
Oriented texture detection: Ideal observer modelling
and classification image analysis

Centre for Vision Research, York University,
Toronto, ON, CanadaCharles C.-F. Or

Centre for Vision Research, York University,
Toronto, ON, CanadaJames H. Elder

Perception of visual texture flows contributes to object segmentation, shape perception, and object recognition. To better
understand the visual mechanisms underlying texture flow perception, we studied the factors limiting detection of simple
forms of texture flows composed of local dot dipoles (Glass patterns) and related stimuli. To provide a benchmark for human
performance, we derived an ideal observer for this task. We found that human detection thresholds were 8.0 times higher
than ideal. We considered three factors that might account for this performance gap: (1) false matches between dipole dots
(correspondence errors), (2) loss of sensitivity with increasing eccentricity, and (3) local orientation bandwidth. To estimate
the effect of correspondence errors, we compared detection of Glass patterns with detection of matched line-segment
stimuli, where no correspondence uncertainty exists. We found that eliminating correspondence errors reduced human
thresholds by a factor of 1.8. We used a novel form of classification image analysis to directly estimate loss of sensitivity
with eccentricity and local orientation bandwidth. Incorporating the eccentricity effects into the ideal observer model
increased ideal thresholds by a factor of 2.9. Interestingly, estimated orientation bandwidth increased ideal thresholds by
only 8%. Taking all three factors into account, human thresholds were only 58% higher than model thresholds. Our findings
suggest that correspondence errors and eccentricity losses account for the great majority of the perceptual loss in the visual
processing of Glass patterns.
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Introduction

Detection of oriented texture is an important problem,
as it partially underlies our ability to segment figure from
ground and perceive three-dimensional shape (Figure 1).
This process involves perceptual organization of local
orientation cues such that a coherent structure is perceived.
A much-studied type of oriented texture is random dot-pair
stimuli or Glass patterns (Glass, 1969; see Figures 2a
and 2b). Perception of Glass patterns involves non-trivial
processing: Local dots must be grouped appropriately to
form perceptual pairs, and these pairs must be integrated
to give a globally coherent orientation percept (Glass &
Pérez, 1973; Glass & Switkes, 1976). Spurious orientation
signals are formed when the dots are paired up randomly,
which act as “correspondence errors” that limit detection
performance. Given the apparent salience of Glass
patterns, the visual system must have mechanisms that
correlate the dots appropriately, minimizing random dot
pairings.
The problem of detecting local orientations has been a

central focus of neurophysiological research on the visual
processing of Glass patterns. Glass (1969) proposed that
each dipole (dot pair) is sufficient to trigger the response

of a simple cell in V1 (Hubel & Wiesel, 1962, 1968) by
activations of the two ends of its elongated receptive field.
This idea was later supported by Smith, Bair, and
Movshon (2002) and Smith, Kohn, and Movshon (2007)
in monkey physiology, who found that neurons in V1 (and
also V2) are sensitive to local orientations in linear Glass
patterns.
How does the brain extract these weak orientation

signals from Glass-pattern dipoles while suppressing
spurious responses? Stevens (1978) proposed a token
matching model that forms dipoles by detecting parallel-
ism among local dot pairings. The model was designed
such that dot pairings with smaller dot separations are
preferred, and only dot pairings within a small neighbour-
hood of each dot are considered. The model predictions
were generally consistent with human psychophysical
data: In both cases, Glass patterns were detected only for
small dipole lengths and low dot densities, to the extent
that no more than 2 or 3 random dots could lie closer to a
given dot than its corresponding dot (see also Caelli,
1981; Maloney, Mitchison, & Barlow, 1987). Contrary to
Stevens’ model, Dakin (1997) has found that a token
matching model systematically underperforms humans on
a Glass pattern detection task. Indeed, there is converging
evidence that the structure of a Glass pattern is readily
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detectable for higher dot densities (relative to dipole
length) than previously thought (Dakin, 1997; Kurki,
Laurinen, Peromaa, & Saarinen, 2003; Wilson & Wilkinson,
1998; Wilson, Wilkinson, & Asaad, 1997).
The limitations of the token matching model suggest

that local orientation signals may be extracted over larger
spatial scales than previously thought. Dakin (1997) found
that adaptive orientation filtering over multiple spatial
scales agreed with human performance in detecting Glass
patterns. Dakin and Bex (2001) further proposed that local
grouping of dipoles is tuned to a narrow range of spatial
frequencies, but global grouping is more broadly tuned.
The need for a global pooling stage for linear Glass
patterns is, however, disputed by Wilson and Wilkinson

(1998) and Wilson et al. (1997), who found that spatial
pooling of linear Glass patterns is limited to a relatively
small foveal region.
To resolve this continuing debate, a better understand-

ing of perceptual limits in the detection of Glass patterns
is required. Early work focused largely on how corre-
spondence errors alone limit perception of Glass patterns.
For example, Maloney et al. (1987) examined the thresh-
old signal-to-noise ratio of dots to perceive a Glass pattern
when the average distance between dots was varied. Their
model takes into account how the relative density of noise
dots affects discriminability of the signal but does not
allow investigation of other potential errors in the
perception of oriented textures.
In order to more completely understand the perceptual

factors determining the detection of texture flows, we
conducted a new series of human psychophysical experi-
ments using both linear Glass patterns (Figures 2a and
2b), as well as line patterns (Figures 2c and 2d) in which
dipoles were replaced by line segments, which effectively
eliminate the correspondence problem. Thus, the effect of
correspondence errors can be measured by comparing the
psychophysical thresholds for Glass patterns and line
patterns. We further use a novel form of classification
image analysis (Ahumada, 2002; Ahumada & Lovell,
1971) to examine three other potential sources of infor-
mation loss: (1) decline in sensitivity with eccentricity
(eccentricity loss) and two forms of orientation loss,
including (2) bias in orientation detection and (3) orienta-
tion bandwidth (see Classification image analysis section).
A main goal of our work is to establish a more com-
prehensive ideal observer model that provides a reference
for human performance. Importantly, this model can be
generalized to incorporate multiple forms of information
loss that together limit detection performance.

Methods

Observers

Three experienced psychophysical observers partici-
pated in the experiments. Two of the observers (DN and
YM) were naive to the purpose of the experiments, and the
third observer (CFO) was one of the authors. All observers
had normal, or corrected-to-normal, visual acuity.

Apparatus

Stimuli were generated using an Apple Power Macin-
tosh G5 computer and MATLAB version 7.1 and were
displayed on a 15-in. Apple colour monitor, at a frame rate
of 85 Hz and a resolution of 1024 � 768 pixels. Observers
viewed the monitor screen binocularly at a distance of

Figure 1. The importance of texture flow perception. (a) Segment-
ing figure from ground: Detection of the squirrel is based in part on
discriminating the texture flow of the animal’s fur from the texture
flow of the grass. (b) Perceiving three-dimensional shape from
texture: The curvature of the chair is revealed by deformations in
the texture flow of the chair’s surface.
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70 cm in a dimly lit observation room. The monitor was
gamma corrected by measuring the luminance of each
RGB level with a Minolta LS-100 photometer, and then gen-
erating independent lookup tables for the red, green, and
blue guns such that the screen luminance was linearized
as a function of the grey level. Observers indicated their
responses by pressing buttons on a standard keyboard.

Stimuli
Glass patterns

Each linear Glass pattern (Figures 2a and 2b) consisted
of 200 dipoles. A dipole was produced by randomly
positioning the first dot and placing its partner 19.2 min of
arc away from the centre of the first dot. This dot-pair
separation was within the range required for optimal
detection of Glass pattern structure (Kurki et al., 2003;
Wilson & Wilkinson, 1998). Each square dot had a size of
4.4 min of arc and was not allowed to overlap with any
other dots. The dots were displayed within a circular
aperture 14 deg in diameter, allowing eccentricity analysis
in the parafoveal region. The dots were displayed at a
luminance of 102 cd/m2 against a background luminance
of 60.3 cd/m2.

As oblique Glass patterns have been found to result in
better detection performance than horizontal or vertical
(inverse oblique effect: Wilson, Loffler, Wilkinson, &
Thistlethwaite, 2001), we ran separate experiments using
horizontal (0 deg; see Figure 2a) and oblique (+30 deg;
see Figure 2b) patterns. To construct a Glass pattern, a
proportion of dipoles (signal dipoles) were oriented at the
signal angle (0 deg or 30 deg). The orientations of the
remaining dipoles (noise dipoles) were randomly distrib-
uted, with equal probability, over 6, 12, or 24 orientations
evenly sampled from angles between j90 deg and 90 deg
and including the signal angle. For example, the angles
are j60, j30, 0, 30, 60, and 90 deg when 6 orientations
are sampled. Figure 3 illustrates sample frequency
distributions of dipole orientations in Glass patterns
constructed by our method.

Line patterns

One possible factor underlying perceptual loss in Glass
pattern detection is correspondence errors or errors in
orientation detection arising from random correlations of
local dots. This problem can be eliminated by replacing
dipoles with oriented line segments. Dakin (1997) showed

Figure 2. Noisy oriented texture stimuli. (a, b) Glass patterns. (c, d) Line patterns. Two signal orientations were used: 0 deg (horizontal; as
in (a) and (c)) and 30 deg (oblique; as in (b) and (d)). Here, each of these sample oriented textures contains 80% signal.
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that while detection of Glass patterns deteriorates beyond
an optimal dipole length, detection of line patterns
asymptotically improves with line length. Line patterns
may also be useful in assessing information loss due to
orientation tuning (Orientation loss section). For these
reasons, we conducted our experiments also with line
patterns (Figures 2c and 2d).
Line patterns were composed of 200 line segments,

4.4 � 22 min of arc in size, equivalent to the dipole
dimensions of Glass patterns. Line segments were displayed
at a luminance of 84.3 cd/m2 against a background
luminance of 60.3 cd/m2. The lower luminance of line
segments compared to dipoles (102 cd/m2) equalized the
total contrast energy of the two patterns. Pilot experiments
revealed that in fact detection does not improve with
contrast.

Procedure

A Yes/No detection task was used. On each trial, the
observer was presented with a central fixation display for
1 s, followed by the target stimulus, centrally displayed
for 165 ms (14 frames at 85 Hz), sufficiently brief to
eliminate eye movements. The target stimulus on each
trial was randomly either an oriented texture with a
proportion of signal and noise elements (signal-plus-noise
trial) or a pattern consisting of noise elements only (noise
trial). The observer indicated by button press whether a
presentation contained an oriented texture. The observer
was notified of a correct or incorrect choice by an audible
tone immediately after each decision.
Observers were tested, in a randomized order, in 12

conditions consisting of all combinations of three

Figure 3. Sample frequency distributions of element orientations for oriented textures where the signal elements are oriented horizontally
(at 0 deg). The numbers of orientations sampled are 6 (a, d), 12 (b, e), and 24 (c, f). (a–c) Signal-plus-noise patterns: Here, 30% of the
200 elements are deterministically set to the signal orientation. In actual experiments, signal level varied across trials. Note that the peaks
are constituted of elements designated as signal (in stripes) and noise (in grey). (d–f) Noise-only patterns: All elements are oriented
randomly.
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parameters: (1) stimulus type: Glass patterns or line
patterns, (2) signal orientation: horizontal (0 deg) or
oblique (30 deg) signal orientation, (3) number of distractor
orientations: 6, 12, or 24. The observer was informed of
these parameters at the start of each condition. Detection
threshold for 75% correct performance was determined
using an adaptive procedure (QUEST; Watson & Pelli,
1983; see Figure 11a). Each observer performed at least
2000 trials for each condition, in blocks of 200 trials each.
(The exact number of blocks performed by each observer
and for each condition varied slightly.) At the beginning of
the first block, the initial signal level was set to 100 signal
elements (50% signal) and the remaining 100 elements
were noise elements. The initial signal level of each
subsequent block was set to the maximum likelihood
estimate of the detection threshold obtained from the
previous block of the same condition. The mean detection
threshold was calculated by averaging the maximum
likelihood estimates of the detection thresholds obtained
from all blocks for the same condition.

Ideal observer modelling

Since the retinal location of oriented elements is
irrelevant to the task, the histogram of element orienta-
tions (Figure 3) completely embodies the stimulus
information relevant to the task. We have also established
that ideal observer thresholds for Glass patterns and line
patterns are essentially identical, as the incidence of
exact false dot matches is negligible at the dipole density
(1.30 dipoles/deg2 on average) we used.
As the signal orientation is known to the observer and

the total number of elements is fixed at N = 200, the ideal
observer only has to consider the number of elements at
the signal orientation n0. We make the further assumption
that the ideal observer knows the signal level, i.e., the
number ns of elements deterministically set to the signal
orientation on signal-present trials. (Note that the actual
set of elements n0 at the signal orientation consists of the
signal elements plus the noise elements that happen to be at
the signal orientation. See Figures 3a–3c.) This assumption
is not unreasonable, as human thresholds are the outcome
of a sequence of QUEST trials in which the signal level ns
gradually converges to a fixed value. Thus, in principle,
it is possible for the ideal observer to develop a good
estimate of the signal level ns at its threshold. (In the
Prior knowledge of signal level section, we explore how
weaker knowledge of the signal level affects our analysis.)
In addition to knowledge of the signal level ns, we

assume that the ideal observer knows that the prior odds
of signal present/absent is 50/50 and that the objective is
to maximize proportion correct, consistent with a uniform
reward for hits and correct rejects or equivalently a
uniform loss for false positives and misses. With this
knowledge, and an observed number of elements n0 at the
known signal orientation, the ideal observer reports the

signal present if and only if this is the more likely event.
Letting H0 and H1 denote the signal-absent and signal-
present events, respectively, the decision rule can be
written as

Decide H1 if
pðn0kH1; nsÞ
pðn0kH0Þ Q 1;

decide H0 otherwise:
ð1Þ

Calculating the likelihood ratio is straightforward, since
for both signal-present and signal-absent trials, n0 follows
a binomial distribution:

pðn0kH1; nsÞ ¼
Njns

n0jns

0
@

1
Apn0jns

E ð1 j pEÞNjn0 ; n0 Q ns

0 ; n0 G ns

;

8>><
>>:

ð2Þ

pðn0kH0Þ ¼
N

n0

0
@

1
Apn0E ð1 j pEÞNjn0 ; ð3Þ

where pE = 1/nE is the probability that a single noise
element will have a particular orientation, given nE discrete
stimulus orientations (nE = 6, 12, or 24 in our experiments).
The decision rule in Equation 1 then determines the ideal
criterion n0V:

nV0 ¼ min
n0Z ns;I;N½ �

n0 :
pðn0kH1; nsÞ
pðn0kH0Þ Q 1: ð4Þ

In other words, n0V is the minimum number of elements in
the signal orientation for which the likelihood ratio equals
or exceeds 1.
Given the optimal criterion n0Vas a function of signal

level ns, the proportion of correct responses pc for every
possible signal level ns Z [0, I, N] (where N = 200) can
be computed as the average of the hit rate pHit and correct-
reject rate pCR:

pc nsð Þ ¼ 1

2
pHit nsð Þ þ pCR nsð Þð Þ; ð5Þ

where

pCR ¼ pðn0 G nV0kH0Þ ¼
XnV0j1

n0¼0

N

n0

0
@

1
Apn0E ð1 j pEÞNjn0; ð6Þ
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and

pHit ¼ pðn0 Q nV0kH1; nsÞ

¼
XN
n0¼nV0

N j ns

n0 j ns

0
@

1
Apn0jns

E ð1 j pEÞNjn0 : ð7Þ

Given the proportion of correct responses pc(ns) for every
integer signal level ns Z [0, I, N], we compute the ideal

threshold nsV for 75% correct performance by linear
interpolation.

Results

Figure 4 shows how detection thresholds vary as a
function of our four factors: (1) observer (CFO, DN, or
YM), (2) stimulus type (Glass patterns or line patterns),
(3) signal orientation (horizontal or oblique), and (4) number

Figure 4. Detection thresholds as a function of observer, stimulus type (Glass pattern or line pattern), signal orientation, and number of
orientations. Detection thresholds for the ideal observer are also shown. The threshold is expressed as the number of signal elements out
of a total of 200 elements for 75% correct performance. Error bars denote T1 SEM. Each mean and SEM is computed from at least
10 threshold estimates.

Journal of Vision (2011) 11(8):16, 1–20 Or & Elder 6

Downloaded from jov.arvojournals.org on 06/30/2019



of orientations (6, 12, or 24). Table 1 shows the results of
a fixed-effects four-way analysis of variance (ANOVA) on
the detection thresholds based on these four factors. (We
treat each 200-trial threshold estimate as an independent
observation, yielding at least 10 observations per con-
dition. Since the number of blocks performed by each
observer and for each condition varies only slightly, the
design is nearly balanced.)
We find that all main effects and most interactions are

significant (p G 0.05). Since several of these significant
interactions involve the observer factor, we also con-
ducted three-way (conditional) ANOVAs for each
observer (Table 2) to assess the generalization of observed
effects across individuals. While a complete account of all
higher order interactions is beyond the scope of this paper,
we shall attempt to shed light at least on the main effects
and selected two-way interactions in the following.
Our first observation is that observers varied signifi-

cantly in how well they performed the oriented texture
detection task. This may, in part, be due to individual
differences in the parameters of detection mechanisms that
we shall attempt to estimate in this paper; this possibility
is reinforced by the significant interactions between
observer and the stimulus parameters. For this reason,
much of our subsequent analysis will be within subjects.
Our second observation is that, for all three observers,

Glass patterns have significantly higher detection thresh-
olds than line patterns, by a factor of 1.8 on average. This
finding confirms that line patterns produce a stronger
texture flow than Glass patterns, possibly due to the
absence of correspondence errors in line patterns.

Our third observation is that, for two of our three
observers, thresholds are significantly lower for oblique
patterns than for horizontal patterns, consistent with
previous findings (Wilson et al., 2001). We note that this
inverse oblique effect is highly significant (p G 0.001) for
the two observers who show it and nowhere near

Observer CFO

Parameter F df P-value

Main effects
Signal orientation (SO) 0.324 1 =0.570
Stimulus type (ST) 305 1 G0.001
Number of orientations (NO) 3.35 2 G0.038

Two-way interactions
SO � ST 1.69 1 =0.196
SO � NO 0.252 2 =0.778
ST � NO 0.423 2 =0.656

Three-way interactions
SO � ST � NO 0.354 2 =0.703

Residual 138

Observer DN

Main effects
Signal orientation (SO) 44.6 1 G0.001
Stimulus type (ST) 313 1 G0.001
Number of orientations (NO) 13.6 2 G0.001

Two-way interactions
SO � ST 27.7 1 G0.001
SO � NO 10.9 2 G0.001
ST � NO 11.7 2 G0.001

Three-way interactions
SO � ST � NO 15.5 2 G0.001

Residual 108

Observer YM

Main effects
Signal orientation (SO) 22.8 1 G0.001
Stimulus type (ST) 305 1 G0.001
Number of orientations (NO) 3.32 2 G0.040

Two-way interactions
SO � ST 115 1 G0.001
SO � NO 7.45 2 G0.001
ST � NO 11.6 2 G0.001

Three-way interactions
SO � ST � NO 0.284 2 =0.753

Residual 148

Table 2. Three-way conditional ANOVA results on psychophysical
detection threshold for three observers. Residual df varies slightly
because each observer performed a slightly different number of
blocks for some conditions.

Parameter F df P-value

Main effects
Observer (O) 250 2 G0.001
Signal orientation (SO) 38.7 1 G0.001
Stimulus type (ST) 879 1 G0.001
Number of orientations (NO) 12.9 2 G0.001

Two-way interactions
O � SO 7.06 2 G0.001
O � ST 7.65 2 G0.001
O � NO 2.10 4 =0.080
SO � ST 81.9 1 G0.001
SO � NO 10.5 2 G0.001
ST � NO 14.2 2 G0.001

Three-way interactions
O � SO � ST 17.2 2 G0.001
O � SO � NO 2.13 4 =0.077
O � ST � NO 2.60 4 G0.036
SO � ST � NO 2.39 2 =0.093

Four-way interactions
O � SO � ST � NO 4.83 4 G0.001

Residual 394

Table 1. Fixed-effects four-way ANOVA results on psychophysical
detection threshold.
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significant (p = 0.57) for the third observer. This finding
suggests that the inverse oblique effect may only hold for
a subset of the population, although clearly a larger
sample size is required to substantiate this claim.
Our fourth observation is that there is a general decline

in thresholds as the number of orientations in the stimulus
is increased, statistically significant in all three observers
(p G 0.04). Note that the decline in thresholds is predicted
by the ideal observer model and reflects the decline in the
number of noise elements at the signal orientation as the
number of orientations in the stimulus increases.
Our final observation is that thresholds for the ideal

observer are considerably lower than for human observers,
even when correspondence errors have been accounted for
(using line patterns). Clearly, there are other important
sources of information loss in the detection of oriented
textures: we now set out to identify and quantify these losses.

Classification image analysis

Prior work has suggested that the detection of oriented
textures is limited by (1) decline in sensitivity with
eccentricity (eccentricity loss; Burr & Ross, 2006; Dakin,
2001; Wilson & Wilkinson, 1998; Wilson et al., 1997) and
(2) bias and bandwidth in detecting the orientation of the
global structure (orientation loss; Dakin, 1997, 2001;
Maloney et al., 1987). Unfortunately, a full-scale compar-
ison of the magnitudes of these errors is impossible due to
different experimental settings in past studies. More
importantly, estimations of the eccentricity loss and
orientation loss in past studies generally involved strong
assumptions about the detection mechanism. For example,
eccentricity loss was estimated by comparing detection
thresholds of Glass patterns of different sizes (Wilson &
Wilkinson, 1998; Wilson et al., 1997) under the assump-
tion that sensitivity at a specific eccentricity is not affected
by changes in stimulus size.
Here, we use a classification image technique (Ahumada,

2002; Ahumada & Lovell, 1971) that allows more direct
estimation of both eccentricity loss and orientation loss.
These estimates are based only on signal-absent trials: we
excluded signal-present trials to avoid possible biases
toward the signal due to system non-linearities (Abbey &
Eckstein, 2002; Ahumada & Beard, 1999). (Nevertheless,
we have verified that including signal-present trials
produces similar results.)
(Since our analyses will generally be in one-dimensional

subspaces of the image, specifically, in orientation and
eccentricity bands, rather than the pixel domain, we will be
estimating one-dimensional sensitivity functions rather
than “classification images” per se. However, in the visual
psychophysics community, the term “classification image”
is used quite broadly to describe any internal template
estimated using stimulus noise under a linear signal

detection model, and this is the sense in which we use the
term.)

Eccentricity loss
Background

It is well known that visual performance generally
decreases with retinal eccentricity due to optical (Campbell
& Green, 1965; Fincham, 1951) and neural (Cowey &
Rolls, 1974; Daniel & Whitteridge, 1961; De Monasterio
& Gouras, 1975; Wiesel, 1960) factors. In particular,
orientation sensitivity has been shown to deteriorate in the
periphery (Spinelli, Bazzeo, & Vicario, 1984).
It is to be expected that the decay in sensitivity with

eccentricity will limit the detection of oriented textures.
However, the rate of decay is disputed. While Wilson and
Wilkinson (1998) and Wilson et al. (1997) found that
detection of linear Glass patterns does not improve with
increased stimulus size beyond fovea, Burr and Ross
(2006) found otherwise. For Gabor textures, Dakin (2001)
found only a slight improvement in detection with a larger
stimulus area. The effect of eccentricity loss in oriented
texture detection thus merits further investigation.
Here, we used the classification image technique to

directly measure observers’ sensitivity to orientation
information at different spatial locations relative to
fixation. The decay in element sensitivity with eccentricity
was estimated from the resulting sensitivity function.

Methods

A sensitivity function for signal-absent trials was
determined by comparing the eccentricities of noise
elements at the signal orientation in false-alarm and
correct-reject trials. In particular, a sensitivity estimate
can be computed by accumulating noise elements into
discrete eccentricity bins for false-alarm and correct-reject
trials separately, and then differencing the normalized bins
to produce an empirical estimate of the sensitivity
function Cr at discrete eccentricity bins i:

Cr ið Þ ¼ 1

nFA
NFA ið Þj 1

nCR
NCR ið Þ; ð8Þ

where nFA is the number of false-alarm trials, nCR is the
number of correct-reject trials, NFA(i) is the number of
elements falling in eccentricity bin i over all false-alarm
trials, and NCR(i) is the number of elements falling in
eccentricity bin i over all correct-reject trials.
Note that Equation 8 can be rewritten as

CrðiÞ ¼
XNi

j¼1

wij; ð9Þ
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where wij is a weight assigned to the jth element falling in
bin i:

wij ¼ 1

nFA
if the element is drawn from a false-alarm trial;

wij ¼ j
1

nCR
if the element is drawn from a correct-reject trial;

ð10Þ

and Ni is the number of elements falling in bin i over all
(signal-absent) trials.
This empirical estimate of the sensitivity function will

only be accurate if each bin contains (roughly) the same
number of elements. Since the expected number of
elements falling within a fixed tolerance of a given
eccentricity r increases as r2, the bin width is made to

decrease as
ffiffi
r

p
such that the expected number of elements

is the same across the bins. Figure 5a shows the empirical
eccentricity sensitivity function computed in this fashion
for one observer and signal orientation.
It would be nice to capture this falloff in sensitivity with

a simple parametric model. Prior studies have suggested
an exponential falloff in sensitivity with eccentricity, for a
range of perceptual tasks (Robson & Graham, 1981;
Spinelli et al., 1984). Thus, we predict that our empirical
sensitivity function will be well approximated by the
following function:

ĈrðrÞ ¼ Arexpðjr=r0Þ; ð11Þ

where r is the eccentricity of an element, defined as the
angular deviation of the element’s midpoint from fixation,
and r0 is the space constant for the falloff.

Figure 5. (a) Empirical sensitivity function over eccentricity for observer DN on horizontal textures. Here, we used 100 histogram bins,
each containing 1186 elements on average. The curve shows the maximum likelihood exponential model Ĉr(r) = Arexp(jr/r0). (b) Mean
eccentricity space constants. Error bars denote T1 SEM. Each mean and SEM is derived from three estimates: one for each of the three
values of the number of orientations factor.
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While our binning method provides a good visualization
of the falloff in sensitivity Cr(r) with eccentricity r, a
least-squares fit of our model Ĉ r(r) directly to this
empirical sensitivity function Cr(r) is sensitive to the
choice of the bin width. We can eliminate this dependence
by using one bin per oriented texture element, centring
each on the eccentricity of that element, and making the
bin widths so small that they each encompass only one
point. It is important to note that there may be gaps and
overlaps between the bins, but this is not a problem, since
our goal is only to estimate the sensitivity at a discrete
number of r values, not to estimate a probability density.
Under these conditions, the number of bins is equal to the
total number of elements and the estimated sensitivity at
the ith bin is given by

CrðiÞ ¼ wij; ð12Þ

with wij defined as in Equations 9 and 10. Now a least-
squares fit of the model Ĉr(r) to the data can be computed
by minimizing

L ¼
XN
i¼1

ðĈrðiÞjCrðiÞÞ2

¼
XN
i¼1

ðĈrðiÞjwijÞ2

¼
X
iZIFA

Ĉr ið Þj 1

nFA

� �2

þ
X
iZICR

Ĉr ið Þ þ 1

nCR

� �2

; ð13Þ

where IFA and ICR are the index sets for all noise elements
in the false-alarm and correct-reject trials, respectively.
We minimize Equation 13 over Ar and r0 using a standard
gradient descent method (MATLAB fminsearch). We
report only the results for r0, since Ar is an arbitrary
scaling constant.
The fit of the exponential model to the data using this

method is good, yielding parameters similar to those
estimated by fitting histograms (Figure 5a), and we have
verified that it is better than an alternative half-normal
model.

Results

Table 3 shows the results of a fixed-effects four-way
ANOVA on estimated space constant r0 as a function of our
four factors: (1) observer (CFO, DN, or YM), (2) stimulus
type (Glass patterns or line patterns), (3) signal orientation
(horizontal or oblique), and (4) number of orientations
(6, 12, or 24). We find significant main effects of observer
and signal orientation as well as three significant two-way
interactions (observer � signal orientation, observer �
stimulus type, stimulus type � signal orientation) and one
significant three-way interaction (observer � stimulus

type � signal orientation). (Given only one estimate per
condition, the fourth-order interaction is undefined.) As
there is no significant effect of the number of orientations,
either as a main effect or in interactions, we averaged
the space constants over the three values of this factor
(Figure 5b).
In all but one case, space constants were between 0.6

and 2.6 deg. The average space constant was 1.7 deg.
Ignoring the one outlier estimate (observer DN, oblique
Glass patterns), the average space constant was 1.3 deg.
For horizontal Glass patterns, we found an average space
constant for our exponential model of 0.81 deg. Wilson and
Wilkinson (1998) have previously estimated sensitivity to
comparable stimuli as a function of eccentricity by
measuring thresholds for circular regions of various sizes.
Using a half-normal model, they estimated a space
constant of 0.65 deg. To compare our exponential model
with their half-normal model, we can compute for both the
eccentricities at which sensitivity falls to half its peak
value. Our estimate of 0.56 deg is almost identical to the
0.54-deg estimate obtained by Wilson and Wilkinson
using quite different methods. The agreement in these
estimates strengthens the conclusion that sensitivity to
Glass patterns is largely restricted to the central 1-deg
region of the visual field.
From Figure 5b, we observe that in 5 out of 6 cases, the

estimated space constant is greater for the oblique signal
orientation, as reflected in the significant main effect of
signal orientation. This means that overall our observers
are closer to ideal for the oblique condition in the sense
that they are using more of the information in the display.
This is one possible explanation for the effect of signal
orientation on performance observed in Figure 4. Note

Parameter F df P-value

Main effects
Observer (O) 36.6 2 G0.003
Signal orientation (SO) 22.6 1 G0.009
Stimulus type (ST) 0.228 1 =0.658
Number of orientations (NO) 1.62 2 =0.306

Two-way interactions
O � SO 13.0 2 G0.018
O � ST 7.19 2 G0.048
O � NO 1.13 4 =0.455
SO � ST 10.8 1 G0.031
SO � NO 0.879 2 =0.483
ST � NO 0.472 2 =0.654

Three-way interactions
O � SO � ST 11.2 2 G0.024
O � SO � NO 0.790 4 =0.588
O � ST � NO 3.19 4 =0.143
SO � ST � NO 0.046 2 =0.956

Residual 4

Table 3. Fixed-effects four-way ANOVA results on estimated
eccentricity space constant.
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that these differences parallel the space constant estimates
shown in Figure 5b fairly closely. For example, observer
DN is much better for oblique signals, at least for the
6-orientation condition, and this is where we see the largest
difference in estimated space constants. The one case in
which the estimated space constant is (slightly) smaller for
the oblique condition (observer YM, line patterns) is the
one case where performance is worse for the oblique
condition. The individual differences we observe here may
partly explain variations in previous estimates of eccen-
tricity decay (Burr & Ross, 2006; Dakin, 2001; Wilson &
Wilkinson, 1998; Wilson et al., 1997).
These results are also consistent with previous findings

from Wilson et al. (2001), who measured thresholds for
oblique Glass patterns while varying stimulus area,
finding broader spatial pooling for oblique patterns. What
remains unclear is the functional role for this broader
pooling and how it relates to the ecological statistics of
natural oriented textures.

Orientation loss
Background

Neurons in early visual cortex are tuned for orientation
(Hubel & Wiesel, 1962, 1968) and underlie our ability to
perceive oriented patterns. Psychophysical estimates of
orientation bandwidths for gratings generally range from 7
to 15 deg, half-width at half-height (Blakemore &
Nachmias, 1971; Campbell & Kulikowski, 1966; Phillips
& Wilson, 1984; Snowden, 1992). Orientation bandwidths
of oriented textures probably fall within this range.
Maloney et al. (1987) found that Glass patterns are still
visible even with T11-deg jitter in dipole orientations, and
Dakin (1997, 2001) found similar results for line patterns
and Gabor textures. Nevertheless, some of these estimates
may be confounded with other potential errors in oriented
texture detection, notably correspondence errors in Glass
patterns: errors in orientation detection in Glass patterns
may arise from both random dot correlations and imprecise
orientation tuning. Fortunately, the classification image
technique allows these sources of error to be studied.

Methods

Our analysis of eccentricity showed that elements near
fixation are far more influential in determining oriented
texture detection, and we can take this into account to
improve our estimates of orientation bandwidth. Specifi-
cally, let IFA(E) and ICR(E) denote index sets for all noise
elements at orientation E in false-alarm and correct-reject
trials, respectively. Then, the empirical sensitivity func-
tion over orientation is

CE Eð Þ ¼ 1

nFA

X
iZIFAðEÞ

exp jri=r0ð Þj 1

nCR

X
iZICRðEÞ

exp jri=r0ð Þ;

ð14Þ

where ri is the eccentricity of noise element i, r0 is the
space constant estimated separately for each observer and
stimulus parameter (Eccentricity loss section), and nFA
and nCR are the numbers of false-alarm and correct-reject
trials, respectively. In this way, elements that are closer to
fixation and have greater influence on detection are
weighted more heavily in estimating the orientation
bandwidth.
The empirical sensitivity functions over orientation are

shown in Figure 6. Note that sensitivity peaks near the
signal orientation and has negative tails. This is in part
due to the nature of the stimuli: The fact that every
stimulus contains exactly 200 elements means that the
empirical sensitivity function must sum to zero.
To parametrically model orientation tuning, we fit the

empirical sensitivity function with a Gaussian function,
corrected to have zero sum:

ĈE Eð Þ ¼ AE
1ffiffiffiffiffiffi
2:

p
AE

exp
jðE j 2EÞ2

2A2
E

 !
j 1

" #
: ð15Þ

The standard deviation AE provides an estimate of the
orientation bandwidth for oriented texture detection. The
difference between the mean 2E and the signal orientation
E0 (i.e., 2E j E0) indicates observer bias. We compute
error estimates for the orientation bandwidth AE as 68%
confidence intervals based on 500 bootstrapped estimates.

Results

Figure 6 shows that orientation bandwidths in the
classification images are generally too narrow to be
estimated accurately from 6- and 12-orientation stimuli.
We thus base all of our analysis on the 24-orientation
results by performing a fixed-effects three-way ANOVA
(factors: observer, stimulus type, signal orientation)
separately on the observer biases 2E j E0 and bandwidths
AE of the Gaussian functions fit to the empirical sensitivity
functions over orientation. The statistical results reported
below are based on ANOVA models without interaction
terms, all of which were found to be not significant (p 9
0.12) in the full models.
For observer bias, no significant differences were

found for observer, F(2,7) = 2.37, p = 0.16, stimulus
type,F(1,7) = 0.632, p = 0.45, or signal orientation, F(1,7) =
1.30, p = 0.29. Importantly, an additional t-test reveals an
average bias of j0.22 deg not significantly different from
zero bias, t(11) = 0.322, p = 0.75 (two-tailed).
For orientation bandwidth, no consistent evidence was

found for different orientation bandwidths for Glass
patterns and line patterns, F(1,7) = 2.75, p = 0.14. This
finding suggests that superior performance for detection of
line patterns derives mainly from elimination of corre-
spondence errors, not a reduction in orientation loss. It
also suggests that local orientation processing is similar
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for the two types of oriented elements, consistent with
Dakin’s (1997) psychophysical findings. Indeed, orienta-
tion-selective neurons in V1 and V2 have been shown to
be sensitive to both Glass-pattern dipoles (Smith et al.,
2002, 2007) and line textures (Kastner, De Weerd, &
Ungerleider, 2000; Knierim & van Essen, 1992).
Orientation bandwidth was significantly greater for

oblique stimuli than for horizontal stimuli, F(1,7) = 10.4,
p G 0.02 (Figures 6 and 7). Superficially at least, this may
seem like a surprising result, given that larger orientation
bandwidth should lead to reduced detection performance,
yet we generally find that observers are better at detecting
oblique patterns (Figure 4). Combined with our analysis of
eccentricity loss (Figure 5b), our results suggest that the

inverse oblique effect is due to broader spatial pooling for
oblique patterns and not to superior orientation tuning.
Our results thus explain how the classical oblique effect
(Jastrow, 1892) and the inverse oblique effect for Glass
patterns are not inconsistent. Whereas the first effect is
due to weaker orientation tuning for oblique signals, the
latter is due to broader spatial pooling for oblique signals.
There were also differences among observers, F(2,7) =

9.54, p G 0.02 (Figure 7). A Tukey’s post hoc pairwise
comparison test revealed that only YM differed in his
orientation bandwidth from the other two observers (YM
vs. CFO: p G 0.01, YM vs. DN: p G 0.05, CFO vs. DN: p =
0.48). It is worth noting that YM also had a larger
eccentricity loss (Figure 5b).

Figure 6. Empirical sensitivity function in the orientation domain. The curve in each plot shows the least-squares fit of the lowered
Gaussian function (Equation 15), with parameters 2E and AE. nE denotes the number of orientations in the stimulus. Error bars represent
T1 SEM. The mean and SEM for each orientation bin are derived from 6 estimates: 3 observers � 2 stimulus types.
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The average bandwidth over all conditions was AE =
11.1 deg, consistent with Maloney et al.’s (1987) estimate
of 11 deg for Glass patterns. Our estimate is equivalent to
13.1 deg, half-width at half-height, within the range of
orientation bandwidths (7–15 deg) estimated from grating
stimuli (Blakemore & Nachmias, 1971; Campbell &
Kulikowski, 1966; Phillips & Wilson, 1984; Snowden,
1992).

Quantifying information loss

The observed decay in sensitivity with eccentricity and
the apparent loss in orientation information must contrib-
ute to the elevation of human thresholds relative to the
ideal. Here, we set out to quantify just how much of this
performance gap can be explained in this way.

Eccentricity loss

To quantify the effects of eccentricity loss, we modified
the ideal observer model (Ideal observer modelling
section) to base its decision on a weighted sum of
elements at the signal orientation, where weights wj

e were
given by the exponential model estimated in the Classifica-
tion image analysis section. Specifically, given a stimulus
with n0 elements at the signal orientation, the modified
ideal observer uses the decision variable:

n~0 ¼
Xn0
j¼1

we
j ; ð16Þ

where wj
e = exp(jrj/r0), and rj is the eccentricity of the jth

element at the signal orientation.
To determine the optimal criterion n~0Vof the modified

ideal observer, we simulated 5000 signal-present trials for
each possible value of the signal level ns Z [0, I, N] and
5000 signal-absent trials, sampling the associated bino-
mial distributions in each case (Equations 2 and 3) to
determine values for n0. Eccentricity values rj for each of
the n0 elements at the signal orientation in a given trial
were then simulated by sampling rj

2 from a uniform
distribution [0, R2], where R = 7 deg is the radius of the
stimulus. The weights wj

e and decision variable n~0 were
then computed based on Equation 16.
The optimal criterion for each signal level n~0V(ns) was

determined by maximizing the proportion of correct
responses for this signal level. The model threshold for
75% correct performance was then estimated by linear
interpolation.

Orientation loss

Modifications to the ideal observer to incorporate
orientation loss were similar in spirit to the eccentricity
modifications. We again simulated 5000 trials for every
possible signal level and for both signal-absent and signal-
present conditions. The orientations of each of the N =
200 elements in each stimulus were determined by setting
ns to the signal orientation and distributing the remaining
N j ns according to a uniform distribution over all
orientations to mimic the oriented textures generated for
human observers (Stimuli section; Figure 3). The decision
variable n~0 was then determined as

n~0 ¼
XN
j¼1

wE
j ; ð17Þ

where the weights wj
E were determined from the estimated

Gaussian tuning function (Equation 15):

wE
j ¼ exp

jðEj j 2EÞ2
2A2

E

 !
: ð18Þ

(We omit the normalizing term used in Equation 15,
since it serves to subtract the same constant from the
decision variable on each trial, thus having no effect on
discrimination.) The optimal criterion for each signal level
n~0V(ns) and threshold at 75% correct performance was then
determined as in the Eccentricity loss section.

Figure 7. Orientation bandwidths AE estimated from the 24-
orientation conditions. Data were first pooled over stimulus types.
Error bars represent 68% confidence intervals, estimated by
bootstrapping from the original noise elements.
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Eccentricity loss and orientation loss

The effects of both eccentricity loss and orientation loss
together were determined in a similar fashion, with
decision variable n~0 given by

n~0 ¼
XN
j¼1

we
j w

E
j : ð19Þ

Results

Figure 8 shows detection thresholds for these modified
ideal observer models, averaged over observers and numbers
of orientations. Human thresholds for Glass patterns are, on
average, 8.0 times greater than the ideal thresholds. While
orientation losses alone increase thresholds by only 8%
from the ideal, eccentricity losses increase ideal thresholds
by a factor of 2.9. Interestingly, when orientation losses are
combined with eccentricity losses, they seem to have a
greater effect: Together they raise ideal thresholds by a
factor of 3.5. By comparing human thresholds for Glass
patterns and line patterns (Results section), we estimate
that losses due to correspondence errors increase human
thresholds by a factor of 1.8. The combined effect of these

three sources of error (correspondence errors, eccentricity
losses, orientation losses) can be taken into account by
comparing the ideal observer model with both eccentricity
and orientation losses to human thresholds for the line
stimulus conditions (i.e., by comparing “Both” and
“Human” thresholds for the two lower plots in Figure 8).
We find that human thresholds are only 58% higher than
model thresholds. This puts a useful upper bound on the
effects of other potential sources of error (see below).

Discussion

Major factors limiting oriented texture
detection

A number of factors appear to limit human oriented
texture detection. Comparisons of human thresholds for
Glass patterns and line patterns for the three observers
confirm that correspondence errors are a major source of
information loss, raising human thresholds by a factor of
1.8. Our ideal observer and classification image analysis
reveals that, while eccentricity loss is also a major factor,
the effect of orientation loss is negligible.

Figure 8. Detection thresholds for human and ideal observers, as well as modified versions of the ideal observer incorporating eccentricity
losses (Ecc), orientation losses (Orient), or both losses together (Both). Error bars denote T1 SEM. The mean and SEM for the ideal
observer model are derived from 3 estimates, corresponding to the 3 values of the number of orientations factor. The mean and SEM for
each of the other models and the human data are derived from 9 estimates: 3 observers � 3 number of orientations values.
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Inverse oblique effect

Our findings of generally lower thresholds and larger
space constants for oblique textures are consistent with the
inverse oblique effect, as suggested by Wilson et al.
(2001). Sensitivity to oblique textures is higher as the
visual system appears to broaden the extent of spatial
summation to extract the oblique textures, resulting in a
larger space constant. The larger spatial summation
apparently more than compensates for the weaker ori-
entation tuning at oblique angles that underlies the well-
known oblique effect. This explanation is supported by
our finding that orientation loss has a relatively minor
effect on performance compared to the loss associated
with spatial pooling.

Deviations from assumptions underlying
classification image analysis

The total number of signal and noise elements in each
stimulus was fixed at 200 elements. Consequently,
observations in each of the discrete orientations are not
independent. For example, observing a large number of
elements at a particular orientation lowers the numbers
expected at other orientations. In other words, the noise in
our experiment was not white, as is required in standard
classification image analysis. In order to assess the impact
of non-white noise, we conducted a control experiment on
both Glass patterns and line patterns (horizontal signal,
24 orientations only) in which the number of noise
elements at each orientation was drawn from an indepen-
dent normal distribution with standard deviation A = 2.5
elements and mean 2 = (N j ns) / nE for signal-present
trials and 2 = N/nE for signal-absent trials, where N = 200

is the expected total number of elements in the stimulus,
ns is the number of signal elements, and nE is the number
of orientations (nE = 24 in this case). The same three
observers performed this experiment, and the other
experimental setup was the same as previously described
(Stimuli and Procedure sections). Note that the total
number of elements in the stimulus now varies from trial
to trial but is not predictive of the signal.
Figure 9 shows estimates of orientation tuning based on

this experiment. A two-way repeated-measures ANOVA
is performed to compare the estimates from using white
noise and non-white noise based on the observer and the
stimulus type factors. The result shows that neither main
effects are significant (observer: F(1,1) = 5.47, p = 0.26;
stimulus type: F(1,1) = 0.027, p = 0.90), and the
interaction effect is also not significant (F(1,1) = 2.20,
p = 0.38). Thus, orientation bandwidths estimated using
white noise do not differ significantly from the original
results based on fixing the total number of elements in the
stimulus (Figure 10).

Prior knowledge of signal level

In constructing the ideal observer, we assumed knowl-
edge of the signal level. Since we use an adaptive
psychometric procedure (QUEST; Watson & Pelli, 1983),
the signal level changes from trial to trial, and so it is
highly unlikely that our human observers know the correct
signal level on each trial. Thus, the assumption of perfect
knowledge of signal level yields an upper bound on the
performance (or lower bound on the threshold) of an
observer that perceives the stimulus perfectly.
A possible alternative assumption is that the human

observer has absolutely no knowledge of signal level, i.e.,
assumes a uniform prior over the possible values ns Z [1, I,

Figure 9. Empirical sensitivity functions over orientation from a control experiment (Deviations from assumptions underlying classification
image analysis section) using white orientation noise, with maximum likelihood lowered Gaussian fits. The experiment used only stimuli
with horizontal signal and 24 orientations. Error bars represent T1 SEM. The mean and SEM for each orientation bin are derived from
2 estimates from 2 stimulus types.
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N]. The expected signal level is then (N + 1) / 2 and the
variance is

E ns j
N þ 1

2

� �2
" #

¼ 1

N

XN
ns¼1

ns j
N þ 1

2

� �2

¼ 1

12
N2 j 1
� �

:

ð20Þ

For N = 200, the variance corresponds to a standard
deviation of 57.7 elements. The resulting ideal observer
model can be taken as a lower bound on the performance
(or upper bound on the threshold) of an observer that
perceives the stimulus perfectly.
The truth no doubt lies somewhere in the middle. In our

experiments, we found that the QUEST procedure
converged rapidly, so that the standard deviation of the
signal level over each 200-trial block was in fact quite
small, averaging only to 7.8 elements (Figure 11). Thus, a
more reasonable assumption may be that the human
observer applies a prior on the signal level with roughly

Figure 10. Orientation bandwidths AE estimated from the original
method (non-white orientation noise, Figure 7) and the control
experiment (white orientation noise; see Deviations from assump-
tions underlying classification image analysis section) for stimuli
with horizontal signal and 24 orientations. Data were first pooled
over stimulus types. Error bars represent 68% confidence
intervals, estimated by bootstrapping from the original noise
elements.

Figure 11. (a) A typical block of trials (observer DN, horizontal Glass patterns, 24 orientations) showing the convergence of the signal level
over time. (b) The mean and SEM of the standard deviation of the signal level over a block, averaged over all values of the number of
orientations factor. Error bars represent T1 SEM. The dotted line in each plot shows the standard deviation for a uniform prior over signal
level (Equation 20).
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the correct mean and the variance matching the empirical
variance over a block of trials.
We can use the methods of the Ideal observer modelling

section to compute the ideal observer performance under
these different assumptions. This requires only a modifica-
tion to the signal-present distribution over n0 (Equation 2)
to marginalize over the unknown signal level nsV:

pðn0kH1Þ ¼
Xn0
nVs¼1

pðnVsÞ
N j nVs

n0 j nVs

0
@

1
Apn0jnVs

E ð1 j pEÞNjn0 ;

ð21Þ
where p(nsV) is the prior over nsV. For the uniform prior
(lower bound), this becomes

p n0kH1ð Þ ¼ 1

N

Xn0
nVs¼1

N j nVs

n0 j nVs

0
@

1
Apn0jnVs

E ð1 j pEÞNjn0 :

ð22Þ
For the matched-variance prior, we assume a normal
distribution:

pðn0kH1Þ ¼
Xn0
nVs¼1

NðnVs ; ns;Ans
2Þ

N j nVs

n0 j nVs

0
@

1
Apn0jnVs

E ð1 j pEÞNjn0 :

ð23Þ
where ns is the true signal level and Ans

2 is the empirical
variance in the signal level over a block.
Figure 12 shows how the three variations on the ideal

observer perform. We find that assuming a flat prior raises
the ideal threshold by 97% on average. Recall that human
thresholds are only 58% higher than the ideal once
correspondence errors, eccentricity, and orientation losses
are factored in. This provides strong evidence that human
observers have some prior knowledge of the signal level.

In contrast, a more reasonable matched-variance prior raises
the ideal threshold by only 16% on average. We thus
estimate that imperfect knowledge of the signal may account
for approximately 27% of the remaining information loss.

Other factors

Our results suggest that beyond correspondence errors,
eccentricity loss, and orientation loss, there are other
errors underlying oriented texture detection yet to be
understood. One possibility is response bias. However,
log-likelihood response biases averaged only 0.08, and
taking the biases into account raised ideal observer
thresholds by only 1% on average.
Another potential error is mutual modulations of

orientation signals arising from neighbouring elements in
an oriented texture (Verghese, 2001), during the process
of integrating local orientation signals into a global
percept. When an element is surrounded by many other
elements, orientation detection of that element may be
modulated by orientation signals from nearby elements. If
these modulations are not orientation-specific, they will
lower performance on the task but will not broaden the
approximately Gaussian tuning to the signal orientation
apparent in the classification image and, thus, will not be
taken into account by our model.
The sources of error we have modelled are determin-

istic, given the stimuli, but there are no doubt also random
sources of error caused by various kinds of internal noise.

Relation to prior work

Prior work on the detection and discrimination of
oriented texture patterns is generally based on the
measurement of psychophysical thresholds as a function
of stimulus parameters such as the spatial extent of the

Figure 12. Detection thresholds for three versions of the ideal observer with different levels of knowledge about the signal level (Prior
knowledge of signal level section). Thresholds for the matched-variance prior are averaged over 12 conditions (3 observers � 2 stimulus
types � 2 signal orientations). Error bars denote T1 SEM derived from these averages.
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texture and the variance of orientation noise added to the
elements (e.g., Beaudot & Mullen, 2006; Dakin, 1997,
2001; Wilson & Wilkinson, 1998). While we also measure
detection thresholds as a function of certain parameters
(stimulus type, signal orientation, number of orientations),
we use classification image analysis to identify parameters
for spatial integration and orientation tuning. This techni-
que has certain advantages. Fewer conditions are needed
for our method, since neither the spatial extent nor the
distribution of noise elements is varied. In addition, in the
standard psychophysical method, an implicit assumption
must be made that the spatial and orientation bandwidth
parameters of detection/discrimination mechanisms
remain invariant as the stimulus parameters change. This
assumption need not be made in our method, since the
spatial extent and orientation distributions remain the same.
Given the differences between the methods, it is

reassuring that prior studies yield similar estimates for
the falloff in sensitivity with eccentricity (Wilson &
Wilkinson, 1998) and orientation bandwidth (Blakemore

& Nachmias, 1971; Campbell & Kulikowski, 1966;
Dakin, 1997, 2001; Maloney et al., 1987; Phillips &
Wilson, 1984; Snowden, 1992) and that we see evidence
for the inverse oblique effect (Wilson et al., 2001).
One novel result is that, while we see broader spatial

integration for oblique patterns, as previously reported
(Wilson et al., 2001), we also see broader orientation
tuning for these patterns, as predicted by the classical
oblique effect. While the latter effect would predict lower
performance for oblique patterns, our analysis of the
information losses entailed by subideal spatial and
orientation tuning reveals that these losses put over-
whelming constraints on spatial integration that limit
processing of oriented textures. Thus, the inverse oblique
effect dominates the classical oblique effect in the global
processing of oriented textures.
Prior modelling work on the discrimination of oriented

texture patterns has yielded estimates of (late) internal
orientation noise and the effective number of independent
orientation samples on which discrimination is based

Figure 13. The role of eccentricity and orientation filtering in Glass pattern detection. For illustration purposes only, we set the contrast of
each dipole to match its estimated perceptual weight in determining the detection response. (a) Horizontal Glass pattern with 27% signal
level, the average detection threshold over observers for this condition. The same Glass patterns attenuated in contrast for (b) eccentricity
filtering only, (c) orientation filtering only, and (d) both eccentricity and orientation filtering. The eccentricity space constant of 0.81 deg and
orientation bandwidth of 10.2 deg represent the means of estimates over observers, derived from our classification image analysis
(Classification image analysis section) for horizontal Glass patterns.
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(Dakin, 2001). While we model orientation selectivity as
deterministic, our data do not, in fact, distinguish between
this form of sampling inefficiency and internal orientation
noise, although an additional double-pass experiment
(Burgess & Colborne, 1988) could, in principle, distin-
guish the two.
More recent work has focused on possibly non-linear

centre–surround normalization mechanisms that may play
a role (Beaudot & Mullen, 2006). Our results do not speak
directly to this. Instead, we have tried to construct models
derived from the ideal that make as few assumptions as
possible, in order to establish a firmer bound on the
efficiency of oriented texture detection, taking into
account measured losses due to correspondence error and
limits on spatial integration and orientation acuity. We
arrive at the result that, when taking these known losses
into account, human thresholds are only 58% higher than
the ideal. Any additional losses, for example, due to local
normalization mechanisms, should respect this bound.

Visualizing information loss

Figure 13 provides a visualization of the effects of
eccentricity and orientation losses. A sample signal-
present stimulus near human threshold is shown. For
illustration purposes only, we selectively attenuated the
contrast of each dipole to match its estimated perceptual
weight in determining the detection response, reflecting
eccentricity and orientation losses. It is striking how little
of the stimulus determines human judgments when both
sources of information loss are taken into account.
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