denoted by g*(n) is defined by the relation 

where 

*(«) = f' 
Jo 

gix) sin (P„x)dx, 

where /?„ = rnr/L, n = 1, 2, 3. . . 
Using the boundary conditions 

a'M2(0, t) d^U2{L, t) 

dx^ dx' 
= M2(0, t) = U2{L, t) = 0, 

and applying finite Fourier sine transform to Eq. (13) 
yields the following ordinary differential equation 

d^u'tjn, t) 

dt^ 

fUuUn,t),n,t) 1 

«!(«,0 

[ao2(0 
pA P„ 

+ uj(t)vo,(t)]ll +(- l )<"+'>] 

+ a(t){-iy"*'^L]. (18) 

The term / f (n, t) in Eq. (18) can be written as 

fUu2(n,t),n, t) 

= R*in,t) + P-*(uUn,t),n,t), (19) 

where R'*{n, t) is the finite Fourier sine transform of 
the joint reaction forces, which is a known function of 
time and the transform of the force per unit length in 
lubricant film P*{u*{n, t), n, t). The pressure re­
sponse to the nth harmonic of deflection can be approx­
imated by the following expression 

p'-"\X, t) = 6/iK(f)/i"' + C/<2"̂  + C,, 

73 
H' 

+ <t)^{n,t) J_ 3H 
Ji 27, 

H^ 
7i = y - <k(n,t)\ 

H ,, ^ . (niT 
72 = - - + <^(n, 0 sin I — X 

73 7r"^ tan ' 

: i ^ t ^ - ^ t ^ - x 

(bin, t) / nn 
74 = cos — j ; 

27172 V L 

(pin, 0 = T «2 in, t). 

Accordingly, the finite Fourier sine transform of the 
force per unit length can be written as 

P*iutin, t), n,t) = B [6AtV,(0/<r* 
Jx* 

. + Cl'i'^ + C,] sin ip„x)dx. (20) 

(3) Obtain the numerical solution of the nonlinear ordinary 
differential equation given by Eq. (18) by using an 
IMSL library. Application of the differential solver also 
requires the numerical integration of Eq. (20) for given 
values of t and «*(«, t). This is realized by using an 
algorithm that is based on the trapezoidal rule with 
automatic step adjustment for accuracy. 

(4) The final solution for the equation of motion is obtained 
by inverting finite Fourier sine transform and applying 
the superposition principle for the harmonics. 

U2ix, 0 = S </>(«> 0 sin i/3„x). 

5 Impact Equations 
Two possible scenarios for the prismatic kinematic pair and 

the flexible link are 

Fig. 4 The impact between tlie elastic linl< and the prismatic i<inematic 
pair 
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Elastic Link 

Rigid Links Slider Joint 
with Lubrication 

(a) 
(b) 

Fig. 5 Planar, slider-crank mechanism 

No contact (Fig. 3). 
Impact on a single point (Fig. 4) . 

The conditions for switching from one case to the other de­
pend on the dynamics. There were additional difficulties be­
cause of the small space and time scales in which losses of 
contact, impacts, and so forth take place. It was necessary, 
therefore, to use very small time steps to capture very precisely 
the time of occurrence of such events. 

A basic assumption was that the configuration of the link and 
the slider was held constant in the analysis of the collision 
process, with no significant change in mass and moments of 
inertia. 

Let vf and v/" be the velocities of the contact point of the 
elastic link before and after impact, respectively. Let v j and 
v / be the velocities of the contact point of the rigid slider before 
and after impact, respectively. With these notations, one can 
write 

= e(v, - V, ), (21) 

where e is the coefficient of restitution. Solving the impact 
equations (Marghitu and Hurmuzlu, 1996) the unknown veloci­
ties after impact are determined. 

6 Application 

In this section we apply the method proposed above to inves­
tigate the vibration of the link OC of the slider mechanism 
presented in Fig. 5. To simplify our presentation, we consider 
the flexible effects in member OC only. 

— without lubrication 
with lubrication 

Fig. 7 Deflection of the flexible link with and without lubrication 

We consider the motion of the system when the link OA has 
a constant angular velocity Wo • Then the kinematic variables of 
link OC can be written as 

%i = — OAwo sin (woO cos Q — OAUQ cos (uot) sin 0, 

cka = —OAUJI sin 6 cos (woO ~ OAUJI COS 9 sin {uiot), 

_ \U>Q COS (WoO 

' ^ ~ ~ [1 - \ ^ s i n ( w o O ' ] ' " ' 

X^UJI COS {UIQI)^ sin {u>at) 

[1 - \ "s in(a ;or )^) ]" ' 

XCJQ sin jupt) 

[1 - X's in(wof) ' ] ' 

where 

\ = OAIL, 

6 = sin"' [X sin (woOl. 

where OA = 0.07 m and OC = 1.0 m are the lengths of the 
members OA and OC respectively, and the distance between 
joint A and the vertical sliding member is selected as a = 0.4 
m (see Fig. 4) . The elastic link is made of carbon steel (E = 
207 X 10' N/m^ p = 7650 kg/m^) with equal cross-sectional 
width and height, i.e. B = h. 

Throughout the succeeding analysis, only the fundamental 
mode of transverse oscillations (i.e. n = 1) is taken into consid­
eration for our presentation. Simulations involving three, five 
and seven modes were performed and no perceptible difference 
was found with respect to the dynamic behavior. Thus one mode 
is considered adequate for accurately describing the elastic mo­
tion for the simulation reported in this paper. 

Fig. 6 Deflection of the flexible link in time and space 
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Fig. 9 The midpoint deflection of tfie linl< for tlie impact witfi the pris­
matic Itinematic pair 

Figure 6 depicts the time-space curves of the beam deflection 
for h = 0.01 m, Wo = IOTT rad/s and zero initial conditions. 
The deflection surface depicted in Fig. 6 demonstrates a recur­
ring pattern which seems to be synchronous with the motion of 
the crank OA. Actually, the overall motion is periodic. The 
transverse oscillation of the elastic link is influenced by the 
uniform motion of link OA, by the joint reaction and by the 
lubricant film pressure. Next, we focused on the difference 
among computer simulated data, with and without the effect of 
the lubricated joint. We observed that, for the same moment 
the deflection of the flexible link without lubrication is greater 
than the case with lubrication (Fig. 7) . 

Figure 8 depicts the time-space curves of the pressure re­
sponse for the same characteristics of the planar chain. The 
pressure field exerted through the oil, which is considered as 
viscous and Newtonian, is obtained from the solution of the 
Reynolds equation of lubrication. The boundary conditions re­
sult in ambient pressure at the edges of the prismatic joint. In 
order to support the load exerted by the beam, the bearing-
film pressure must rise above the ambient. The pressure in the 
prismatic joint (i.e. plane slider bearing) is a function of the 
local film thickness, which in our case is dependent on the 
deflection of the beam. 

An interesting phenomena occurs during the motion of the 
present system when the deflection of the beam is as large as 
the height of the prismatic joint. The lubricant film breaks down, 
leading to direct collision between the beam and the prismatic 
joint. Figure 9 represents the deflection of the midpoint of the 
beam. The impact moment is at time t = 1.273 s and the elastic 
displacement M ( L / 2 , t) has a jump for e = 0.7. 

7 Conclusions 
Vibrations of deformable bodies undergoing general rigid 

body motions can be studied by continuous or discrete models. 
Continuous models are accurate and provide an effective way 
to predict the system response. 

The approach has been applied to modal vibrations of an 
elastic link in a slider-crank mechanism subject to the effect of 

pressure in the lubricant film of a prismatic joint attached to 
the member. A numerical example that considers the first mode 
of vibration is presented. 

Furthermore, experimental tests are needed in order to further 
generalize the results reported in the present article. 
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