
Conflict Estimation of Abstract Plans for Multi-Agent
Systems

Toshiharu Sugawara1 Satoshi Kurihara2 Toshio Hirotsu3

Kensuke Fukuda4 and Toshihiro Takada5

1Waseda University
Shinjuku, Tokyo 169-8555, Japan

sugawara@entia.org

2Osaka University
Ibaraki, Osaka 567-0047, Japan
kurihara@ist.osaka-u.ac.jp

4National Institute of Informatics
Chiyoda, Tokyo 101-8430

kensuke@nii.ac.jp

3Toyohashi University of Technology
Toyohashi, Aichi 441-8580, Japan

hirotsu@entia.org

5NTT Communication Science Laboratories
Atsugi, Kanagawa 243-0198, Japan

takada@brl.ntt.co.jp

ABSTRACT

In hierarchical planning, selecting a plan at an abstract level affects

planning performance because an abstract plan restricts the scope

of primitive plans. However, if all primitive plans under the se-

lected abstract plan have difficult-to-resolve conflicts with the plans

of other agents, the final plan after conflict resolution will be inef-

ficient or of low quality. In this paper, we propose a conflict esti-

mation method to generate quality plans efficiently for multi-agent

systems by appropriately selecting abstract plans in hierarchical

planning. This method enables agents to learn which abstract plans

are less likely to cause conflicts or which conflicts will be easy to

resolve.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Distributed artificial intelligence

General Terms

Theory

Keywords

Planning, Conflict Resolution, Coordination

1. INTRODUCTION
The objective of our research is, in hierarchical planning[2, 3],

to predict which tasks in an abstract plan will conflict with other

agents’ plans at a lower level with higher probability and either

involve a costly conflict resolution process and/or result in a low-

quality plan after it has been resolved. To isolate this kind of

situation, Sugawara et al. [4] introduced conflict patterns (CP)

at a certain abstract level called the screening level (SL). In ad-

dition, they introduced a negative utility, called conflict discount,

which cumulatively predicts the probability of conflicts in the sub-

sequent refinement process, the cost of resolutions, and the qual-

ity/performance of the resulting plans on the basis of CPs in the

SL plans and past experience. The conflict discount is calculated

and updated by using statistically learned expected values or by

reinforcement learning, so that the agents select a more appropri-

ate refinement at the SL. We assume that the initial utility is good

for selecting appropriate plans only for single-agent cases. Thus,

agents learn the conflict discount appropriate for the MAS environ-

ment in order to select better SL plans. While reference [4] illus-

trated the way in which the conflict discount is adjusted, it did not

experimentally tackle the question of whether or not the final plans

were actually efficient.

In this paper, we formally define conflict patterns and discuss

the estimation of their conflict discounts. A notion of sub-conflict

patterns for avoiding redundant calculations conflict discounts and

reducing memory space is introduced. An experimental evaluation

of the efficiency of plans generated by our method for a simulated

laboratory room will be shown in out presentation. We will omit

the background to our issue because of limited page numbers; see

[4] for a detailed discussion.

2. SCREENING LEVEL
We only briefly describe the background to the issue and our

planning architecture. See [4] for a more detailed discussion.

Our planning architecture in the current version is centralized

but agents share only the plans described in a certain abstract-level

model; the manager agent (or m-agent) holds the plans that are

being scheduled or executed at this level. This level is called the

screening level (SL). We assume that the plans at this level are sim-

pler than ones at the primitive level but are detailed enough to be

analyzed for conflict estimation. Hence, while the m-agent does not

have all the detailed plans, it does maintain all SL plans presently

scheduled or being executed (These SL plans are called SL-valid

plans). This centralized architecture may cause the concentration

of jobs. However, to reduce the overload by this concentration,

the m-agent only checks SL-valid plans, which we assume that is

simpler and usually a restrictive number.

The m-agent detects possible conflicts, according to resource and

task information at the SL, by identifying the possibility of whether

multiple plans will use the same resources, such as locations (e.g.,

squares in Fig. 1). An example is illustrated in Fig. 2, for which

the SL is level 2 in Fig. 1; a square at this SL (specified by a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

AAMAS’07, May 14–18, 2007, Honolulu, Hawai'i, USA.

Copyright 2007 IFAAMAS.

844

978-81-904262-7-5 (RPS) c©2007 IFAAMAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357313695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Level 1

Level 2

Level 3

Level 0

(Higher)

(Lower)

Screening level

Primitive level

Chair

(Level 0, the most
abstract, is the floor map
where each room is
expressed as one entity)

Level 0

Region R

Region R 2

1

: obstacles

Figure 1: Example of hierarchical description.

pair of lower-case bold letters) corresponds to 4x4 squares in the

primitive model (a square in the primitive level is specified by a

pair of positive integers). In Fig. 2, the m-agent can suggest that

task tl = move(cd→ dd) in the new plan may conflict with task

t′n =move(cd→ bd) in the SL-valid plan, where move(cd→ dd)

is the SL plan expressing the agent’s movement from somewhere

in area (c,d) to area (d,d). This conflict can be expected if some

squares in area (c,d) can be simultaneously occupied by two agents

during a certain time interval.

t’n t’n+1t’n-1

tl t l+1tl-1

n+1 n+1

Move(dd to ed)Move(bd to cd) Move(cd to dd)

Move(dd to cd) Move(cd to bd) Move(bd to bc)

b c d e

c

d

e

[s’ , e’]
n n[s’ , e’]

l+1 l+1[s , e]l l[s , e]
Possibllity of some conflict

Task t is planned to be executed during time interval [s , e].

(2)
(1)

* * *
So and have an overlap.l l[s , e] n n[s’ , e’]

Scheduled
plan

New plan

Figure 2: Example of a detected conflict.

The questions of when and where conflicts likely occur and whether

their resolutions are difficult depend upon the system’s environ-

ment. Suppose that three agents want to pass through area (b,d).

In the SL model, this area (place is a resource) is expressed as a

single entity, so conflicts can be expected. However, this area has

enough room for three agents if each agent occupies a small square

at the primitive level; hence, the conflicts might not actually occur

or might be easily resolved. However, in (c,d) where agents move

only left or right, there is not enough room for three agents. Thus, it

seems probable that the agents’ plans will have conflicts there. Of

course, this probability is influenced by the temporal relationships

of the agents entering area (c,d). If a conflict is detected, one of the

agents must step out of the other agent’s way and wait for it to pass

by before resuming its movement.

3. CONFLICT ESTIMATION
In this section, we explain how utilities with conflict discounts

are learned through experience.

3.1 Conflict pattern
We introduce the concept of the conflict pattern (CP) of to ex-

press the conflicts of a plan with the plans of other agents. First,

we focus on an SL task identified as having a conflict. Let t be an

SL task in a new SL plan p, denoted by t ∈ p. Suppose that SL

plans p1, . . . , pk of other agents are SL-valid. Then the CP P is

expressed as

P(t) = (t, (t′1, o1), . . . , (t
′

h, oh))

where t′i ∈ pj (1 ≤ ∃j ≤ h) and oi is optional data. This CP de-

scribes the situation where t is expected to conflict with t′1, . . . , t
′

h

in SL-valid plans.

The optional data oi can be any information that can be used

to distinguish conflicting situations more accurately. For instance,

it may be information about (relative) the time of execution and

agents’ names or types that suggest their ability/performance or

physical size (when agents have physical bodies, such as robots

and vehicles). In the example of Fig. 2, the CP is expressed as

P1(tl) = (tl, (t
′

n, (max(s′n − sl, 0), min(el − sl, e
′

n − sl)))),

where the optional data is the relative time interval during which

the expected conflict may occur. To simplify the expression of this

example, we describe the optional data in a more abstract form.

For this purpose, we can use the expressions of time relativity; the

duration of t′n overlaps the anterior half[ah] or posterior half[ph] of

the duration of tl. Other cases of time relativity are expressed as

‘overlap[ol].’ Thus, P1(tl) = (tl, (t
′

n, r′l)), where r′l = ah, ph or

ol; this is the simplified relative time expression of [1].

The situation in Fig. 3 shows that tl may conflict with t′n+1 and

t′′m−1. The following CP corresponds to this situation:

P2(tl) = (tl, (t
′

n+1, r
′

l), (t
′′

m−1, r
′′

l))

where r′l, r′′l = ah, ph or ol.

3.2 Concept of conflict discount
Let U(p) (or U(t)) be the initial utility for a primitive plan p

(or a primitive task t). U(p) for a non-primitive plan (or task)

is the range that cumulatively indicates possible lower-primitive

plans/tasks. We introduce the conflict discount for a CP, cd(P).

The conflict discount is conceptually defined as

cd(P) = U(pp) − U(ppm) + CCR(P) (1)

where pp is the primitive plan of the SL plan p before conflict reso-

lution, and ppm is the modified primitive plan for resolving conflict

P . The term CCR indicates the cost of conflict detection and reso-

lution at the primitive level, which is calculated by combining the

cost of requesting, receiving, and analyzing primitive plans from

other agents and applying conflict resolution rules to modify the

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 845

new plan. So even if no conflict actually occurs at the primitive

level (U(pp) = U(ppm)), cd(P) �= 0. This is because, if a con-

flict is expected at SL, the cost of conflict detection will be incurred.

Define cd′(P) = U(pp)−U(ppm) as the difference of utility. The

estimation of cd(P) is described in the next section.

When an agent has a new SL plan p that is expected to have CPs

P1 . . .PN ,

cd(p) =

NX

i=1

cd(Pi).

The agent uses the modified utility U(p) − cd(p) instead of U(p).

When no conflicts are predicted, the agent uses U(p) since cd(p) =
0. Our method statistically adjusts the conflict discounts for fre-

quently appearing CPs. Because we focus on the efficiency of

plans, we assume that U(p) is the estimated execution time of the

primitive plan in the example below.

3.3 Estimation of conflict discount
The conflict discount for a CP, cd(P), is iteratively adjusted by

the average function

cds(P) =

sX

i=1

di/s (2)

when CP is observed s times. If the environment can change, the

following update function is more adaptive:

cds(P) = λ ∗ cds−1(P) + (1 − λ) ∗ ds (3)

where 0 < λ < 1 and ds indicates the s-th CCRs plus the s-

th observed differential utilities of the original primitive plan and

the plan after the resolution of conflict corresponding to P . Note

that the conflict of P might not occur at the primitive level; if so,

ds = 0 + CCRs. For example, if the partner agent takes route (1)

in Fig. 2 and this conflict is resolved by a detour or by using “wait

for two ticks” to wait until the partner agent passes by. In this case,

ds = 2 + CCRs. However, if the partner agent takes route (2) in

Fig. 2, no conflict actually occurs and ds = 0 + CCRs.

To acquire the CCR value for each plan, we assume that agents

can monitor their planning activities by themselves. More pre-

cisely, CCR consists of the time for (1) requesting and receiving

primitive plans from other agents that are suggested to have con-

flicts, (2) detecting actual conflicts between these plans and the lo-

cal plan, and (3) modifying the local plan to resolve these conflicts.

Plans (a) and (b) are scheduled or executing plans;
some conflicts with the new plan have been detected by the manager agent.

t’n t’n+1t’n-1

t’’m t’’m+1t’’m-1

tl t l+1tl-1

t has a conflict with t’ during [s e] (the relative time interval where this
conflict is expected to occur. If s=0, this conflict will occur when t starts.).
l-1 n

l-1

(a)

(b)

Figure 3: Example of conflicts between plans.

3.4 Sub-conflict patterns
It is probable that many CPs will be created, and storing many

CPs would require a large amount of memory. This also incurs

a large search cost, which degrades scalability. It also lowers the

performance of conflict estimations of the CPs. Here, we can try to

reduce the memory taken up by the CPs.

Suppose that P1 and P2 are CPs:

P1 = (t, (t1, r1), . . . , (tn, rn))

P2 = (t′, (t′1, r
′

1), . . . , (t
′

m, r′m))

If t = t′ and {(t1, r1), . . . , (tn, rn)} ⊆ {(t′1, r
′

1), . . . , (t′m, r′m)},

then P1 is the sub-conflict pattern (sub-CP) of P2, denoted by

P1 ⊆ P2. Now, we assume that cd(P1) ≤ cd(P2) if P1 ⊆ P2.

This is a natural assumption because P1 is resolved if the conflict

with P2 is resolved.

To save memory, the m-agent only stores CPs whose conflict dis-

count values are near the turning point of the decision. For exam-

ple, if cd(P2) is sufficiently small, the cd value for P1 (⊆ P2) will

not necessarily be stored, so its cd estimation can be eliminated.

Similarly, if cd(P1) is large (so the agent will give up the current

SL plan), the cd value for P2 (⊇ P1) does not have to be stored.

4. EXPERIMENTAL RESULTS
Our experimental results showed that our method can reduce the

length of plans about 7% in the case described in Fig. 2. The

detailed graphs and data are shown in our poster presentation.

This improvement seems fairly small, but our simulated labo-

ratory room is based on one of our actual rooms; we believe that

our method is more significant in other situations. For example, if

more robots moves right to left in the narrow area in Fig. 2 or the

chair there is a bench (a longer chair), this improvement becomes

larger so the resulting plans has relatively higher quality than the

ones obtained by a conventional planning strategy.

5. CONCLUSION
This paper proposed a method to predict, at an abstract level

called the screening level, the cost of possible conflict resolution,

and the quality of the resulting plan, in order to generate better

primitive (concrete) plans. In our framework, an agent called the

manager agent maintains the plans that are scheduled or being exe-

cuted at the screening level and predicts possible conflicts between

these plans and the newly proposed plan. Then, if necessary, a de-

tailed analysis of primitive plans is performed by individual agents.

We conducted experiments to reveal the estimated additional cost

(estimated cd and cd′ values) of the plans after conflict resolution

and the efficiency of plans derived from our method. Our method

enables agents to decide whether the current plan should be refined

or another plan should be created in an earlier stage, that is, be-

fore an agent creates its primitive plan; this decision makes agent’s

planning efficient.

Acknowledgement: This material is based on the work car-

ried out when the first author was in NTT Communication Science

Labs.

6. REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal intervals.

Communications of the ACM, 26(11):832 – 843, 1983.

[2] J. H. K. Erol and D. S. Nau. HTN planning: Complexity and

expressivity. In Proc. of AAAI-94, pages 1123–1128, 1994.

[3] E. Sacerdoti. Planning in a hierarchy of abstraction spaces.

Artificial Intelligence, 5(2):115 – 135, 1974.

[4] T. Sugawara, S. Kurihara, T. Hirotsu, K. Fukuda, and

T. Takada. Predicting Possible Conflicts in Hierarchical

planning for Multi-Agent Systems. In Proc. of AAMAS2005,

pages 813 – 820, 2005.

846 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

