# Effects of Putative Thromboxane Receptor Agonists and Antagonists on Rat Small Intestinal Ion Transport<sup>1</sup>

P. L. SMITH, G. P. McCAFFERTY, J. D. FONDACARO, M. A. WASSERMAN, E. ELTON and F. M. RYAN Departments of Drug Delivery and Pharmacology, Smith Kline & French Laboratories, Philadelphia, Pennsylvania Accepted for publication July 5, 1988

# ABSTRACT

Effects of a thromboxane mimic, U46619, on electrolyte transport were examined *in vitro* using stripped segments of rat ileal mucosa mounted in Ussing chambers. Addition of U46619 to the serosal bathing solution elicited a transient increase in short-circuit current (I<sub>sc</sub>) and decrease in transpithelial conductance (G<sub>t</sub>). The increase in I<sub>sc</sub> was accompanied by a transient increase in Cl<sup>-</sup> secretion and decrease in Na<sup>+</sup> absorption. In the steady-state, I<sub>sc</sub> was not increased whereas G<sub>t</sub> remained decreased and Na<sup>+</sup> and Cl<sup>-</sup> absorption were inhibited. Removal of Cl<sup>-</sup> or pretreatment with serosal and mucosal indomethacin (1  $\mu$ M) or the thromboxane receptor antagonist, SK&F 88046, added to the serosal bathing solution, inhibited the increase in I<sub>sc</sub> stimulated by U46619 (apparent K<sub>B</sub> ~8 nM). The effects of U46619 on both

 $I_{sc}$  and  $G_t$  are qualitatively similar to those resulting from stimulation with leukotriene  $D_4$ . However, the changes in  $I_{sc}$  with leukotriene  $D_4$  (10  $\mu$ M) are antagonized by SK&F 88046 only at high concentrations (1–10  $\mu$ M). In addition, the secretagogues prostaglandin  $F_{2n}$  lys-bradykinin, serotonin and histamine, produce qualitatively similar changes in  $I_{sc}$  to those seen with U46619 without altering  $G_t$ . With the exception of prostaglandin  $F_{2n}$  the effects of these secretagogues are not inhibited by SK&F 88046 (10  $\mu$ M). These results indicate that U46619 acts at a thromboxane receptor to stimulate intestinal Cl<sup>-</sup> secretion and inhibit Na<sup>+</sup> and Cl<sup>-</sup> absorption. These changes are inhibited selectively by the thromboxane receptor antagonist, SK&F 88046.

Hamberg et al. (1975) and Moncada (1977) reported that arachidonic acid is metabolized to the proaggregatory and vasoconstrictor compounds, PG endoperoxide (PGH<sub>2</sub>) and TXA<sub>2</sub>. Because these PG metabolites are unstable, a number of agonists and antagonists have been synthesized to allow investigation of the effects of PGH<sub>2</sub>/TXA<sub>2</sub> in biological systems. In 1981, Coleman et al. compared the effects of an epoxymethano analog of PGH<sub>2</sub> [(15S)-hydroxy- $11_{\alpha}$ ,  $9_{\alpha}$ -(epoxymethano)prosta-5z,13E-dieonic acid; U46619] (Bundy, 1975), with the effects of PGH<sub>2</sub> and TXA<sub>2</sub> in isolated smooth muscle preparations and concluded that the effects of U46619 most closely resembled those of TXA<sub>2</sub>. Subsequently, Mais et al. (1985) reported that U46619 induces platelet aggregation and vasoconstriction, although the PGH<sub>2</sub>/TXA<sub>2</sub> receptors mediating these responses appear to be different as determined by the antagonism of these responses with selective receptor antagonists. Furthermore, Weichman et al. (1984a,b) demonstrated that the contraction of guinea pig trachea elicited by U46619, U44069, carbocyclic TXA<sub>2</sub> (CTA<sub>2</sub>), PGF<sub>2 $\alpha$ </sub> and PGD<sub>2</sub> are antagonized by the TX receptor antagonist, SK&F 88046. In

addition, in guinea pig parenchyma,  $LTD_4$ -induced contractions are also antagonized by SK&F 88046 whereas the increase in TXB<sub>2</sub> production is not altered (Weichman *et al.*, 1984b). Inasmuch as SK&F 88046 does not alter cyclooxygenase or TX synthetase (Weichman *et al.*, 1984b), SK&F 88046 appears to be a useful tool for investigating the role of TX in physiological responses. The mechanism by which PGH<sub>2</sub>/TXA<sub>2</sub> elicit their response is not known although it has been shown that the carbocyclic TXA<sub>2</sub> contracts aortic strips by a nifedipine-sensitive pathway indicating that the effect of TXA<sub>2</sub> is dependent on a cytosol directed calcium flux (Smith *et al.*, 1981).

Intestinal secretion can be elicited by a number of arachidonic acid metabolites including PGA<sub>2</sub> (Musch *et al.*, 1987), PGE<sub>1</sub> (Smith and McCabe, 1984), PGE<sub>2</sub> (Kimberg *et al.*, 1971), PGF<sub>2a</sub> (Al-Awqati and Greenough, 1972) and PGD<sub>2</sub> (Musch *et al.*, 1987) as well as by the PGI<sub>2</sub> analog, 9-deoxy-9<sub>a</sub>,6 nitrilo PGF<sub>1a</sub> (Musch *et al.*, 1987). In addition, intestinal secretion is stimulated by a variety of agents *via* indomethacin-sensitive mechanisms (*e.g.* lys-bradykinin, histamine and LTD<sub>4</sub>) (Cuthbert and Margolius, 1982; Hojvat *et al.*, 1983; Musch *et al.*, 1983; Manning *et al.*, 1982; McCabe and Smith, 1984; Smith *et al.*, 1988). Furthermore, the intestine has both the synthetic and degradative mechanisms responsible for metabolism of PGs, TXA<sub>2</sub>, LTs and prostacyclin (Field *et al.*, 1981; Hojvat *et* 

Received for publication January 5, 1988.

 $<sup>^1\,\</sup>rm This$  work was supported in part by the National Institutes of Health Grant DK-38295.

ABBREVIATIONS: PG, prostaglandin; TX, thromboxane; LT, leukotriene; PD, potential difference; I<sub>sc</sub>, short-circuit current; G<sub>t</sub>, transepithelial conductance; DMSO, dimethylsulfoxide; 5-HT, serotonin.

al., 1983; Knapp et al., 1978; LeDuc et al., 1979; Lawson and Powell, 1987; Sharon and Stenson, 1984; Zipser et al., 1987). However, to our knowledge, the effects of  $PGH_2/TXA_2$  have not been investigated in this tissue. Thus, in this study, the effects of U46619 and SK&F 88046 were investigated to determine the possible role(s) of  $PGH_2/TXA_2$  in mediating intestinal secretion.

# **Materials and Methods**

**Experimental preparations.** Distal ileum was obtained from male, albino Sprague-Dawley rats (250–350 g) maintained on standard chow and water *ad libitum*. The intestinal segment was rinsed with ice-cold HCO<sub>3</sub>-Ringer's solution and placed in oxygenated ice-cold HCO<sub>3</sub>-Ringer's containing (millimolar): Na<sup>+</sup>, 144; K<sup>+</sup>, 5; Ca<sup>++</sup>, 1.25; Mg<sup>++</sup>, 1.25; Cl<sup>-</sup>, 125; HCO<sub>3</sub><sup>-</sup>, 25; H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, 0.3; and HPO<sub>4</sub><sup>-2</sup>, 1.6. This solution has a pH of 7.4 when gassed with 5% CO<sub>2</sub> in O<sub>2</sub> at 37°C.

Ileal mucosa was then stripped of its underlying muscle as described previously (Smith *et al.*, 1988). Six segments of stripped ileal mucosa were mounted in Ussing chambers (1.13 cm<sup>2</sup> exposed surface area) and bathed on both tissue surfaces with 10 ml of  $HCO_3$ -Ringer's. Solutions were circulated by gas lift and maintained at 37°C by water-jacketed reservoirs.

Electrical and ion flux measurements. Tissues mounted in Ussing chambers as described above were allowed to stabilize 30 to 45 min in HCO<sub>3</sub>-Ringer's. Transepithelial electric PD with reference to the luminal bathing solution and I<sub>sc</sub> were monitored as described previously (Smith et al., 1988). G, determined at 15-min intervals was calculated from the change in I<sub>sc</sub> resulting from an imposed PD of 5 mV. The effects of test agents on acute and steady-state transepithelial fluxes of Na<sup>+</sup> and Cl<sup>-</sup> from mucosa-to-serosa and from serosa-to-mucosa were measured in paired tissues (resistances differing by less than 25%) under short-circuit conditions using tracer quantities of <sup>22</sup>NaCl or Na<sup>36</sup>Cl, respectively. Isotope was added after a 30- to 45-min preequilibration period. Steady-state fluxes (Period I) were calculated from four samples taken at 15-min intervals starting 30 min after the addition of <sup>22</sup>NaCl and Na<sup>36</sup>Cl. U46619 was added immediately after Period I, and three 15-min fluxes (Period II) were determined after a 15-min re-equilibration period. Inasmuch as the Isc response to the thromboxane mimic, U46619, was transient, we also determined the effects of U46619 on unidirectional Na<sup>+</sup> and Cl<sup>-</sup> fluxes measured during an initial 15-min period just before adding U46619 and a 15-min period immediately after addition of U46619 to the serosal bathing solution. Changes in fluxes were also determined in parallel control tissues for comparison.

In experiments designed to investigate the effects of SK&F 88046 on secretagogue-induced changes in I<sub>sc</sub> and G<sub>t</sub>, six tissues from an animal were used. Three tissues were treated with SK&F 88046 and three tissues with an equal volume of DMSO. After a 20-min equilibration, secretagogues were added to the serosal bathing solution of control and SK&F 88046-treated tissues at three concentrations (one concentration per tissue) and the maximal changes in I<sub>sc</sub> and G<sub>t</sub> recorded. Twenty-minutes later, PGE<sub>1</sub> (10<sup>-5</sup> M) was added to the serosal bathing solution and the maximal increase in I<sub>sc</sub> recorded. The I<sub>sc</sub> responses to various secretagogues were then normalized to the response obtained with PGE<sub>1</sub> added at the end of each experiment [e.g. ( $\Delta I_{sc}$  with U46619 or other secretagogues/ $\Delta I_{ec}$  with PGE<sub>1</sub>) × 100]. The concentration of secretagogue required to elicit 30% of the PGE<sub>1</sub> response in the presence or absence of SK&F 88046 was used to define the agonist potency and the SK&F 88046 antagonist activity. The apparent  $K_B$  describing the antagonist affinity of SK&F 88046 was calculated from equation 1:

$$K_B = \frac{[\text{Concentration of SK\&F 88046}]}{(\text{EC}_{30} + \text{SK\&F 88046}/\text{EC}_{30} \text{ Control}) - 1}$$
(1)

Statistical analysis. Results are presented as the mean  $\pm 1$  S.E. The *n* values indicate the number of tissues from different animals studied. Grouped data were analyzed using Student's t test for paired variates.

**Materials.** LTD, and SK&F 88046 were synthesized by Smith Kline & French Laboratories (Philadelphia, PA). UV spectroscopy was used to determine the molar concentration and purity of LTD. Indomethacin, histamine, 5-HT, lys-bradykinin, PGE<sub>1</sub> and PGF<sub>2x</sub> were obtained from Sigma Chemical Co. (St. Louis, MO). U46619 was obtained from Upjohn (Kalamazoo, MI). Indomethacin and SK&F 88046 were dissolved in DMSO, PGs including U46619 were dissolved in ethanol and other agents were dissolved in water. The final concentration of DMSO or ethanol in the bath did not exceed 0.1% by volume. Appropriate vehicle controls were studied in paired tissues.

#### Results

Effects of U46619 on electrical properties of rat ileum. Figure 1 presents results from representative experiments in which the effects of  $PGE_1$  or U46619 on "basal"  $I_{sc}$ and G<sub>t</sub> were determined. Results presented in figure 1 are from different animals and show that basal  $I_{sc}$  can vary from 0.3 to  $0.7 \,\mu \text{Eq/hr} \cdot \text{cm}^2$  (8–19  $\mu \text{A/cm}^2$ ) whereas G<sub>t</sub> varies from 21 to 32 mS/cm<sup>2</sup>. This variation presumably reflects varying rates of basal ion transport. In these studies, tissues were mounted in random order with one tissue serving as a time control for comparison with paired tissues receiving additions. Electrical properties of rat ileum remain constant over the period before adding PGE1 to the serosal bathing solution (fig. 1, top). Serosal addition of PGE<sub>1</sub> ( $10^{-5}$  M) elicits an immediate increase in I<sub>sc</sub> with only a transient increase in Gt. Serosal or mucosal addition of U46619 (3  $\times$  10<sup>-5</sup> M) produced transient increases in I<sub>sc</sub> which achieved maximum values of  $4.4 \pm 0.3 \,\mu \text{Eq/hr} \cdot \text{cm}^2$  (118)  $\pm 8 \ \mu \text{A/cm}^2$  (n = 41) and 1.6  $\pm$  0.6  $\mu \text{Eq/hr} \cdot \text{cm}^2$  (43  $\pm$  16  $\mu \text{A/}$ 



**Fig. 1.** Representative time courses for  $I_{sc}$  and  $G_t$  in rat ileum in the absence or presence of serosal PGE<sub>1</sub> ( $10^{-5}$  M) and mucosal (M) or serosal (S) U46619 ( $3 \times 10^{-5}$  M). Zero time is 45 to 60 min after mounting tissues *in vitro*.

 $(m^2)$  (n = 5), respectively, within 2 min and then returned toward base line (fig. 1, middle and bottom). Serosal or mucosal addition of U46619 (3  $\times$  10<sup>-5</sup> M) also produced a sustained decrease in G<sub>t</sub> of  $-9.0 \pm 0.8$  (n = 29) and  $-8.5 \pm 1.7$  mS/cm<sup>2</sup> (n = 5), respectively. Subsequent addition of U46619  $(3 \times 10^{-5})$ M) to the serosal bathing solution elicited an increase in  $I_{sc}$ which was only  $33.3 \pm 15.7\%$  (n = 5) and  $11.6 \pm 7.0\%$  (n = 5)of the initial mucosal or serosal response, respectively, with no further decrease in G<sub>t</sub>. The diminished response elicited by mucosal addition compared to serosal addition does not appear to be due to metabolism of U46619, as removal of an aliquot (1 ml from the 10-ml bath) from the mucosal bathing solution 20 min after adding U46619 ( $3 \times 10^{-5}$  M) to the mucosal bathing solution and addition of this aliquot to the serosal bathing solution of a naive tissue (final concentration of U46619 =  $3 \times$  $10^{-6}$  M) resulted in an increase in I<sub>sc</sub> of  $3.5 \pm 1.3 \ \mu Eq/hr \cdot cm^2$  $(94 \pm 35 \ \mu A/cm^2)$  and a decrease in G<sub>t</sub> of  $-8.2 \pm 1.8 \ mS/cm^2$ . Serosal addition of PGE<sub>1</sub>  $(10^{-5})$  after U46619 produced an increase in  $I_{sc}$  similar to that seen in a naive tissue [ $\Delta$  with  $PGE_1$  (control-U-46619-treated) =  $-1.4 \pm 0.9 \,\mu Eq/hr \cdot cm^2$  (-38)  $\pm 24 \ \mu A/cm^2$ , n = 8].

U46619 produced concentration-dependent changes in I<sub>sc</sub> and G<sub>t</sub> when added to the serosal bathing solution. The increase in I<sub>sc</sub> is a linear function of concentration when plotted as percentage of maximal response to PGE<sub>1</sub> or as microequivalent per hour per squared centimeter (fig. 2). The decrease in G<sub>t</sub> (fig. 3) appears to be maximal at  $3 \times 10^{-5}$  M and has a half-maximal effect at  $2.5 \times 10^{-7}$  M (n = 6). In rat ileum, the concentration dependence for PGE<sub>1</sub> on I<sub>sc</sub> reveals that a maximal change in I<sub>sc</sub> ( $5.88 \pm 1.75 \ \mu \text{Eq}/\text{hr} \cdot \text{cm}^2$  ( $158 \pm 47 \ \mu \text{A/cm}^2$ ) (n = 5), is elicited at a concentration of  $10^{-6}$  to  $10^{-5}$  M with a half-maximal effect at  $5.6 \times 10^{-7}$  M. However, PGE<sub>1</sub> ( $10^{-5}$  M) unlike U46619 does not alter steady-state G<sub>t</sub> ( $\Delta G_t$  with PGE<sub>1</sub> =  $0.4 \pm 3.0 \ \text{mS/cm}^2$ , n = 5) (data not shown).

Effects of U46619 on unidirectional and net Na<sup>+</sup> and Cl<sup>-</sup> fluxes in rat ileum. In paired experimental tissues, serosal addition of U46619 ( $10^{-5}$  M) produced an acute increase



Fig. 2. Concentration dependence of the effects of U46619 on the maximal change in  $I_{sc}$  in rat ileum plotted as microequivalents per hour per squared centimeter or as percentage of maximal response to PGE<sub>1</sub>. Results are means  $\pm 1$  S.E. for four animals in which all concentrations were examined in each animal.



Fig. 3. Concentration dependence of the effects of U46619 on the steadystate changes in G<sub>1</sub> in rat ileum in the absence or presence of SK&F 88046 ( $3.3 \times 10^{-7}$  M). In experiments with SK&F 88046, tissues were pretreated with serosal SK&F 88046 or DMSO (solvent control) and then the effects of serosal U46619 were examined. Results are means  $\pm 1$ S.E. for four animals in which all conditions were examined in each animal.

in I<sub>sc</sub> of 2.1 ± 0.4  $\mu$ Eq/hr·cm<sup>2</sup> (56 ± 11  $\mu$ A/cm<sup>2</sup>) (P < .001, n = 12) and decreased G<sub>t</sub> by 5.9 ± 1.5 mS/cm<sup>2</sup> (P < .01, n = 12) (table 1). These acute changes in I<sub>sc</sub> and G<sub>t</sub> were accompanied by significant decreases in the mucosal-to-serosal and net fluxes of both Na<sup>+</sup> and Cl<sup>-</sup> along with a significant increase in the serosal-to-mucosal Cl<sup>-</sup> flux. In time-matched control tissues, there were no significant changes in electrical properties or transepithelial fluxes over these time intervals. The steady-state changes in electrical properties and transepithelial fluxes are presented in table 2. In the steady state, U46619 (10<sup>-5</sup> M), had no effect on I<sub>sc</sub> whereas G<sub>t</sub> was reduced by 9.7 ± 2.4 mS/cm<sup>2</sup> (P < .001, n = 12). In addition, the mucosal-to-serosal fluxes of both Na<sup>+</sup> and Cl<sup>-</sup> were reduced compared to time-matched control tissues.

Comparison of effects of U46619 to the effects of  $PGF_{2\alpha}$  and  $LTD_4$ . Figure 4 illustrates representative responses for the time course of  $PGF_{2\alpha}$  (10<sup>-5</sup> M) and the sulfidopeptide LT, LTD<sub>4</sub> (10<sup>-5</sup> M), on  $I_{sc}$  and  $G_t$ . PGF<sub>2a</sub> and LTD<sub>4</sub> increase  $I_{sc}$  with a time course similar to that seen with U46619. However,  $PGF_{2\alpha}$  (top) decreases G<sub>t</sub> much less than U46619  $(\Delta G_t \text{ with } PGF_{2\alpha} = -3.9 \pm 2.2 \text{ mS/cm}^2, n = 4)$  whereas LTD<sub>4</sub> (middle) decreases G<sub>t</sub> by approximately the same magnitude as U46619 ( $\Delta G_t$  with LTD<sub>4</sub> = -8.1 ± 2.0 mS/cm<sup>2</sup>, n = 6). In addition, figure 4 (top and middle) illustrates that the  $PGE_1$ response is not altered by either  $PGF_{2\alpha}$  or  $LTD_4$ . Figure 5A presents the concentration-dependence of the change in I<sub>sc</sub> produced by  $PGF_{2\alpha}$  as a percentage of the maximal  $PGE_1$ response or as microequivalents per hour per squared centimeter. The increase in  $I_{sc}$  elicited by PGF<sub>2a</sub> is linear over the concentration range used. As shown in figure 5B, the concentration-dependence of the change in  $I_{sc}$  produced by LTD<sub>4</sub> is maximal at  $10^{-5}$  M and has a half-maximal effect at  $3 \times 10^{-7}$ M.

Comparison of effects of U46619 to the effects of other intestinal secretagogues. The time course of effects of lysbradykinin, histamine and 5-HT on  $I_{sc}$  and  $G_t$  are shown in figure 6. The time course of the change in  $I_{sc}$  elicited by all three of these intestinal secretagogues are similar to that seen with U46619 (compare fig. 6 to fig. 1). However, the changes

# TABLE 1

## Acute effects of U46619 on unidirectional and net Na and CI fluxes and electrical properties of rat ileum

Values are means  $\pm$  1 S.E. for six animals. Period I fluxes were determined over a 15-min interval before adding DMSO (solvent control) or U46619 (10<sup>-5</sup> M) to the serosal bathing solution. Period II and IIa fluxes were determined over a 15-min interval immediately after adding DMSO or U46619, respectively. Fluxes including I<sub>ac</sub> are in microequivalents per hour per squared centimeter and G<sub>t</sub> is in millisiemens per squared centimeter. J<sub>ma</sub>, mucosal-to-serosal flux; J<sub>am</sub>, serosal-to-mucosal flux; J<sub>am</sub>, serosal-to-mucosal flux; J<sub>ma</sub>, J<sub>am</sub>.

| Period | Condition | Na<br>J <sub>ma</sub> | Na<br>J <sub>em</sub> | Na<br>J <sub>ret</sub> | Cl<br>J    | Cl<br>J <sub>am</sub> | Cl<br>J <sub>nat</sub> | l <sub>ec</sub> | G,         |
|--------|-----------|-----------------------|-----------------------|------------------------|------------|-----------------------|------------------------|-----------------|------------|
| 1      | Control   | $20.0 \pm 2.0$        | 14.7 ± 1.4            | 5.3 ± 1.0              | 13.5 ± 0.8 | $9.8 \pm 0.4$         | 3.7 ± 0.9              | $1.5 \pm 0.4$   | 33.0 ± 2.5 |
| H      | DMSO      | 20.6 ± 2.2            | 16.8 ± 1.2            | <b>3.8 ± 1.7</b>       | 13.9 ± 1.2 | 10.9 ± 0.6            | 3.0 ± 1.0              | 1.3 ± 0.4       | 34.8 ± 3.0 |
|        | ∆(II-I)   | 0.6 ± 0.5             | 2.1 ± 1.0             | -1.5 ± 1.1             | 0.4 ± 0.6  | 1.1 ± 0.5             | -0.7 ± 0.4             | -0.2 ± 0.1      | 1.8 ± 0.9  |
|        | P         | N.S.                  | N.S.                  | N.S.                   | N.S.       | N.S.                  | N.S.                   | N.S.            | N.S.       |
| la     | Control   | 21.3 ± 1.9            | 17.6 ± 1.2            | 3.7 ± 0.9              | 14.1 ± 1.3 | 11.3 ± 0.7            | 2.8 ± 1.4              | 1.4 ± 0.3       | 33.4 ± 2.6 |
| lla    | U46619    | 15.0 ± 0.9            | 16.4 ± 1.6            | $-1.4 \pm 0.9$         | 10.8 ± 0.9 | 13.8 ± 1.3            | -3.0 ± 1.5             | 3.5 ± 0.3       | 27.5 ± 1.3 |
|        | ∆(lla-la) | -6.3 ± 1.1            | -1.2 ± 0.8            | -5.1 ± 1.6             | -3.3 ± 0.5 | 2.5 ± 0.9             | -5.8 ± 1.3             | 2.1 ± 0.4       | -5.9 ± 1.5 |
|        | P         | <.01                  | N.S.                  | <.05                   | <.01       | <.05                  | <.01                   | <.001           | <.01       |

## TABLE 2

Steady-state effects of U46619 on unidirectional and net fluxes of Na and CI and electrical properties of rat ileum

Values are means  $\pm 1$  S.E. for six animals. Period I fluxes were determined as described under "Materials and Methods." DMSO (solvent control) or U46619 (10<sup>-5</sup> M) was added to the serosal bathing solution immediately after Period I or Ia, respectively. Period II and IIa fluxes determined after a 15-min re-equilibration. Fluxes including  $I_{ac}$  are in microequivalents per hour per squared centimeter and  $G_t$  is in millisiemens per squared centimeter.  $J_{ma}$ , mucosal to serosal flux;  $J_{am}$ , serosal-to mucosal flux;  $J_{nm}$ ,  $J_{am}$ ,  $J_{am}$ .

| Period | Condition | Na<br>J <sub>ma</sub> | Na<br>J <sub>em</sub> | Na<br>J <sub>net</sub> | j <sup>m</sup><br>Ci | Cl<br>J <sub>am</sub> | Ci<br>J <sub>met</sub> | l <sub>ec</sub> | G,                |
|--------|-----------|-----------------------|-----------------------|------------------------|----------------------|-----------------------|------------------------|-----------------|-------------------|
|        | Control   | 19.7 ± 1.8            | 15.2 ± 1.2            | 4.5 ± 1.0              | 13.0 ± 0.9           | 9.6 ± 0.3             | 3.4 ± 0.9              | 1.6 ± 0.3       | 32.3 ± 2.0        |
| 11     | Control   | 21.7 ± 2.0            | 17.0 ± 1.6            | 4.7 ± 0.9              | 13.6 ± 0.8           | 10.0 ± 0.7            | 3.6 ± 0.8              | $0.8 \pm 0.3$   | 33.3 ± 2.2        |
|        | ∆(II-I)   | 2.0 ± 0.6             | 1.8 ± 0.9             | 0.2 ± 0.8              | $0.6 \pm 0.4$        | 0.4 ± 0.5             | $0.2 \pm 0.6$          | -0.8 ± 0.2      | 1.0 ± 0.9         |
|        | P         | <.02                  | N.S.                  | N.S.                   | N.S.                 | N.S.                  | N.S.                   | <.01            | N.S.              |
| la     | Control   | 20.1 ± 2.1            | 17.2 ± 1.3            | 2.9 ± 1.4              | 13.2 ± 1.3           | 11.0 ± 0.7            | 2.2 ± 1.3              | 1.5 ± 0.2       | <b>36.0 ± 3.7</b> |
| lla    | U46619    | 15.3 ± 0.9            | 15.2 ± 1.2            | 0.1 ± 0.6              | 11.3 ± 1.0           | 10.5 ± 0.7            | 0.8 ± 1.3              | 1.2 ± 0.2       | 26.3 ± 1.5        |
|        | ∆(lla-la) | -4.8 ± 1.4            | -2.0 ± 1.1            | -2.8 ± 1.4             | -1.9 ± 0.5           | -0.5 ± 0.5            | $-1.4 \pm 0.6$         | -0.2 ± 0.1      | -9.7 ± 2.4        |
|        | P         | <.02                  | N.S.                  | N.S.                   | <.01                 | N.S.                  | N.S.                   | N.S.            | <.01              |

produced by these agents are greater than those seen with U46619 and they do not significantly alter steady-state  $G_t$ .

Effects of cyclooxygenase inhibition, Cl<sup>-</sup> removal or the TX receptor antagonist SK&F 88046 on electrical effects of U46619 and other intestinal secretagogues. We also investigated the effects of indomethacin, a cyclooxygenase inhibitor, removal of Cl<sup>-</sup> and the TX receptor antagonist, SK&F 88046, on basal and secretagogue-stimulated changes in electrical properties of rat ileum. Indomethacin  $(10^{-6})$ M) alone has no significant effect on  $G_t$  in rat ileum but significantly reduces basal  $I_{sc}$  ( $\Delta$ [control-indomethacin] = -0.6  $\pm 0.1 \ \mu Eq/hr \cdot cm^2$  (-16  $\pm 3 \ \mu A/cm^2$ ), P < .01). Indomethacin  $(10^{-6} \text{ M})$  significantly reduces the increase in I<sub>sc</sub> elicited by U46619 (3  $\times$  10<sup>-5</sup> M) by 59% (fig. 7) without significantly altering the change in G<sub>t</sub> produced by U46619 ( $\Delta$ G<sub>t</sub> with indomethacin-treated tissues =  $-8.8 \pm 3.4 \text{ mS/cm}^2 vs. \Delta G_t$  in control tissues =  $-9.5 \pm 2.3 \text{ mS/cm}^2$ , n = 5). Indomethacin  $(10^{-6})$  did not alter the increase in I<sub>ac</sub> stimulated by PGF<sub>2a</sub>  $(10^{-5})$ M) and increased the change in  $I_{sc}$  elicited by PGE<sub>1</sub> (10<sup>-5</sup> M) (fig. 7). Removal of Cl<sup>-</sup> from the bathing solutions (Cl<sup>-</sup> replaced with gluconate) reduced the increase in I<sub>sc</sub> produced by both U46619 (3  $\times$  10<sup>-5</sup> M) and PGE<sub>1</sub> (10<sup>-5</sup> M) by greater than 90%.

The TX receptor antagonist, SK&F 88046 ( $10^{-5}$  M), does not significantly alter basal I<sub>sc</sub> (fig. 4) but increases G<sub>t</sub> by  $1.3 \pm 0.5$  mS/cm<sup>2</sup> (P < .05). However, as shown in figure 4, SK&F 88046 ( $10^{-5}$  M) practically abolishes the increase in I<sub>sc</sub> and reduces the decrease in G<sub>t</sub> elicited by U46619 ( $3 \times 10^{-5}$  M). In five animals, the change in I<sub>sc</sub> in control and SK&F 88046-treated tissues was  $5.3 \pm 1.5 \,\mu$ Eq/hr·cm<sup>2</sup> ( $142 \pm 40 \,\mu$ A/cm<sup>2</sup>) and  $0.3 \pm$  $0.2 \,\mu$ Eq/hr·cm<sup>2</sup> ( $8 \pm 5 \,\mu$ A/cm<sup>2</sup>) (P < .001), respectively, and the change in G<sub>t</sub> was  $-10.9 \pm 1.8$  and  $-4.5 \pm 0.9$  mS/cm<sup>2</sup> (P < .05), respectively. At lower concentrations, SK&F 88046 does not significantly alter the concentration-dependent changes in G<sub>t</sub> elicited by U46619 (fig. 3), but shifts the concentrationdependent effects of U46619 on I<sub>sc</sub> to the right (fig. 8A). The EC<sub>30</sub> values of the effect of U46619 in control compared to SK&F 88046-treated tissues on I<sub>sc</sub> were  $1.3 \times 10^{-6}$  and  $8.9 \pm 10^{-6}$  M, respectively, and on G<sub>t</sub> were  $1.4 \times 10^{-7}$  and  $3.2 \times 10^{-7}$  M, respectively. Substituting these EC<sub>30</sub> values for the change in I<sub>sc</sub> in to equation 1 ("Materials and Methods") gives an apparent  $K_B$  value of  $1.2 \times 10^{-8}$  M. In studies using  $3.3 \times 10^{-7}$  and  $3 \times 10^{-8}$  M SK&F 88046, similar apparent  $K_B$  values of 7.1  $\times 10^{-9}$  and  $5.1 \times 10^{-9}$  M were obtained for antagonism of the U-46619-induced increase in I<sub>sc</sub>.

SK&F 88046 also shifts the concentration-dependent effects of PGF<sub>2a</sub> and LTD<sub>4</sub> on I<sub>sc</sub> to the right. However, these shifts are only seen at concentrations greater than  $10^{-6}$  M (fig. 5, A and B). As shown in figures 8, B, C and D, SK&F 88046 at  $10^{-5}$ M does not significantly alter the concentration-dependent effects of lys-bradykinin or histamine although the maximal effects of 5-HT are significantly reduced. In these studies, we have expressed the results as percentage of the maximal response to PGE<sub>1</sub> in order to normalize the data from different animals and tissues with the different secretagogues.

#### Discussion

The role of TX in regulation of intestinal electrolyte transport has been investigated using a stable TX mimic, U46619, and a receptor antagonist to this mimic, SK&F 88046. Evidence to support the proposal that U46619 is acting as a TX receptor agonist is provided by the work of Coleman *et al.* (1981) who demonstrated in isolated smooth muscle preparations that this agent produces effects most closely resembling those of TXA<sub>2</sub>.



**Fig. 4.** Representative time courses for  $I_{sc}$  and  $G_t$  in rat ileum in response to PGF<sub>2a</sub> (10<sup>-5</sup> M), LTD<sub>4</sub> (10<sup>-5</sup> M), PGE<sub>1</sub> (10<sup>-5</sup> M) or U46619 (3 × 10<sup>-5</sup> M) in the presence of SK&F 88046 (10<sup>-5</sup> M). Zero time is 45 to 60 min after mounting tissues *in vitro*. S, serosal.

The proposal that SK&F 88046 is acting as a receptor antagonist to U46619 derives from the findings of Weichman *et al.* (1984a,b) that SK&F 88046 antagonizes the effects of the TX mimics, U46619, CTA<sub>2</sub> and U44069, that there is no effect of SK&F 88046 on TX synthetase or cyclooxygenase activity and that TXB<sub>2</sub> production elicited by LTD<sub>4</sub> in guinea pig lung parenchyma is not inhibited by SK&F 88046. In addition, we have found recently that LTD<sub>4</sub> increases TXB<sub>2</sub> production in rat small intestine and that this increase is not blocked by SK&F 88046 ( $10^{-5}$  M), although the increase in I<sub>sc</sub> is inhibited by ~40% (Smith and Brown, 1988).

The effects of U46619 are qualitatively similar to those produced by LTD<sub>4</sub> and LTE<sub>4</sub> in that it increases  $I_{sc}$  transiently and decreases steady-state G, (Smith et al., 1988). These changes in electrical parameters elicited by U46619 result from a transient increase in Cl<sup>-</sup> secretion and both acute and steadystate decreases in Na<sup>+</sup> and Cl<sup>-</sup> absorption. Maximal changes in  $I_{sc}$  and  $G_t$  are most pronounced when added to the serosal bathing solution but measurable effects are observed upon mucosal addition. In contrast, LTD, and LTE, did not alter electrical parameters when added to the mucosal bathing solution. The increase in  $I_{sc}$  elicited by U46619 is rapid with a peak response achieved within 2 min and a return toward baseline within 10 min. The concentration-dependence of this effect is linear up to  $3 \times 10^{-5}$  M unlike LTD, and PGE<sub>1</sub> which appear to maximize at  $\sim 10^{-5}$  M (Smith *et al.*, 1988). As with PGs (Musch et al., 1987) and the sulfidopeptide LTs, LTD<sub>4</sub> and LTE<sub>4</sub> (Smith et al., 1988), addition of U46619 appears to result in a tachyphylaxis to subsequent addition. However, the tachyphylaxis which results does not alter the response to PGE<sub>1</sub>.

The increase in  $I_{sc}$  resulting from stimulation by U46619 appears to result partially from stimulation of arachidonic metabolism via the cyclooxygenase pathway as it can be inhibited by the cyclooxygenase inhibitor, indomethacin. This effect may be exerted by cells present in the subepithelial layer. Support for this proposal is provided by the studies of Smith et al. (1982) who have shown that in rat intestine the subepithelial tissue possesses much greater PG synthetic capacity than the epithelial cells and by the studies of Lawson and Powell (1987) who reported that the rate of eicosanoid production by de-epitheliated rabbit small intestine is over 200 times greater than that of the epithelial cells. However, the subepithelial cell(s) responsible for the PG synthetic activity have not been determined. Furthermore, the specific arachidonic acid metabolite(s) produced in response to U46619 are not known.

In rat ileum, the decrease in transepithelial conductance produced by U46619 is not inhibited by indomethacin suggesting that this effect is mediated by a pathway separate from the effect of U46619 on  $I_{sc}$ . Previously, we demonstrated that the



Fig. 5. Concentration dependence of the effects of  $PGF_{2\alpha}$  (A) or LTD<sub>4</sub> (B) on the maximal change in  $I_{sc}$  in rat ileum plotted as microequivalents per hour per squared centimeters or as a percentage of the maximal response to PGE<sub>1</sub> (10<sup>-5</sup> M) and the effects of SK&F 88046 (10<sup>-5</sup> M) on the concentration-dependent effects of PGF<sub>2\alpha</sub> or LTD<sub>4</sub> presented as percentage of maximal response to PGE<sub>1</sub>. Results are means  $\pm$  1 S.E. for three to six animals at each point. In experiments with SK&F 88046, tissues were pretreated for 20 min with serosal SK&F 88046 or DMSO (solvent control) and then the effects of serosal PGF<sub>2\alpha</sub> or LTD<sub>4</sub> were examined. Twenty minutes after adding PGF<sub>2a</sub> or LTD<sub>4</sub>, PGE<sub>1</sub> was added to the serosal bathing solution and the maximal change in  $I_{sc}$  recorded.





**Fig. 6.** Representative time courses for  $I_{sc}$  and  $G_t$  in rat ileum in the absence or presence of serosal (S) lys-bradykinin ( $10^{-7}$  M), histamine ( $10^{-4}$  M) or 5-HT ( $10^{-4}$  M). Zero time is 45 to 60 min after mounting tissues *in vitro*.

effects of LTD<sub>4</sub> on I<sub>sc</sub> were inhibited by cyclooxygenase inhibitors but that the change in G<sub>t</sub> was not altered. With LTD<sub>4</sub> this decrease in G<sub>t</sub> was accompanied by a decrease in Na<sup>+</sup> and Cl<sup>-</sup> absorption in the presence of indomethacin (Smith *et al.*, 1988). It is reasonable to propose that U46619 would still decrease Na<sup>+</sup> and Cl<sup>-</sup> absorption in the presence of indomethacin although we have no data to support this hypothesis.

The effects of U46619 on electrolyte transport are qualitatively similar to those produced by a number of other intestinal secretagogues including the peptidoleukotrienes (Smith *et al.*, 1988), phorbol esters (Donowitz *et al.*, 1986; Fondacaro and Henderson, 1985), bradykinin (Cuthbert and Margolius, 1982; Hojvat *et al.*, 1983; Manning *et al.*, 1982; Musch *et al.*, 1983), PGF<sub>2α</sub> (fig. 4) and histamine (McCabe and Smith, 1984; Hardcastle and Hardcastle, 1987). However, in studies with these secretagogues, it is evident that only phorbol esters (Donowitz *et al.*, 1986) and peptidoleukotrienes (Smith *et al.*, 1988) reduce G<sub>1</sub>.

To determine whether the effects of these other intestinal secretagogues are mediated by TXs, we examined the effects of the TX receptor antagonist, SK&F 88046, on changes in electrical properties of rat ileum produced by LTD<sub>4</sub>, PGF<sub>2α</sub>, histamine, 5-HT and bradykinin. In these studies, we found that SK&F 88046 had minimal effects at concentrations up to  $10^{-5}$  M on basal electrical properties of rat ileum. However, SK&F 88046 produced dose-dependent shifts in the concentration-dependent changes in I<sub>sc</sub> and G<sub>t</sub> elicited by U46619 ( $K_B \approx 8 \times 10^{-9}$  M) and at  $10^{-5}$  M antagonized completely the electrical changes produced by U46619. With the intestinal secretagogues bradykinin, histamine and 5-HT, SK&F 88046 ( $10^{-5}$  M) had

**Fig. 7.** Effects of Cl<sup>-</sup> substitution (Cl<sup>-</sup> replaced with gluconate) or indomethacin (Indo, 10<sup>-6</sup> M added to the serosal and mucosal bathing solution) on the maximal change in I<sub>sc</sub> elicited by serosal U46619 (3 × 10<sup>-5</sup> M), PGF<sub>2a</sub> (10<sup>-5</sup> M) or PGE<sub>1</sub> (10<sup>-5</sup> M). Tissues were mounted in Cl<sup>-</sup> free Ringer's or pretreated with Indo for 20 min before adding secretory stimuli. Results are means ± 1 S.E. for five animals. \*P < .05.

no detectable effects on the concentration-dependent changes in  $I_{sc}$  produced by these agents with the exception of a small inhibition of the maximal response seen with 5-HT (fig. 8). In the case of PGF<sub>2 $\alpha$ </sub> and LTD<sub>4</sub>, SK&F 88046 (10<sup>-6</sup> to 10<sup>-5</sup> M) shifted the concentration-dependence of these agonists on I<sub>sc</sub> to the right. The apparent  $K_B$  for SK&F 88046 against PGF<sub>2a</sub> is  $1.7 \pm 0.7 \times 10^{-6}$  M and against LTD<sub>4</sub> it is  $2.7 \pm 1.4 \times 10^{-6}$ M. Thus, at high concentrations, SK&F 88046 appears to act at other receptors. Previously, Weichman et al. (1984a,b) demonstrated that SK&F 88046 antagonized the effects of U46619,  $PGF_{2\alpha}$  and  $PGD_2$  but not  $LTD_4$  in guinea pig tracheal spirals and LTD<sub>4</sub> in lung parenchymal strips. The apparent  $K_B$  values for SK&F 88046 against U46619,  $PGF_{2\alpha}$  and  $PGD_2$  in guinea pig trachea were  $0.14 \pm 10^{-6}$ ,  $3.4 \times 10^{-6}$  and  $0.41 \times 10^{-6}$  M, respectively. Inasmuch as the LTD<sub>4</sub> response of parenchymal strips is mediated in part by a cyclooxygenase-dependent pathway, the differential sensitivities of the tracheal spirals and the parenchymal strips to SK&F 88046 suggests that the cyclooxygenase-sensitive component of the LTD<sub>4</sub> response is mediated by a TX receptor subtype. Similarly, in rat small intestine, it can be suggested that the effects of LTD<sub>4</sub> may be mediated by mechanisms similar to the cyclooxygenase-dependent component of the lung parenchyma which has been shown to involve TX production. Further support for the proposal that TX production is involved in the LTD<sub>4</sub> response of the rat ileum may be provided from studies with a TX synthetase inhibitor.

In summary, we have demonstrated that the TX mimic, U46619, stimulates electrogenic Cl<sup>-</sup> secretion and inhibits Na<sup>+</sup> and Cl<sup>-</sup> absorption in rat ileum. The increase in  $I_{sc}$  is partially





**Fig. 8.** Concentration dependence of the effects of serosal U46619 (A), 5-HT (B), lys-bradykinin (C) or histamine (D) on the maximal change in  $I_{sc}$  in the absence or presence of serosal SK&F 88046 presented as a percentage of the maximal response to PGE<sub>1</sub>. Tissues were pretreated for 20 min with SK&F 88046 or DMSO (solvent control) before addition of secretagogue. Twenty minutes after addition of secretagogue, PGE<sub>1</sub> (10<sup>-5</sup> M) was added to the serosal bathing solution and the maximal change in  $I_{sc}$  recorded. Results are means ± 1 S.E. for three to five animals in which all conditions were examined in each animal.

inhibited by cyclooxygenase inhibition whereas the change in  $G_t$  is not, suggesting that the effects on  $I_{sc}$  and  $G_t$  occur by separate pathways. Furthermore, these studies indicate that the effects of PGF<sub>2a</sub> and LTD<sub>4</sub> are antagonized only at high concentrations of SK&F 88046. SK&F 88046 does not affect the intestinal secretagogues histamine, 5-HT, PGE<sub>1</sub> or lysbradykinin. These data indicate that SK&F 88046 is a useful tool for examining the mechanisms involved in intestinal secretion and for further development of compounds designed to selectively inhibit secretory diarrhea.

#### References

- AL-AWQATI, Q. AND GREENOUGH, W. B. III: Prostaglandins inhibit intestinal sodium transport. Nature (Lond.) 238: 26–27, 1972.
- BUNDY, G.: The synthesis of prostaglandin endoperoxide analogs. Tetrahedron Lett. 24: 1957-1960, 1975.
- COLEMAN, R., HUMPHREY, P., KENNEDY, I., LEVY, G. AND LUMLEY, P.: Comparison of the actions of U-46619, a prostaglandin H<sub>2</sub>-analogue, with those of prostaglandin H<sub>2</sub> and thromboxane A<sub>2</sub> on some isolated smooth muscle preparations. Br. J. Pharmacol. **73**: 773-778, 1981.
- CUTHBERT, A. W. AND MARGOLIUS, H. S.: Kinins stimulate net chloride secretion in the rat colon. Br. J. Pharmacol. 75: 587-598, 1982.
- DONOWITZ, M., CHENG, H. Y. AND SHARP, G. W. G.: Effects of phorbol esters

on sodium and chloride transport in rat colon. Am. J. Physiol. 251: G509-G517, 1986.

- FIELD, M., MUSCH, M. W. AND STOPP, J. S.: Role of prostaglandins in the regulation of intestinal electrolyte transport. Prostaglandins 21: (Suppl.) 73-79, 1981.
- FONDACARO, J. D. AND HENDERSON, L. S.: Evidence for protein kinase C as a regulator of intestinal electrolyte transport. Am. J. Physiol. **249**: G422-G426, 1985.
- HAMBERG, M., HEDQVIST, P., STRANDBERG, K., SVENSSON, J. AND SAMUELS-SON, B.: Prostaglandin endoperoxides. IV. Effects on smooth muscle. Life Sci. 16: 451-462, 1975.
- HARDCASTLE, J. AND HARDCASTLE, P. T.: The secretory actions of histamine in rat small intestine. J. Physiol. (Lond.) 388: 521-532, 1987.
- HOJVAT, S. A., MUSCH, M. W. AND MILLER, R. J.: Stimulation of prostaglandin production in rabbit ileal mucosa by bradykinin. J. Pharmacol. Exp. Ther. 226: 749-795, 1983.
- KIMBERG, D. V., FIELD, M., JOHNSON, J., HENDERSON, A. AND GERSHON, E.: Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. Clin. Invest. 50: 1218-1230, 1971.
- KNAPP, H. R., OLEZ, O., SWEETMAN, B. J. AND OATES, J. A.: Synthesis and metabolism of prostaglandins  $E_2$ ,  $F_{2a}$  and  $D_2$  by the rat gastrointestinal tract. Stimulation by a hypertonic environment *in vitro*. Prostaglandins 15: 751-757. 1978.
- LAWSON, L. D. AND POWELL, D. W.: Bradykinin-stimulated eicosanoid synthesis and secretion by rabbit ileal components. Am. J. Physiol. 252: G783-G790, 1987.
- LEDUC, L. E. AND NEEDLEMAN, P.: Regional localization of prostacyclin and thromboxane synthesis in dog stomach and intestinal tract. J. Pharmacol. Exp. Ther. 211: 181-188, 1979.
- MAIS, D. E., SAUSSY, D. L., CHAIKHOUNI, A., KOCHEL, P. J., KNAPP, D. R., HAMANAKA, N. AND HALUSHKA, P. V.: Pharmacologic characterization of human and canine thromboxane A<sub>2</sub>/prostaglandin H<sub>2</sub> receptors in platelets and blood vessels: Evidence for different receptors. J. Pharmacol. Exp. Ther. 233: 418-424, 1985.
- MANNING, D. C., SNYDER, S. H., KACHUR, J. F., MILLER, R. J. AND FIELD, M.: Bradykinin receptor-mediated chloride secretion in intestinal function. Nature (Lond.) 299: 256-259, 1982.
- MCCABE, R. D. AND SMITH, P. L.: Effects of histamine and histamine receptor antagonists on ion transport in rabbit descending colon. Am. J. Physiol. 247: G411-G418, 1984.
- MONCADA, S.: Prostaglandin endoperoxides and thromboxanes: Formation and effects. Arch. Pharmacol. 297: S81-S84, 1977.
  MUSCH, M. W., FIELD, M., MILLER, R. J. AND STOFF, J. S.: Homologous
- MUSCH, M. W., FIELD, M., MILLER, R. J. AND STOFF, J. S.: Homologous desensitization to prostaglandins in rabbit ileum. Am. J. Physiol. 252: G120– G127, 1987.
- MUSCH, M. W., KACHUR, J. F., MILLER, R. J. AND FIELD, M.: Bradykininstimulated electrolyte secretion in rabbit and guinea pig intestine: Involvement of arachidonic acid metabolites. J. Clin. Invest. 71: 1073-1083, 1983.
- SHARON, P. AND STENSON, W. F.: Enhanced synthesis of leukotriene B<sub>4</sub> by colonic mucosa in inflammatory bowel disease. Gastroenterology 86: 453-460, 1984.
- SMITH, E. F. III, LEPER, A. M. AND NICOLAOU, K. C.: Mechanism of coronary vasoconstriction induced by carbocyclic thromboxane A<sub>2</sub>. Am. J. Physiol. 240: H493-497, 1981.
- SMITH, G. S., WARHURST, G. AND TURNBERG, L. A.: Synthesis and degradation of prostaglandin  $E_2$  in the epithelial and sub-epithelial layers of the rat intestine. Biochim. Biophys. Acta **713**: 684–687, 1982.
- SMITH, P. L. AND BROWN, M. A.: Leukotriene D<sub>4</sub> (LTD<sub>4</sub>) stimulates thromboxane (TX) production by rat ileal mucosa. Fed. Am. Soc. Exp. Biol. J. 2: A616, 1988.
- SMITH, P. L. AND MCCABE, R. D.: A23187-induced changes in colonic K and Cl transport are mediated by separate mechanisms. Am. J. Physiol. 247: G695-G702, 1984.
- SMITH, P. L., MONTZKA, D. P., MCCAFFERTY, G. P., WASSERMAN, M. A. AND FONDACARO, J. D.: Effects of the sulfidopeptide leukotrienes  $LTD_4$  and  $LTE_4$  on ileal ion transport *in vitro* in the rat and rabbit. Am. J. Physiol., in press, 1988.
- WEICHMAN, B. M., DEVAN, J. F., MUCCITELLI, R. M., TUCKER, S. S., VICKERY, L. M. AND WASSERMAN, M. A.: Analysis of the antagonist profile of SK&F 88046 on guinea pig trachea. Prostaglandin Leukotriene Med. 15: 167-175, 1984a.
- WEICHMAN, B. M., WASSERMAN, M. A. AND GLEASON, J. G.: SK&F 88046: A unique pharmacologic antagonist of bronchoconstriction induced by leukotriene  $D_4$ , thromboxane and prostaglandins  $F_{2\alpha}$  and  $D_2$  in vitro. J. Pharmacol. Exp. Ther. **228**: 128-132, 1984b.
- ZIPSER, R. D., NAST, C. C., LEE, M., KAO, H. W. AND DUKE, R.: In vivo production of leukotriene B, and leukotriene C, in rabbit colitis: Relationship to inflammation. Gastroenterology 92: 33-39, 1987.

Send reprint requests to: Dr. Philip L. Smith, Smith Kline & French Laboratories, Department of Drug Delivery, L722, P.O. Box 1539, King of Prussia, PA 19406-0939