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Abstract— This paper studies the application of certain fre-
quency domain properties of a class of power systems to the
robustness analysis. The small signal models of a significant
class of power systems-namely, systems without resistive losses
nor excitation control–was recently shown to meet passivity-
like, convex conditions in the frequency domain. A classical
benchmark is considered and it is shown that the presence of
excitation control and resistive elements does not completely
destroy the above-mentioned property, which remains valid in
the frequency band associated to the electromechanical modes.
The example includes a detailed robustness analysis showing

the importance of the a priori knowledge of the frequential
properties of these models in the frequency band of interest.

I. INTRODUCTION

The complexity of power system dynamics has stimulated

the seek for analysis tools that take advantage of structural

dynamic properties of these systems [1], [3], [18], [19].

These antecedents provide us with a set of techniques–also

named direct methods–based in the energy function that have

been used in the stability analysis of power systems. Its

applications ranges from estimation of stability domains and

critical clearing times to online techniques for the detection

of loss of synchronism [2], [16].

More recently, some progresses have been reported by ap-

plying a more fundamental concept: the theory of dissipative

dynamical systems [11],[20]. Basically, a dissipative system

satisfies a balance between the storage of a generalized

internal energy and a suitably defined supply rate function

that describes the interchanges with the environment. These

fundamental ideas are strongly related with concepts like

passivity and finite gain, and constitute a fundamental basis

of the development of the robustness analysis, see [15] and

references therein. References [7], [17] report applications of

the dissipativity ideas to power systems. The approach taken

in this paper is strongly related with previous works [6],

[7], [8], [9] where the specific concept of dissipativity made

way for the analysis of frequential properties of small signal

models of a class of power systems. This class is defined by

the interconnection of several shunt devices comprising:

generic ZIP model for reactive power loads,

constant active power loads,

classical, second order, synchronous machine model,

third order, synchronous machine model,[9],

several FACT devices, [2],

detailed, sixth order, model of synchronous machine

with constant excitation [8],
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through lossless transmission lines As a consequence of the

above-mentioned results, these systems satisfy a special case

of Integral Quadratic Constraint (IQC) that provides us a very

versatile framework for the robustness analysis [15].

We consider a classical benchmark for stability studies

of power systems, comprising a two area, four machine

system, see [14]. Simplifying assumptions are taken for the

area 2, ensuring the complete fulfillment of the mentioned

IQC while a conventional model is supposed for the area

1, which includes conventional synchronous generators and

a Static Var Compensator, SVC. The voltage regulator of

this device is designed in order to meet standard tracking

requirements and the preservation of the IQC at a frequency

band. Significant parametric variations are assumed in the

model, whose robustnesss is investigated through the search

of suitable IQC multipliers. It is shown that the a priori

knowledge of the original IQC multiplier is a valuable tool

for the assessment of robust stability in the presence of

electromechanical modes and its associated resonance.

The paper is organized as follows. Section II presents the

basic framework for the power system modeling. Section

III introduces the frequential properties of the small signal

models of the above-mentioned class of power systems.

Section IV presents the example, that includes controller

design and closed loop stability analysis. We wrap up the

paper with some concluding remarks.

II. POWER SYSTEM MODELING

Each bus has an associated identifier j ∈ JB := {1, ..,m}.

The interconnection with external systems is modeled by the

power injections at a set of buses JE ⊂ JB . We will make

reference to a set Jα ⊂ JB in order to define a subsystem.

The respective cardinalities of the sets JE , Jα are mE ,mα ≤
m.

The stability analysis of power systems is typically done

with the help of RMS1 models that are described through a

set of algebraic differential equations of the type
{

ẋ = f(x, y)
0 = g(x, y)

(1)

with x ∈ R
n the state vector and y ∈ R

2m the set of link

variables given by the voltage phasor en each bus:

yj :=

[

θj
Vj

]

; j ∈ JB. (2)

1We refer to the fundamental frequency, balanced, models usually em-
ployed in the study of power systems stability, see [14].
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We are interested in the study of the stability of the

interconnection between adjacent electrical subsystems. So,

we need to model the external power injections to a given

subsystem or area. Be the vector

uEe =

[

PE
e

QE
e

]

∈ R
2, e ∈ JE (3)

with PE
e , QE

e the active and reactive power injected into

the system at the bus e ∈ JE by external systems. This

interaction can be done at a set of several buses. However,

in this paper we consider a single frontier bus to keep simple

the notation . Thus, we consider JE = {e} and the external

power injection to the subsystem is denoted

uE := uE
e .

Accordingly, the voltage phasor at the frontier bus is yE :=
ye. In this way, a subsystem can be modeled by a description

as the following:
{

ẋα = fα(xα, yα, u
E)

0 = gα(xα, yα, u
E)

(4)

with xα ∈ R
nα the state vector of the devices connected

to the buses in Jα and yα ∈ R
2mα the corresponding link

variables. We define the set D ∈ R
nα × R

2mα × R
2 where

the solutions of the DAE are unique and well defined [10]:

D , {(x, y, u)|g(x, y, u) = 0 and

∇yg(x, y, u)is nonsingular}.

From a input/output point of view, the subsystem can be

seen alternatively as an operator uE → yE or an operator

yE → uE , provided that the triad (x, y, u) ∈ D.

Several recent references, see [6], [7], [8], have studied

the dynamic properties of a class of subsystems that can be

described in a Hamiltonian-like form as
{

ẋα = (J −R)∇xSα(xα, yα)
0 = ∇yα

Sα(xα, yα) +Bu(ye)u
E (5)

with Sα : Rnα × R
2mα the storage function. J = −J⊤ ∈

R
nα×nα and R = R⊤ ≥ 0, R ∈ R

nα×nα are constant

matrices and Bu : R2 → R
2×2

Bu(yi) ,

[

1 0
0 1

Vi

]

. (6)

The function Sα coincides with the classical energy function,

see e.g. [18], when simplified models are considered for the

synchronous machines. The use of the term storage function

is related with the dissipativity properties studied for this

class of systems and it is justified in references [6], [9].

As it was mentioned in the Introduction, the class of power

systems that satisfies (5) consists, between others, of several

shunt devices :

A1. generic ZIP model for reactive power loads,

A2. constant active power loads,

A3. classical, second order, synchronous machine model,

A4. several FACT devices,

interconnected through lossless Π models of transmission

lines and transformers.

III. INPUT-OUTPUT PROPERTIES FOR SMALL SIGNAL

MODELS

Variables at the equilibrium will be denoted with a supra-

index ⋆: x⋆, y⋆, u⋆, etc. The incremental variables around

the equilibrium point will be denoted with a tilde: x̃ = x−
x⋆, ỹ = y − y⋆, ũ = u− u⋆, etc. Denote W := Bu(y

⋆
e), i.e.

W =

[

1 0
0 1

V ⋆
e

]

.

The linear map ũE → ỹE of subsystem (4) or (5) will be

represented by the matrix transfer function2 Σ : C → C2×2:

ŷE(s) = Σ(s)ûE(s). (7)

Analogously, the inverse map Γ(s) = Σ(s)−1 describes

ûE(s) = Γ(s)ŷE(s). (8)

Under mild conditions, the dissipativity of systems satisfy-

ing (5) imply a frequency-dependent inequality that is stated

in next proposition. See [9] for a complete demonstration.

Proposition 1: Assume that the small signal model Σ(s)
of (5) around the equilibrium satisfies Σ(jω) ∈ RL∞. Then

[

I

Σ(jω)

]∗

Πd(jω)

[

I

Σ(jω)

]

≥ 0 ∀w ∈ R (9)

Πd(jω) := |h(jω)|2
[

0 −jωW⊤

jωW 0

]

(10)

for all function h(s) real rational stable and strictly proper.

Remark 1: Equations (9), (10) describe a convex

frequency-weighted passivity-like condition for Σ.

Define, to facilitate the notation, the quadratic forms σl :
C2×2 × C4×4 → C2×2:

σl(H,Π):=

[

I2
H

]∗

Π

[

I2
H

]

,

and σu : C2×2 × C4×4 → C2×2:

σu(G,Π):=

[

G

I2

]∗

Π

[

G

I2

]

.

Remark 2: It is convenient to mention that the adoption

of ỹE , ũE as, respectively, the output and the input is merely

conventional. The inequality (9) can be written

σl(Σ(jω),Πd(jω)) ≥ 0 ∀ω ∈ R.

If we pre and post multiply this inequality by Γ∗ and Γ being

Γ(jω) = Σ(jω)−1, and use the block structure of multiplier

Πd we get a set of conditions equivalent to (9):

σu(Γ(jω),Πd(jω)) ≥ 0 ∀ω ∈ R ⇔

σl(Γ(jω),Πd(jω)) ≤ 0 ∀ω ∈ R ⇔

σu(−Γ(jω),Πd(jω)) ≤ 0 ∀ω ∈ R. (11)
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Fig. 1. Feedback interconnection

A. Stability analysis of linear feedback interconnections

Denote G⋆H the operator (e, f) → (v, w) defined by the

standard feedback interconnection
{

v = Gw + f

w = Hv + e
. (12)

G and H are two linear, time-invariant operators with

transfer functions G(s), H(s) ∈ RL2×2
∞

and stabilizable

and detectable state space realizations. The interconnection

is assumed well-possed. The following proposition is a

particular formulation of the IQC theorem, [15], specialized

for our special case3

Proposition 2: Let G(s), H(s) ∈ RH2×2
∞

such that the

operator G ⋆ H is also stable. Assume the existence of a

multiplier Π(jω) ∈ RL4×4
∞ such that

i. σl(H(jω),Π(jω)) ≥ 0 ∀ω
ii. there exists ǫ > 0 such that

σu(G(jω),Π(jω)) ≤ −ǫI, ∀ω ∈ R, (13)

iii.

[

0
I

]∗

Π(jω)

[

0
I

]

≤ 0, ∀ω ∈ R. (14)

Then, the feedback interconnection G⋆H is stable for all

linear, time invariant, stable operator satisfying

σl(H(jω),Π(jω)) ≥ 0 ∀ω (15)

The proof is straightforward by writing G ⋆ H as the

interconnection of a nominal stable system G ⋆ H with the

block ∆ := H−H and applying the IQC theorem.

Remark 3: Denote SΠ the set of operators H ∈ RH2×2
∞

satisfying (15). It is easy to see that condition (14) implies

the convexity of SΠ.

The value of Proposition 2–a simple reformulation of the

IQC theorem–resides in that the nominal stability can be

extended to a convex set defined by the involved multiplier.

IV. EXAMPLE

Consider the system depicted in Fig. ??, Example 12.6 in

[14] which is split in two areas, with the bus 8 at the frontier.

Linear models for both areas were computed with DSAT

[12], by taking y8 and u8 as the interconnection variables.

2We denote ẑ(s) the Laplace transform of the small signal variable z̃(t).
3The assumptions on the linear maps and their respective realizations

imply the equivalence between the input-output and inner stability, see [4].
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Fig. 2. Basic model of the SVC

The model of area 1 has the same parameters as [14],

included the non-zero machine resistances and transfer con-

ductances. The excitation systems of machines G1 and G2

are given in [14] and provide a high transient gain plus a

standard setting for the power system stabilizer, PSS.

The SVC comprises a fixed capacitor (200 MVAr) and a 0-

200 MVAr thyristor-controlled reactor (TCR), whose voltage

regulator will be designed to ensure a proper voltage tracking

and to improve the stability robustness.

The area 2 is modeled fully in accordance with As-

sumptions A1-A4: the resistive losses in transmission lines

are neglected, classical second order models are considered

for generators G3 and G4. On the other hand, significant

parametric variations are considered for this area.

The signal ũ8, see Fig. ??, is taken as input to area 2.

As a result of this convention and definitions (7) and (8) for

each area, the system depicted in Fig. ?? can be described

as the feedback interconnection of H = Σ2 and G = −Γ1.

A. Design of the SVC voltage regulator

The SVC is modeled as in Fig. 2 where the controller

k(s) includes a fixed time constant due to the converter.

The controller k(s) must ensure the closed loop stability and

the tracking requirements given by the slope of the voltage

characteristic (set to 7 % ) and a prescribed phase margin of

approx. 45 degrees. See the chapter 11 in [14] for a precise

technical presentation of these requirements.

Due to Proposition 1, area 2 satisfies

σl(Σ2(jω),Πd(jω)) ≥ 0 ∀ω.

Our objective is the design of the regulator k(s) to ensure

σu(−Γ1(jω),Πd(jω)) ≤ −ǫI, ∀ω ∈ Ω (16)

for a set Ω ∈ R as broad as possible. Notice that, in absence

of control and resistive losses, condition (16) would be true

for ǫ = 0 for all ω ∈ R, due to (11). The presence of

excitation control, resistive loads and transmission losses

restrict the band of frequencies where condition (16) is valid

or feasible through the controller design.

The constraints that (16) imposes on the gain k(jω) for

several frequencies are depicted in Fig. 3. The constraints

were shown to be feasible for Ω = [ωl, ωh] = [0.38, 9.94].
This set can not be extended for lower frequencies due to

voltage slope constraints nor for higher frequencies due to

bandwidth limitations associated to the phase margin. How-

ever, this set Ω is, significantly, wide enough to include the

system electromechanical local and interarea modes which
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range from 0.5 to 1.1 Hz (3.1 to 6.9 rad/sec). The resulting

SVC voltage regulator is given by

k(s) =
6.5(s+ 1)

(0.1s+ 1)(0.02s+ 1)
.

The plots in Figs. 4 show the resulting eigenvalues of the

matrix σu(−Γ1(jω),Πd(jω)).
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B. Modeling of parametric uncertainty in area 2

A set of scenarios for area 2 were considered, which are

associated to two parameters: the voltage dependence of load

L9 and the transient reactance of machine G3. The reactive

load L9 is supposed either constant impedance (case A),

constant current (case B) or constant reactive power (case

C). The transient reactance of G3 is supposed to be X ′

d ∈
[0.3, λ], with λ ≥ 0.3 a figure of merit useful to compare

some alternative approaches for the robustness analysis.

The choice of a set of eight values for the parameter X ′

d

and three for load L9 results in N = 24 scenarios, each

defined by the matrices (Ai, Bi, Ci, Di) of the standard state

space linear model. The corresponding matrices

Mi :=

[

Ai Bi

Ci Di

]

, i = 1..N.

were approximated by the set

Mi = M1 +

[

P1

P2

]

∆i[Q1 Q2]; i = 1..N

with ∆i ∈ Rp×p, i = 1..N , with the help of an elementary

singular value decomposition. The minimum size p for a

good approximation is closely related with the number of

independent parameters. In our case p = 2 was sufficient.

Finally, the area 2 is modeled as
[

ẋ

y8

]

=

[

M1 +

[

P1

P2

]

∆[Q1 Q2]

] [

x

u8

]

,

with the uncertain bock ∆ given by the polytope associated

to the N scenarios already described:

∆ =

r=N
∑

r=1

αr∆r,
∑

r

αr = 1, αr ≥ 0. (17)

This model constitutes a linear fractional transformation

(LFT) of the nominal block N(s) and the uncertain block ∆
depicted in Fig. 5, with

N(s) =





A1 P1 B1

Q1 0 Q2

C1 P2 D1



 .

So, the uncertain system can be seen either as the in-

terconnection of ∆ and4 Fl(N,−Γ1) at interface B, or

4Reference [21] provides a complete framework for LFTs and its ma-
nipulation. Fl(N,−Γ1) denotes the lower linear fractional transformation
between block N and −Γ1, see Fig. 5.
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the interconnection of Fu(N,∆) with −Γ1 at the interface

A. Notice that the model (17) considers all the possible

combinations of the continuous variations of parameter X ′

d

and the ZIP model for load L9.

−Γ1 −Γ1

Σ2

u8 u8
y8 y8

N

∆

A

B

Fig. 5. Feedback interconnections between subsystems Γ1 and Σ2.

C. Robustness analysis

The stability of the interconnection of area 1 and 2—

the last given by equation (17)—is analyzed with the help

of Proposition 2. Notice that both areas and the block N

are stable. The problem is the computation of a suitable

multiplier Π satisfying condition i) to iii). The multiplier

Πd satisfies conditions i) and iii). However, it does not solve

the problem since condition ii) is only satisfied for ω ∈ Ω.

Given the polytope description (17) for the area 2, it is

convenient to consider the standard family of multipliers

Πpol ∈ R
4×4, see [15]:

Πpol =

[

Q F

F⊤ R

]

;Q = Q⊤;R = R⊤ (18)

such that

R ≤ 0; Q+ F∆r +∆⊤

r F
⊤ +∆⊤

r R∆r > 0, ∀r = 1..N.

(19)

In a first instance, the search for a suitable multiplier

satisfying Proposition 2 was carried with multipliers of the

family Πpol. More, precisely, the following computational

problem was solved:

Problem 1 Find ΠR

pol and ǫ > 0 satisfying (18), (19) and

σu(Fl(N,−Γ1)(jω),Π
R

pol) ≤ −ǫI, ∀ω ∈ R.

Problem 1 was formulated as a LMI via the KYP lemma,

see [15], and solved with the software [5]. The extreme λ

for which the robust stability could be established is shown

in Table I. For comparison purposes, the stability was also

studied by the computation of the eigenvalues of the dynamic

matrix at a fine grid of scenarios. The extreme value, denote

λMAX is also listed in Table I. As it can be observed, the

analysis of robust stability based only with multiplier ΠR

pol

is quite conservative. It is worth to notice that the analysis

based in the multipliers Πpol would be able to guarantee

the stability for time variant blocks ∆, see [15], which is a

broader set of uncertainty than the original N scenarios. The

family Πpol is taken as a benchmark and its use is justified

by the relative simplicity of the computation involved.

In a second instance the search was confined to the

frequency weighted sum of two members Πlf
pol,Π

hf
pol of the

family Πpol, trying to exploit5 the fact that the multiplier Πd

satisfies condition i), ii) and iii) of Proposition 1 in a band

Ω. So, the structure of the multiplier Π was chosen

Πd+pol = wlf (ω)Π
lf
pol +whf (ω)Π

hf
pol

being the weights wlf ,whf given by

wlf =

{

1 if |ω| < ωl

0 otherwise
; whf =

{

1 if |ω| > ωh

0 otherwise
.

In this way, the computation of the multiplier can now be

relaxed to the following problem:

Problem 2 Find the multipliers Πlf
pol,Π

hf
pol and ǫ > 0

satisfying (18), (19) and

σu(Fl(N,−Γ1)(jω),Π
lf
pol) ≤ −ǫI, ∀|ω| < ωl,

σu(Fl(N,−Γ1)(jω),Π
hf
pol) ≤ −ǫI, ∀|ω| > ωh.

Problem 2 is a frequency dependent LMI valid in a re-

stricted domain and therefore other theoretical tools–different

from the classical KYP lemma–are needed. Reference [13]

provides an effective framework for this type of problems

that enables us to formulate the Problem 2 as a LMI. The

maximum λ for which Problem 2 is feasible was computed

and is listed in Table I.

As it can be seen, the procedure of splitting the frequency

domain in three regions and taking into account the multiplier

Πd improved noticeably the results of the analysis. However,

it is convenient to know if the improvement is due to the

splitting in regions or to the use of multiplier Πd. So, it

was also computed the maximum λ such that the following

problem remains feasible:

Problem 3 Find ΠΩ
pol and ǫ > 0 satisfying (18), (19) and

σu(Fl(N,−Γ1)(jω),Π
Ω
pol) ≤ −ǫI, ∀ω ∈ Ω.

The result can be read in Table I and seems to indicate

that the difficulties in the assessment of robust stability with

multipliers Πpol resides precisely in the band Ω associated to

the electromechanical modes and the associated resonances.

The exploitation of multiplier Πd, derived by analytical

methods and valid in a sensible frequency band, allows to

significantly improve the results of the analysis.

TABLE I

EXTREME VALUES OF λ FOR EACH TECHNIQUE OF ANALYSIS

Problem 1 Problem 2 Problem 3 Stability

(ΠR

pol
) (Πd+pol) (ΠΩ

pol
) λMAX

0.32 2.53 0.32 2.548

Figure 6 displays the stability regions associated to each

choice of multiplier. Significantly, the gap between the hard

5The stability can be easily proved through the use of multiplier Πd in
band Ω at interface A and multiplier Πd+pol in Ω̄ at interface B.
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stability limit and the region able to be predicted by the

simultaneous use of multiplier Πpol and Πd is very small.

Figure 7 depicts the loci of the most significant modes of

the interconnection when x′

d varies in the interval [0.3, 2.8]
and the load L9 is modeled with constant reactive power. The

local mode of area 1 remains unchanged as expected, and the

local mode of area 2 and inter-area mode vary significantly

but without crossing the imaginary axis because Proposition

1 is valid for a suitable frequency band Ω. The stability is lost

when a real mode turns unstable for values of λ ≥ λMAX .

Fig. 6. Stability regions.
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Fig. 7. Eigenvalue loci for power flow C, X′

d
∈ [0.3, 2.8].

V. CONCLUDING REMARKS

The effects of the dissipativity properties of power systems

on the frequency response of these systems was explored

with the help of a classical example. A first conclusion is

that these properties remain valid, for realistic models, in a

very significant band of frequencies, associated to the elec-

tromechanical modes. It was also shown that SVC devices

can contribute positively to these properties, without any

adverse effect on its standard tracking requirements. Finally,

a careful robustness analysis was carried on the example.

The results support the idea that the a priori knowledge of

the system behavior in the frequency band associated to the

electromechanical modes greatly simplifies the robustness

analysis and improves the results of this type of analysis.
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