COMBINATORIAL AUCTIONS WITH TRANSPORTATION COST

Fu-Shiung Hsieh, Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan, fshsieh@cyut.edu.tw
Ko-Hsuan Wu, Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung, Taiwan, s10027616@cyut.edu.tw

Abstract

The ability to discover equilibrium prices efficiently makes auctions an effective way to trade goods. One of the recent trends in the development of auctions is combinatorial auctions. Combinatorial auctions allow the simultaneous sale of more than one item. In the existing literature, the factor of transportation cost has not been considered in combinatorial auctions. In this paper, we formulate the combinatorial double auction problem and propose an algorithm for finding approximate solutions. The algorithm is developed by applying the subgradient algorithm to iteratively adjust the shadow prices and proposing a heuristic algorithm for finding approximate solutions. A numerical example is used to illustrate the preliminary result.

Keywords: Auction, e-Commerce, Decision Support System.

1. INTRODUCTION

The ability to discover equilibrium prices efficiently makes auctions an effective way to trade goods (Abrache, et al. 2004; Ba et al. 2001; Block et al. 2008; Catalán et al. 2009), Choi (2008), Fan et al. (1999). One of the recent trends in the development of auctions is combinatorial auctions (Li et al. 2009;Li et al. 2009;Li et al. 2009; Meeus et al. 2009;Nicolaisen, et al. 2001;Özer et al. 2009;Perugini et al. 2005;Polyak 1969;Rothkopf et al. 1998; Schellhorn et al. 2009; Wang et al. 2004;Xia et al. 2005;Yang, et al. 2009. In a combinatorial auction, a bidder can place a bid on a bundle of items with a price. An important research subject in combinatorial auctions is the winner determination problem (WDP), which aims to determine the winners that maximize the seller's revenue based on the set of bids placed. An excellent survey on combinatorial auctions can be found in (de Vries \& Vohra 2003; Pekeč \& Rothkopf 2003). In the existing studies, the factor of transportation cost is rarely considered in combinatorial auctions with the exception of (Chen et al. 2005). In this paper, we will study the combinatorial auction problem with transportation cost. The problem we study in this paper considers the transportation cost for delivering the items to the winning buyers. The transportation cost depends on the item to be delivered.
Combinatorial auctions are notoriously difficult to solve from a computational point of view (Hsieh, \& Tsai, 2008; Leskelä et al. 2007) due to the exponential growth of the number of combinations. The WDP can be modelled as a set packing problem (SPP) (Andersson et al. 2000; Fujishima et al. 1999;, Hoos \& Boutilier 2007; Vemuganti 1998; Xia, et al. 2005). Sandholm et al. mentions that WDP for combinatorial auction is NP-complete (Sandholm, 1999, 2000, 2002). Many centralized algorithms have been developed for WDP (Sandholm, 2002; Andersson et al. 2000; Gonen \& Lehmann 2000; Jones \& Koehler 2002; Guo et al. 2005; Hsieh 2007; Hsieh \& Tsai 2008; Hsieh 2010; Hsieh \& Lin; Hsieh \& Huang 2010; Yang et al. 2009). In this paper, we will propose a subgradient algorithm for solving WDP. We assume all the players tell truth. The WDP for combinatorial auction can be modelled as an integer programming problem.

Many problems in the real world that can be formulated as integer programming problems are notoriously difficult to solve. Motivated by the complexity and distributed nature of these problems, one approach is to model the overall system as a collection of simpler interacting components or agents (Gordon 2007). Under such a system architecture, the decision making process for any single component in the system is dictated by an optimization problem that is greatly simplified as compared to the centralized problem, but coupled to the decisions of other interconnected components. An important issue is the design, analysis and implementation of solution algorithms.
Instead of finding the exact solution, we will set up a fictitious market based on multi-agent system architecture and develop a subgradient algorithm to determine the winning bids in the fictitious market to reduce the computational complexity in solving WDP. In the fictitious market, each buyer and the seller is represented by an entity. The issue is to develop solution algorithms for all the buyers and the seller in the system to collectively solve the WDP for combinatorial auctions. In this paper, we adopt a Lagrangian relaxation approach (Fisher, 1981) in conjunction with a subgradient algorithm (Polyak, 1969) to develop a solution algorithm for finding approximate solutions. Based on the proposed algorithms, we demonstrate the effectiveness of our method by numerical examples.

The remainder of this paper is organized as follows. We first we describe and formulate the WDP for combinatorial auctions with transportation cost in Section 2 and Section 3, respectively. We develop a subgradient algorithm for solving WDP in Section 4. In Section 5, we present our numerical results. We conclude this paper in Section 6.

2. COMBINATORIAL AUCTION WITH TRANSPORTATION COST

In this paper, we first formulate the combinatorial auction problem as an integer programming problem. We assume that there are a set of buyers and a seller for trading the goods. In a combinatorial auction, buyers submit bids to the seller. The surplus of a combinatorial auction is the difference between buyers' total payment and sellers' total revenue.

Figure 1. A combinatorial auction with transportation cost.
A combinatorial auction problem with transportation cost can be modeled as an optimization problem that maximizes the surplus of the seller. The surplus of a combinatorial auction is the difference between buyers' total payment minus the transportation cost and the price of the bundle corresponding to the bid of the seller. We assume that there are a set of buyers and a seller for trading the goods. Fig. 1 illustrates an application scenario in which Seller1 has a number of available items. Assume the available items of Seller 1 are 2A, 2B and 3C. But the total items in the winning bids of the buyers cannot exceed the available items of the seller. Buyer 1 requests to purchase at least a bundle of items 1 A and 1 C from the market at price P_{11}^{b}. Buyer 2 requests to purchase at least a bundle of items 1 A and 2 B from the market at price P_{21}^{b}. Buyer 3 requests to purchase at least a bundle of items $1 \mathrm{~A}, 2 \mathrm{~B}$ and 2 C from the market at price P_{31}^{b}. The bids submitted by Buyer 1, Buyer 2 and Buyer 3 are represented by $b_{11}=\left(1 \mathrm{~A}, 0 \mathrm{~B}, 1 \mathrm{C}, P_{11}^{b}\right), b_{21}=\left(1 \mathrm{~A}, 2 \mathrm{~B}, 0 \mathrm{C}, P_{21}^{b}\right)$ and $b_{31}=\left(1 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}, P_{31}^{b}\right)$, respectively. Delivery of the items from the seller to the winning buyer(s) incurs transportation cost. Suppose the transportation cost to deliver one unit of item A and one unit of item Crom Seller1 to Buyer 1 is $c_{A 11}$ and $c_{C 11}$, respectively. Suppose the transportation cost to deliver one unit of item A and one unit of item B from

Sellerl to Buyer 2 is $c_{A 21}$ and $c_{B 21}$, respectively. Similarly, suppose the transportation cost to deliver one unit of item A , one unit of item B and one unit of item C from Seller1 to Buyer 3 is $c_{A 31}, c_{B 31}$ and $c_{C 31}$, respectively. Suppose $P_{11}^{b}=120, P_{21}^{b}=160, P_{31}^{b}=380, c_{A 11}=10, c_{C 11}=10, c_{A 21}=10, c_{B 21}=5, c_{A 31}=30$, $c_{B 31}=30, c_{C 31}=30$. For this example, the solution (winning bids) for this combinatorial auction problem with transportation cost includes Buyer1: $b_{11}=\left(2 \mathrm{~A}, 2 \mathrm{~B}, 0 \mathrm{C}, P_{12}^{s}\right)$ and Buyer 2: $b_{21}=(1 \mathrm{~A}, 2 \mathrm{~B}$, $0 \mathrm{C}, P_{21}^{b}$).

3. PROBLEM FORMULATION

To formulate the problem, let's define the notations in this paper.

Notations:

K : the number of items requested.
i : a seller.
N : the number of potential buyers in a combinatorial auction. Each $n \in\{1,2,3, \ldots, N\}$ represents a buyer.
$d_{n h k}$: the buyer- n 's desired units of the $k-t h$ items in the $h-t h$ request for tender, where $k \in\{1,2,3, \ldots ., K\}$.
j : the $j-t h$ bid submitted by the seller in a combinatorial auction.
h : the $h-t h$ bid created by the buyer in a combinatorial auction to represent the requirement of the buyer i.
$q_{i j k}$ is a nonnegative integer that denotes the quantity of the $k-t h$ items in the bid submitted by the seller i.
$s_{i j}=\left(q_{i j 1}, q_{i j 2}, q_{i j 3}, \ldots, q_{i j K}\right):$ a vector to represent the bid submitted by seller i.
$x_{i j}$: the variable to indicate the bid j placed by seller i is a winning bid $\left(x_{i j}=1\right)$ or $\operatorname{not}\left(x_{i j}=0\right)$.
$p_{i j}$ is a real positive number that denotes the price of the bundle corresponding to the $j-t h$ bid of the seller.
$p_{n h}$ is a real positive number that denotes the price of the bundle corresponding to the bid h submitted by buyer n.
$b_{n h}=\left(d_{n h 1}, d_{n h 2}, d_{n h 3}, \ldots, d_{n h K}, p_{n h}\right)$: a vector to represent the bid h submitted by buyer n. The bid $b_{n h}$ is actually an offer to deliver $d_{n h k}$ units of items for each $k \in\{1,2,3, \ldots, K\}$ a total price of $p_{n h}$.
$y_{n h}$: the variable to indicate the bid h placed by seller n is active $\left(y_{n h}=1\right)$ or inactive ($y_{n h}=0$).
H_{n} : the number of bids placed by buyer $n \in\{1,2,3, \ldots ., N\}$.
$c_{i j k n h}$: the transportation cost for delivering one unit of item $k \in\{1,2,3, \ldots, K\}$ to fulfill the bid h of buyer n from the bid j of seller i
$f_{i j k n h}$: the units of item $k \in\{1,2,3, \ldots, K\}$ that flows from the bid j of seller i to bid h of buyer n
The winner determination problem is formulated as an Integer Programming problem as follows.
Winner Determination Problem (WDP):

$$
\begin{equation*}
\max \left[\left(\sum_{n=1}^{N} \sum_{h=1}^{H} y_{n h} p_{n h}\right)-x_{i j} p_{i j}\right]-\left[\sum_{n=1}^{N} \sum_{h=1}^{H} f_{i j k n h} c_{i j k n h}\right] \tag{2-1}
\end{equation*}
$$

$$
\begin{align*}
& \text { s.t. } \\
& {\left[\left(\sum_{n=1}^{N} \sum_{h=1}^{H} y_{n h} p_{n h}\right)-x_{i j} p_{i j}\right]-\sum_{n=1}^{N} \sum_{h=1}^{H} c_{i j k n h} f_{i j k n h} \geq 0} \tag{2-2}\\
& x_{i j} q_{i j k} \leq s_{i k} \quad \forall i \in\{1, \ldots, I\}, k \in\{1, \ldots, K\} \tag{2-3}\\
& \sum_{n=1}^{N} \sum_{h=1}^{H} f_{i j k n h} \leq x_{i j} q_{i j k} \tag{2-4}\\
& \forall k \in\{1, \ldots, K\} \\
& f_{i j k h h} \geq y_{n n d} d_{n h k} \tag{2-5}\\
& \forall n \in\{1, \ldots, N\}, h \in\{1,2, \ldots, H\}, k \in\{1, \ldots, K\} \\
& f_{i j k n h} \leq x_{i j} q_{i j k} \tag{2-6}\\
& \forall n \in\{1, \ldots, N\}, h \in\{1,2, \ldots, H\}, \\
& \forall k \in\{1, \ldots, K\} \\
& f_{i j k n h} \leq y_{n h} d_{n h k} \\
& \forall n \in\{1, \ldots, N\}, h \in\{1,2, \ldots, H\}, k \in\{1, \ldots, K\} \\
& f_{i j k n h} \in \mathrm{~N} \cup\{0\} \\
& x_{i j} \in\{0,1\} \\
& y_{n h} \in\{0,1\} \quad \forall n, h
\end{align*}
$$

4. SOLVING WDP BASED ON A SUBGRADIENT ALGORITHM

The development of our subgradient algorithm is detailed in this section. The proposed subgradient algorithm consist of (i) an algorithm for each buyer to make decision according to the fictitious price announced by the seller and (ii) an algorithm for the seller to update the fictitious price iteratively based on the decisions of buyers.
In WDP problem, we observe that the coupling among the decision variables caused by the nonnegative trade surplus constraints (2-2) and inventory constraints (2-3). Let λ denote the vector with λ_{k} representing the Lagrangian multiplier for the $k-t h$ items, π be the vector with $\pi_{i k}$ representing the Lagrangian multiplier for the $k-$ th items of the i 's seller and μ denote the Lagrangian multiplier for the non-negative trade surplus constraint. We define

$$
\begin{aligned}
& L(\mu, \pi)= \\
& \max \left[\left(\sum_{n=1}^{N} \sum_{h=1}^{H} y_{n h} p_{n h}\right)-x_{i j} p_{i j}\right]-\left[\sum_{n=1}^{N} \sum_{h=1}^{H} \sum_{k=1}^{K} c_{i j k n h} f_{i j k n h}\right]+ \\
& \mu\left\{\left[\left(\sum_{n=1}^{N} \sum_{h=1}^{H} y_{n h} p_{n h}\right)-x_{i j} p_{i j}\right]-\sum_{n=1}^{N} \sum_{h=1}^{H} \sum_{k=1}^{K} c_{i j k n h} f_{i j k n h}+\sum_{k=1}^{K} \pi_{i k}\left(x_{i j} q_{i j k}-s_{i k}\right)\right. \\
& \text { s.t. }(2-4),(2-5),(2-6),(2-7) \\
& =\max \left\{\left(\sum_{n=1}^{N} \sum_{h=1}^{H} w_{n h} y_{n h}\right)-\left(z_{i j} x_{i j}+\sum_{k=1}^{K} \pi_{i k} q_{i j k}\right)\right. \\
& \left.-\left[\sum_{n=1}^{N} \sum_{h=1}^{H}(1+\mu) c_{i j k n h} f_{i j k n h}\right]+\sum_{k=1}^{K} \pi_{i k} s_{i k}\right\}
\end{aligned}
$$

s.t. $(2-4),(2-5),(2-6),(2-7)$,
where $w_{n h}=(1+\mu) p_{n h}$ and $z_{i j}=(1+\mu) p_{i j}+\sum_{k=1}^{K} \pi_{i k} q_{i j k}$.
For given Lagrangian multipliers μ and π, it is relatively easy to find x, y and f by applying a generalized network flow algorithm such as the one supported in (CPLEX Optimizer 2014). Let l be the iteration index. Let x^{l}, y^{l} and f^{l} denote the optimal solution to the dual subproblem for given Lagrange multipliers μ^{l} and π^{l} at iteration l. We define the subgradients of $\min _{\mu \geq 0, \pi \geq 0} L(\mu, \pi)$ with respect to Lagrangian multipliers μ and $\pi_{i k}$ as follows.

$$
\begin{aligned}
& g_{1}^{l}=0-\left[\left(\sum_{n=1}^{N} \sum_{h=1}^{H} y_{n h} p_{n h}\right)-x_{i j} p_{i j}\right]-\sum_{n=1}^{N} \sum_{h=1}^{H} \sum_{k=1}^{K} f_{i j k n h} c_{i j k n h} \\
& g_{2}^{l}(i, k)=x_{i j} q_{i j k}-s_{i k}, \text { where } k \in\{1, \ldots, k\} \\
& \mu^{l+1}=\left\{\begin{array}{l}
\mu^{l}+\alpha_{1}^{l} g_{1}^{l} \text { if } \mu^{l}+\alpha_{1}^{l} g_{1}^{l} \geq 0 \\
0 \text { otherwise }
\end{array}\right. \\
& \pi^{l+1}(i, k)=\left\{\begin{array}{l}
\pi^{l}(i, k)+\alpha_{2}^{l} g_{1}^{l}(i, k) \text { if } \pi^{l}(i, k)+\alpha_{2}^{l} g_{2}^{l}(i, k) \geq 0 \\
0 \text { otherwise }
\end{array}\right. \\
& \alpha_{1}^{l}=c \frac{L(\mu, \pi)-\bar{L}}{\left(g_{1}^{l}\right)^{2}+\sum_{i=1}^{I} \sum_{k=1}^{K}\left(g_{2}^{l}(i, k)\right)^{2}}, 0 \leq c \leq 2 \\
& \alpha_{2}^{l}=c \frac{L(\mu, \pi)-\bar{L}}{\left(g_{1}^{l}\right)^{2}+\sum_{i=1}^{I} \sum_{k=1}^{K}\left(g_{2}^{l}(i, k)\right)^{2}}, 0 \leq c \leq 2
\end{aligned}
$$

5. NUMERICAL RESULTS

Based on the proposed algorithms for combinatorial auctions, we design and implement a software system based on J2EE platform to verify the effectiveness of our solution algorithm. We conduct a numerical experiment to illustrate the effectiveness of our method to demonstrate the effectiveness of the algorithm proposed in this paper.

Example: Suppose Seller 1 has a bundle of available items to be sold through combinatorial auctions. The number of available items is shown in Table 1 as follows. Suppose Seller 1 holds one combinatorial auction for his bundle available items. Six potential buyers place bids on the combinatorial auction. The bids placed by the potential buyers (Buyer 1~Buyer 6) are shown in Table 2. The transportation cost is shown in Table 3.

Seller	Seller ID	k				
i	j	1	2	3	4	5
1	1	5	2	9	1	8

Table 1. Available Items of Seller.

Buyer	Bid ID		k						price
n	h	1	2	3	4	5	$p_{n h}$		
1	1	0	0	9	1	0	100		
2	1	5	1	0	0	3	200		
3	1	0	1	0	0	5	150		
4	1	0	1	0	0	5	44		
5	1	0	0	6	1	0	30		
6	1	0	0	3	0	0	30		

Table 2. Buyers'Bids.

Buyer	Bid ID	$c_{i j k n h}$					
n	h	$\mathrm{k}=1$	$\mathrm{k}=$ 2	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=5$	
1	1	1	1	1	1	1	
2	1	2	2	2	2	2	
3	1	1	1	1	1	1	
4	1	3	3	3	3	3	
5	1	5	5	5	5	5	
6	1	4	4	4	4	4	

Table 3. Transportation Cost.
For this example, the values of the decision variables generated by applying our algorithms are listed in Table 4 and Table 5, respectively. The results are obtained by initializing all Lagrange multipliers μ^{0} and π^{0} with zero at iteration 0 . The algorithm applied by the seller and the buyers converges to the solution with $x_{i j}=1$ and $y_{n h}$ as well as $f_{i j k n h}$ shown in Table 4 and Table 5, respectively. The value of the objective function is 397 . Note that this solution is the optimal solution for example.

Buyer	Bid ID	
n	h	$y_{n h}$
1	1	1
2	1	1
3	1	1
4	1	0
5	1	0
6	1	0

Table 4. Decision Variables $y_{n h}$.

Buyer	Bid ID	$f_{i j k n h}$				
n	h	$\mathrm{k}=1$	$\mathrm{k}=$ 2	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=5$

1	1	0	0	9	1	0
2	1	5	1	0	0	3
3	1	0	1	0	0	5
4	1	0	0	0	0	0
5	1	0	0	0	0	0
6	1	0	0	0	0	0

Table 5. Decision Variables $f_{i j k n h}$.

6. CONCLUSION

We formulate the winner determination optimization problem for combinatorial auctions with transportation cost as an integer programming problem. The surplus of the problem consists of the difference between the price offered by the wining buyers and the reserve price of the seller minus the transportation cost. The problem is to determine the winners to maximize the total surplus of the seller. Due to computational complexity, it is hard to develop a computationally efficient method to find an exact optimal solution for combinatorial auctions with transportation cost based on centralized computing architecture. To reduce computational complexity, an alternative way to find a solution for combinatorial auctions is to set up a fictitious market and develop an algorithm to determine the winning bids in the fictitious market. In this paper, we propose a solution algorithm by combining Lagrangian relaxation and a subgradient method to find a solution for the fictitious market. In our solution algorithm, we consider two kinds of fictitious prices, which are associated with the shadow prices corresponding to non-negative trade surplus constraint, and inventory constraints. We conduct experiments to study our proposed algorithm. Although our algorithm does not guarantee generation of optimal solutions, it often leads to optimal or near optimal solutions.

Acknowledgement

This paper is currently supported in part by Ministry of Science and Technology, Taiwan, under Grant NSC102-2410-H-324-014-MY3.

References

Abrache, J., Bourbeau, B., Crainic, T.G., Gendreau, M., (2004) A new bidding framework for combinatorial e-auctions, Computers \& Operations Research, 31(8), 1177-1203.
Andersson, A., Tenhunen, M. and Ygge, F. (2000) Integer programming for combinatorial auction winner determination. In Proceedings of the Seventeenth National Conference on Artificial Intelligence, 39-46.
Ba, S., Stallaert, J. and Whinston, A.B., (2001) Optimal investment in knowledge within a firm using a market-mechanism. Management Science 47, 1203-1219.
Block, C., Neumann, D. and Weinhardt, C., (2008) A Market Mechanism for Energy Allocation in Micro-CHP Grids. In: Proceedings of the 41st Hawaii International Conference on System Sciences, 1-11.
Catalán, J., Epstein, R., Guajardo, M., Yung, D., Martınez, C., (2009) Solving multiple scenarios in a combinatorial auction, Computers \& Operations Research, Volume 36, Issue 10, October, Pages 2752-2758.

Choi, J. H., Ahn, H., Han, I. (2008) Utility-based double auction mechanism using genetic algorithms, Expert Systems with Applications, 34, 1, 150-158.
de Vries, S. and Vohra, R. (2003) Combinatorial Auctions:A Survey, INFORMS Journal on Computing, 3, 284-309.
Fujishima, Y., Leyton-Brown, K. and Shoham, Y. (1999) Taming the computational complexity of combinatorial auctions:Optimal and approximate approaches. In Sixteenth International Joint Conference on Artificial Intelligence, 548-553.
Fan, M., Stallaert, J. and Whinston, A.B., (1999) A web-based financial trading system. IEEE Computer 32, 4, 64-70.
Fisher, M. L. (1981) Lagrangian relaxation method for solving integer programming problems, Management Science, 27, 1-18.
Gonen, R. and Lehmann, D. (2000) Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics, The Proceedings of the Second ACM Conference on Electronic Commerce (EC'00), 13-20.
Guo, Y., Lim, A., Rodrigues, B. And Tang, J. (2005) Using a Lagrangian heuristic for a combinatorial auction problem, In Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence.
Harsha, P., Barnhart, C., Parkes, D.C., Zhang, H. (2010) Strong activity rules for iterative combinatorial auctions, Computers \& Operations Research, Volume 37, Issue 7, July, Pages 12711284.

Hoos, H.H. and Boutilier, C. (2007) Solving combinatorial auctions using stochastic local search. In Proceedings of the Seventeenth National Conference on Artificial Intelligence, 2000, 22-29.
Hsieh, F.S. (2007) Combinatorial Auction with Minimal Resource Requirements, Lecture Notes in Artificial Intelligence, 4570, 1072-1077.
Hsieh, F.S. and Tsai, S.M. (2008) Combinatorial Reverse Auction based on Lagrangian Relaxation," Proceedings of 2008 IEEE Asia-Pacific Services Computing Conference, 329-334.
Hsieh, F.S. (2010) Combinatorial reverse auction based on revelation of Lagrangian multipliers, Decision Support Systems, 48, 2, 323-330.
Hsieh, F.S. and Lin, J.B. (2012) Assessing the benefits of group-buying-based combinatorial reverse auctions, Electronic Commerce Research and Applications, http://dx.doi.org/10.1016/j.elerap.2012.02.003.
Hsieh, F.S. and Huang, C.W. (2010) Combinatorial Double Auction Based on Subgradient Algorithm, Proceedings of the 2010 IET International Conference on Frontier Computing, 247-252.
IBM ILOG CPLEX Optimizer, http://www-01.ibm.com/software/integration/optimization/cplexoptimizer/.
Jones, J.L. and Koehler, G.J. (2002) Combinatorial auctions using rule-based bids, Decision Support Systems 34, 59-74.
Leskelä, R., Teich, J., Wallenius, H. and Wallenius, J. (2007) Decision support for multi-unit combinatorial bundle auctions, Decision Support Systems 43, 420-434.
Li, C., Sycara, K. and Scheller-Wolf, A. (2009) Combinatorial coalition formation for multi-item group-buying with heterogeneous customers, Decision Support Systems, 49, 1, 1-13.
Li, L., Liu, Y., Hausheer, D. and Stiller, B. (2009) Design and Evaluation of a Combinatorial Double Auction for Resource Allocations in Grids, Lecture Notes in Computer Science, 5539, 36-47.
Li, L., Liu, Y., Liu, K., Ma, X. and Yang, M. (2009) Pricing in combinatorial double auction-based grid allocation model, The Journal of China Universities of Posts and Telecommunications, 16, 3, 59-65.
Meeus, L., Verhaegen, K. and Belmans, R. (2009) Block order restrictions in combinatorial electric energy auctions, European Journal of Operational Research, 196, 3, 1202-1206.
Nicolaisen, J., Petrov, V. and Tesfatsion, L. (2001) Market power and efficiency in a computational electricity market with discriminatory double-auction pricing, IEEE Transactions on Evolutionary Computation 5, 5, 504-523.

Özer, A. H. and Özturan, C., (2009) A model and heuristic algorithms for multi-unit nondiscriminatory combinatorial auction, Computers \& Operations Research, Volume 36, Issue 1, January, Pages 196-208.
Pekeč, A. and Rothkopf, M.H. (2003) Combinatorial auction design, Management Science 49, 14851503.

Perugini, D., Lambert, D., Sterling, L. and Pearce, A. (2005) From Single Static to Multiple Dynamic Combinatorial Auctions, Intelligent Agent Technology, IEEE/WIC/ACM International Conference on 19-22, September, 443-446.
Polyak, B. T. (1969) Minimization of Unsmooth Functionals, USSR Computational Math. and Math. Physics, 9, 14-29.
Rothkopf, M., Pekeč, A. and Harstad, R. (1998) Computationally manageable combinational auctions, Management Science 44, 1131-1147.
Sandholm, T., (1999) An algorithm for optimal winner determination in combinatorial auctions. In: Proc. IJCAI'99, Stockholm, 542-547.
Sandholm, T., (2000) Approaches to winner determination in combinatorial auctions, Decision Support Systems 28, 165-176.
Sandholm, T. (2002,) Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135, 1-54.
Schellhorn, H. (2009) A double-sided multiunit combinatorial auction for substitutes: Theory and algorithms, European Journal of Operational Research 197, 799-808.
Vemuganti, R.R. (1998) Applications of set covering, set packing and set partitioning models: a survey. In: D.-Z. Du, Editor, Handbook of Combinatorial Optimization Vol. 1, Kluwer Academic Publishers, Netherlands, 573-746.
Wang, X.J. and Yin, H. (2004) An incentive compatible double auction mechanism in electricity market, Automation of Power Systems 28, 18, 7-15.
Xia, M., Stallaert, J. and Whinston, A.B. (2005) Solving the combinatorial double auction problem, European Journal of Operational Research, 164, 239-251.
Yang, S. and Segre, A.M. and Codenotti, B., (2009) An optimal multiprocessor combinatorial auction solver, Computers \& Operations Research 36, 149-166.
Rachel R. Chen, Robin O. Roundy, Rachel Q. Zhang, Ganesh Janakiraman, (2005) Efficient Auction Mechanisms for Supply Chain Procurement, MANAGEMENT SCIENCE, Vol. 51, No. 3, March, pp. 467-482.
Geoffrey J. Gordon, Pradeep Reddy Varakantham, William Yeoh, Hoong Chuin Lau, Ajay S. Aravamudhan, Shih-Fen Cheng (2012) Lagrangian relaxation for large-scale multi-agent planning, Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012) - Volume 3, pp. 1227-1228.
Geoffrey J. Gordon (2007) Agendas for multi-agent learning, Artificial Intelligence, Volume 171, Issue 7, 392-401.

