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Abstract

We present a procedure to create brute-force signature forgeries. The procedure is sup-
ported by Sign4J, a dynamic signature imitation training software that was specifically built
to help people learn to imitate the dynamics of signatures. The main novelty of the procedure
lies in a feedback mechanism that is provided to let the user know how good the imitation is
and on what part of the signature the user has still to improve. The procedure and the software
are used to generate a set of brute-force signatures on the MCYT-100 database. This set of
forged signatures is used to evaluate the rejection performance of a baseline dynamic signature
verification system. As expected, the brute-force forgeries generate more false acceptation in
comparison to the random and low-force forgeries available in the MCYT-100 database.

Keywords: biometrics, signature verification, brute-force signature forgeries

1 Introduction

Most of nowadays available identification and verification systems are based on passwords or cards.
Biometric systems will potentially replace or complement these traditional approaches in a near
future. The main advantage of biometric systems lies in the fact that the user does not have
anymore to remember passwords or keep all his different access keys. Another advantage lies in
the difficulty to steal or imitate biometrics data, leading to enhanced security.

This work is fully dedicated to signature verification systems [7] [3]. Signature verification
has the advantage of a very high user acceptance because people are used to sign in their daily
life. Signature verification systems are said to be static (off-line) or dynamic (on-line). Static
verification systems use a static digitalized image of the signature. Dynamic signature verification
(DSV) systems use the dynamics of the signature including coordinates, pressure and sometimes
angle of the pen as a function of time. Thanks to the extra information included in the time
evolution of these features, dynamic systems are usually ranked as more accurate and more difficult
to attack than static verification systems.

Signature verification systems are evaluated by analyzing their accuracy to accept genuine
signatures and to reject forgeries. When considering forgeries, four categories can be defined from
the lowest level of attack to the highest (as presented in [9] [10], and extended here).

• Random forgeries. These forgeries are simulated by using signature samples from other
users as input to a specific user model. This category actually does not denote intentional
forgeries, but rather accidental accesses by non-malicious users.

• Blind forgeries. These forgeries are signature samples generated by intentional impostors
having access to a descriptive or textual knowledge of the original signature.

• Low-force forgeries. The impostor has here access to a visual static image of the original
signature. There are then two ways to generate the forgeries. In the first way, the forger can
use a blueprint to help himself copy the signature, leading to low-force blueprint forgeries.
In the second way, the forger can train to imitate the signature, with or without a blueprint,
for a limited or unlimited amount of time. The forger then generate the imitated signature,
without the help of the blueprint and potentially after some time after training, leading to
low-force trained forgeries. The so-called skilled forgeries of the MCYT-100 database [6]
correspond here to low-force trained forgeries.

• Brute-force forgeries. The forger has access to a visual static image and to the whole
writing process, therefore including the handwriting dynamics. The forger can analyze the
writing process in the presence of the original writer or through a video-recording or also
through a captured on-line version of the genuine signature. This last case is realized when
genuine signature data can be intercepted, for example when the user is accessing the DSV
system. In a similar way as in the previous category, the forger can then generate two types
of forgeries. Brute-force blueprint forgeries are generated by projecting on the acquisition
area a real-time pointer that the forger then needs to follow. Brute-force trained forgeries
are produced by the forger after a training period where he or she can use dedicated tools
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to analyze and train to reproduce the genuine signature. In [10] and [9], tools for training to
perform brute-force forgeries are presented.

We report in this article our study conducted in the area of brute-force trained forgeries. Rather
than designing tools to help potential forger to imitate the dynamics of a signature, our primary
objective is to understand how brute-force forgeries can be performed and to measure the impact
of such forgeries on state-of-the-art DSV systems. Another objective which is out of the scope of
this paper is to determine how DSV systems can be improved to diminish the potential risk of such
brute-force forgeries.

The underlying assumptions that are taken in this work are twofold. First, the forger has access
to one or more versions of a recorded on-line signature. Second, the forger trains to imitate the
signature according to a specified procedure and using a dedicated software that (1) permits a
precise analysis of the signature dynamics, (2) allow to train to reproduce the original signature
and (3) gives feedback on ”how close the forger is to break the system”.

In Section 2, we present the procedure that was crafted to create brute-force trained forgeries. In
Section 3, we present Sign4J, a dynamic signature imitation training software that was specifically
built to support the previous procedure. More details are given about the feedback mechanism
which is the main novelty of our approach. In Section 4, experiments performed using the procedure
and the software are reported using the MCYT-100 database. Finally, conclusions are drawn in
the last section.

2 Procedure to generate brute-force forgeries

Imitating the dynamics of a signature to perform brute-force forgeries is a difficult cognitive task
considering the multiple and different pieces of information that are available. First, as for low-
force forgeries, the global and local shapes of the signature need to be imitated. Second, the
trajectory of the pen defining the temporal sequence of strokes need to be understood and then
reproduced. For example, some users will draw the vertical bar of letter ’d’ from bottom to top
without a pen-up while some other users will draw it from top to bottom with a pen-up. Third,
the average and local pen speed need to be reproduced. Fourth and finally, the pressure and, if
available, the pen azimuth and elevation angles have also to be imitated.

Considering the difficulty of the task, we have crafted a step-by-step procedure that can be
followed by the candidate forger to capture the most important pieces of dynamic information of
a signature. This procedure has actually been refined through our experimentations and drove the
development of our Sign4J software (see Section 3).

1. Analyze and reproduce global visible features. Analyze the global shape of the signa-
ture as well as the general sequence of letters and flourish signs. Train to reproduce at low
speed the rough shape of the signature and the sequence of strokes.

2. Reproduce the average angles. Place hand and position pen in such a way that the
angles correspond to the average angles of the genuine signature.

3. Analyze and reproduce local features. Analyze carefully the complex parts of the
signature (flourish parts, high-speed sequence, etc.). Train on these complex parts separately
then train to reproduce them in the right order, at the right speed.

4. Retrain on different versions of the signature. If several signatures are available,
change frequently the signature on which training is performed.

The previous procedure was crafted to reach, on average and in a quite reduced training time,
good quality of brute-force signatures. We removed on purpose from this procedure the analysis
of local instantaneous angles, mainly because they are not easy to analyze and learn. For the
same reason, we also removed the analysis of the local dynamics of the pressure with the further
argument that the pressure value is pretty much dependent to the settings of the acquisition device.
Training to reproduce instantaneous values of angles and pressure is probably possible but it would
have increased dramatically the requested training time.
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3 Design of Sign4J

Sign4J is a software that has been developed to support the procedure presented in Section 2. We
describe here the most important features of Sign4J and give more details about the graphical user
interface. Sign4J has been written in Java to benefit from the wide, already existing, graphical and
utility libraries. This choice allowed us to reduce significantly the development time and make the
software available on any operating system supporting Java. Sign4J currently supports the family
of Wacom Cintiq devices integrating tablet and screen.

Figure 1 shows a screenshot of the interface of Sign4J. The interface has been organized into
different areas with, as principle, the top part of the view dedicated to the analysis of a genuine
signature and the bottom part dedicated to forgery training.

Figure 1: Screen Shot of Sign4J Graphical User Interface

1. Signature analysis

• In the top part, the display area gives a view of the original signature. Pens up
corresponding to zero pressure values are displayed in cyan and pens down are displayed
in blue. The signature is actually drawn point by point on top of a static watermarking
version. The watermarking can be set with a custom transparency level. The play
button starts the display of a signature in real-time, i.e. reproducing the real velocity
of the signer. Zooming functions allow to analyze in more details some specific parts of
the signature trajectory.

• The user can adjust the speed of the signature between 0% and 100% of the real-time
speed with a slider. The slider below the display area can be used to go forward or
backward onto some specific parts of the signature, in a similar manner as for a movie
player.
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• The instantaneous elevation and azimuth angles are displayed as moving needles in two
different windows. The average values of these angles are also displayed as fixed dashed
needles.

• The instantaneous pressure is displayed as a bar where the level represents the pressure
value. The left bar indicates the pressure of the original signature and the right one
shows the pressure of the forger.

• Display of the angles, pressure or signature trajectory can be turned on or off with check
boxes to allow a separate analysis of the different features.

2. Forgery training

• In the bottom part, the training area is used to let the forger train to reproduce the
original signature. An imitation can then be replayed in a similar manner as in the
top analysis area. To ease the training, a blueprint of the genuine signature can be
displayed. A tracking mode is also available where the genuine signature is drawn in
real-time so that the forger can track the trajectory with the pen.

• After an imitation has been performed, the signature is automatically sent to the DSV
system that output a global score and a sequence of local scores. The global score has
to reach a given threshold for the forgery to be accepted by the system. The global
absolute score is displayed together with the global relative score that is computed by
subtracting the absolute score from the global threshold. The global scores are kept in
memory in order to plot a sequence of bars showing the progress of the training session.
The global threshold value can be set using a slider.

• By comparing the local scores to a local threshold value, regions of the signature where
the user still has to improve are detected. The forger can then train more specifically on
these regions. Figure 2 gives an example of such a local feedback with a clear indication
that the first letter of the signature needs to be improved. We have to note here that
when the forger performs equally well (or bad) on the signature, the color feedback is
less precise and difficult to interpret. The local threshold can also be set with a slider.

4 DSV System Description and Experiments

The choice of the DSV system embedded in Sign4J has been driven by the necessity to provide
local scores, i.e. scores for each point of the signature sample. We have then chosen to implement
a system based on local feature extraction and Gaussian Mixture Models (GMMs) in a similar
way as in [8] and [2]. GMMs are also well-known flexible modelling tools able to approximate
any probability density function. For each point of the signature, a frontend extracts 25 dynamic
features as described in [4]. The frontend extracts features related to the speed and acceleration of
the pen, the angles and angles variations, the pressure and variation of pressure, and some other
derived features. The features are mean and standard deviation normalized on a per signature basis.
GMMs estimates the probability density function p(xn|Mclient) or likelihood of a D-dimensional
feature vector xn given the model of the client Mclient as a weighted sum of multivariate gaussian
densities :

p(xn|Mclient) =
I∑

i=1

wiN (xn, µi, Σi) (1)

in which I is the number of mixtures, wi is the weight for mixture i and the gaussian densities
N are parameterized by a mean D × 1 vector µi, and a D × D covariance matrix, Σi. In our
case, we make the hypothesis that the features are uncorrelated and we use diagonal covariance
matrices. By making the hypothesis of observation independence, the global likelihood score for
the sequence of feature vectors, X = {x1, x2, ..., xN} is computed with :
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Figure 2: Example of the local feedback mechanism. The top part is the original signature and
the bottom part is the forgery where the red (dark) parts corresponds to region having produced
scores below a given local threshold.

Sc = p(X|Mclient) =
N∏

n=1

p(xn|Mclient) (2)

The likelihood score Sw of the hypothesis that X is not from the given client is here estimated
using a world model Mworld or universal background model trained by pooling the data of many
other users. The likelihood Sw is computed in a similar way, by using a weighted sum of gaussian
mixtures. The global score is the log-likelihood ration Rc = log(Sc)− log(Sw). The local score at
time n is the log-likelihood ratio Lc(xn) = log(p(xn|Mclient))− log(p(xn|Mworld)). The training of
the client and world models is performed with the Expectation-Maximization (EM) algorithm [1].
The client and world model are trained independently by applying iteratively the EM procedure
until convergence is reach, typically after few iterations. In our setting, we apply a simple binary
splitting procedure to increase the number of gaussian mixtures to a predefined value. For the
results reported here, we have used 64 mixtures in the world model and 16 in the client models.

Experiments have been done with online signatures of the public MCYT-100 database [6].
This mono-session database contains signatures of 100 users. Each user has produced 25 genuine
signatures, and 25 low-force trained forgeries are also available for each user (named as skilled
forgeries in the database). These forgeries are produced by 5 other users by observing the static
images and training to copy them.

We have used Sign4J and the procedure described earlier to produce brute-force trained forgeries
for 50 users of MCYT-100. The training time to train on one user was on purpose limited to 20
to 30 minutes. After the training phase, 5 imitation samples were produced by the forgers. We
have to note here that our acquisition device (Wacom Cintiq 21UX) is different to the MCYT-100
signature acquisition device (Wacom A6 tablet). We had to uniform the ranges and resolutions
of the records to be able to perform our tests. Better brute-force forgeries could potentially be
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obtained by using strictly the same devices.
The performances of a baseline DSV system, similar to the one embedded in Sign4J, were

then evaluated using three sets of signatures: a set of random forgeries (RF), the set of low-force
forgeries (LF) included in MCYT-100 and the brute-force forgeries (BF) generated with Sign4J.
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Figure 3: DET curve - Dynamic Signature Verification System Performance

Results of biometric systems are classically measured in terms of impostor False Acceptation
FA and client False Rejection FR error rates that vary as a function of the decision threshold T .
Operating points (FA,FR) can then be plot on a (x,y) figure with T as parameter. Figure 3 shows
a Detection Error Tradeoff (DET)[5] plot. DET plots are often used in which the x and y axis
follow a normal deviate scale. If the scores are normally distributed the DET curve will be close to
a straight line, enabling easy observation of system contrasts. We also report our results in terms
of Equal Error Rates (EER) which are obtained for FA = FR. Equal Error Rates (EER) of 1.3%,
3.0% and 5.4% are obtained respectively for RF, LF and BF forgeries. As expected, low-force
forgeries are more easily rejected than brute-force forgeries, with a significant relative difference of
80%.

5 Conclusions and Future Work

We have introduced a procedure to generate brute-force signature forgeries that is supported by
Sign4J, a dedicated software. The main novel feature of Sign4J lies in a link with an embedded DSV
system. The DSV system allows to implement a feedback mechanism that let the forger see how
close he or she was to break the system. Sign4J also exploit the local scores of the DSV system to
indicate to the forger what are the potential parts of the signature where improvements are needed.
A set of forgeries has been generated on the MCYT-100 database, by following the procedure and
by using Sign4J. These forgeries have been compared to the low-force forgeries available in MCYT-
100, measuring Equal Error Rates obtained with our baseline verification system. Although the
training time has been limited to 20 to 30 minutes per signature, the brute-force forgeries are
measured to be significantly more difficult to reject than the low-force forgeries.

In potential future work, we would like to investigate better rendering of the local feedback
that reveals noisy when the forger performs equally well in all areas of a signature. Also, more
precise feedback about the features to improve could be possible, i.e. not only answer the question
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“where to improve”, but also “how to improve”. Another possible amelioration of Sign4J is in
the play-back of the angles and pressure which are currently difficult to analyze and reproduce.
Finally, an important are of research would be to leverage on the knowledge acquired in this project
and to investigate how DSV systems can be improved in order to diminish the potential risks of
such brute-force forgeries.
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