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Many mathematically similar models are being used by business researchers to link 
binary dependent variables with a set of predictor variables. Typical research results 
indicate little difference between models in their ability to properly classify obser- 
vations. But, there appear to be major differences in the interpretation of coeffi- 
cients resulting from the calibration of these competing models. 

The empirical results in this article clearly show that when the assumptions 
underlying binary-dependent-variable techniques are violated, parameter estimates 
may be misleading. This can be true even when the goodness-of-fit statistics are 
not substantially affected. 

Introduction 

Business researchers in several areas are concerned with estimating models with 
binary dependent variables. Binary dependent variables arise most often in clas- 
sification problems. The typical classification problem in business requires the re- 
searcher to predict, from a set of independent variables, in which category a stimuli 
belongs. These nominal, dependent categories could be competing brands of a 
product or service [30], competing modes of travel [5], creditworthiness [33], labor- 
force participation [ 131, or financial solvency [ 14, 401. 

The need to predict category or group membership is a common problem to 
almost all types of business researchers. In this context, many researchers have 
tried a wide variety of estimation methods to link independent variables with 
nominal dependent variables. Some researchers have found that a range of alter- 
native techniques produce similar abilities to classify observations correctly [13, 
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35, 381. Others have favored a logit approach [22, 23, 28, 291. Finally, other 
researchers [ll, 371 have found the probit model to be superior. 

Although the classification problem has been thoroughly researched and re- 
ported, the properties and interpretation of parameter coefficients has not. There 
appears to be an ongoing disagreement as to the importance of the effects of 
technique-assumption violations on parameter estimation [34, 17, 91. However, a 
preponderance of empirical and theoretical evidence has been compiled by econ- 
ometricians [18, 231, market researchers [19], and psychometricians [36, 391 that 
indicates that researchers need to pay close attention to violations in the assump- 
tions underlying statistical models. 

Ingram and Frazier [14] highlight the extent of coefficient variability between 
these alternative estimation techniques: “The results indicate that while there were 
only small differences in the classifying accuracy of the three approaches, substan- 
tially different (even opposite) conclusions were supported regarding the signifi- 
cance of the individual variables.” If these conclusions are correct, then the choice 
of estimation model is crucial for hypothesis testing and statistical inference. 

The problem of coefficient variability in linear regression has long been a concern 
of econometricians. Econometricians have identified several data-specific problems 
that affect coefficient interpretation and have proposed a set of numeric solutions 
to these problems [2]. Each of the data-specific problems commonly encountered 
in econometric problems results in a violation of the underlying assumptions of the 
linear- regression model. In these problem situations, the regression coefficients 
are no longer best, linear, unbiased estimators (BLUE). 

Zmijewski [40] has examined the estimation biases that result from nonrandom 
samples. This article is an extention of this examination. The effects are explored 
of certain commonly encountered assumption violations on five popular techniques 
used with binary dependent variables. Examined in this article are the effects of 
three assumption violations: 

1. Unequal group variance-covariance matrices 
2. Nonnormal joint distribution of the independent variables 
3. Multicollinearity of the independent variables 

on five estimation techniques: 

1. Linear Discriminant Analysis (LDA) 
2. Binary Logit Analysis 
3. Ordinary Least Squares (OLS) 
4. Binary Probit Analysis 
5. Quadratic Discriminant Analysis (QDA) 

A simulation approach is explored to control and clearly demonstrate the effects 
of assumption violations on each technique. Using actual corporate bankruptcy 
data, the prevalence of these assumption violations are shown, and their effects 
on the interpretation of empirical results are described. The results indicate that 
the simultaneous existence of both nonnormally distributed and highly collinear 
predictor variables can result in estimation differences across these techniques. 
Thus, researchers should attempt to transform data so that these characteristics 
are not present when estimating such models. 
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Conceptual Discussion 

The choice of the appropriate technique to estimate models with binary dependent 
variables depends upon the characteristics of the data. Each technique has a set 
of underlying assumptions that must not be violated by the data for the appropriate 
estimation and testing of the model parameters. A summary of the major underlying 
assumptions of the five techniques appears in Table 1. If the assumptions in Table 
1 are not violated, all five techniques will provide qualitatively equivalent estimates 
of the model [18]. However, violations of one or more of these assumptions can 
result in significant differences across techniques. 

Fisher [6] demonstrated that a direct analogy exists between two-group LDA 
and the special case (linear-probability model) of OLS: The regression estimates 
are proportional to the LDA “weights” by a factor of SSEI(n, + n2 + 2); where 
SSE is the sum of the squared residuals and n,, n2 are the sample sizes of each 
group. However, due to the problem of heteroscedasticity in the regression resid- 
uals, the OLS estimates are inefficient unless a generalized least-squares approach 
is used [18]. The equivalence of LDA, logit analysis, and OLS has been demon- 
strated under specific conditions [24]. 

OLS estimates should be approximately one-fourth as large (in absolute value) 
as the logit coefficients (with the exception of the intercept) [l]. Similar empirical 
equivalences can also be obtained for the binary probit model. The major difference 
between the logit and probit models is the assumption regarding the error distri- 
bution: the logit model assumes a skewed Weibull distribution as compared to 
probit’s symmetric normal-distribution assumption. The parameters from the logit 
model can be compared to the probit estimates after a correction is made for the 
difference in the variances between the two distributions. Since the logistic distri- 
bution has a fixed variance of 3/7r2, and the probit model uses a standard normal 
distribution, the logit estimates multiplied by a factor of V&r are comparable to 
the probit estimates [l]. The logit and probit forms are similar with minor differ- 
ences being found in the tails of these distributions [19]. 

The discussion indicates that these techniques should provide qualitatively equiv- 
alent empirical results. However, authors [14] who compared LDA, logit, and 
probit empirically, did not find equivalent results. In fact, many of the coefficients 
reported have statistically significant positive estimates using one technique and 
statistically significant negative coefficients using another technique. The most likely 
explanation for these results is that some of the underlying assumptions are violated 
for at least one of the techniques they examine. 

LDA assumes 1) the predictor variables are distributed multivariate normal and 
2) the distribution of predictors across groups differ only by a shift in means, that 
is, they have identical variance-covariance matrices. If these conditions are satis- 
fied, and if the population frequency rates for both groups are known, then LDA 
provides the optimal classification rule and the discriminant weights are the true 
maximum-likelihood estimates (MLE) of the discriminant function. Otherwise, 
these estimates are neither efficient nor consistent. On the other hand, the MLE 
that are obtained either through the binary-logit or probit models are consistent 
even if these conditions do not prevail [18]. The robustness of LDA has received 
the attention of many researchers (see [16] for a comprehensive review). 

When the covariance matrices of the distribution of predictors for the two groups 
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are unequal, QDA provides the optimal classification rule. A special case was 
examined [lo] in which the covariance matrix for one group is the identity matrix 
(2, = I), and the second group has a covariance matrix proportional to the first 
(C, = m). Several conditions were considered [lo] by varying the distance between 
groups, the relative size of the groups, and the proportionality factor, d. The results 
indicate that QDA provides superior results as d increases and as the difference 
between groups decreases. Marks and Dunn [21] showed that QDA results are 
substantially poorer than LDA’s for small samples. 

Violations of the normality assumption have been studied at two levels; discrete 
distributions and continuous but nonnormal distributions. Some researchers [ 161 
show that LDA performs reasonably well for predictors with a discrete distribution. 
Regarding continuous nonnormal distributions, fewer studies appear in the liter- 
ature. Lachenbruch, Sreeringer, and Revo [16] considered three distributions ob- 
tained from transformations of normal variates. Their results showed a poor 
performance of both LDA and QDA in contrast with the reasonable performance 
of these models with discrete distributions. Although there is no multivariate dis- 
tributional assumption for the predictor underlying logit and probit analysis, strict 
error-term distributional assumptions underlie these techniques. 

Another important issue in the specification of a discriminant function is the 
problem of multicollinearity among predictors (i.e., nondiagonal covariance mat- 
rices). Multicollinearity produces effects in the discriminant-analysis context that 
might seem counterintuitive to the econometrician [3]. Let p2 be the distances 
between two groups on predictors x, and x2. The collinearity between x, and x2 
will improve discrimination (as compared with the independent case) if, 

(D, - r&)*/(1 - +o; 

Hence, the fact that two predictors are correlated might improve discrimination. 
In fact, a negative correlation between x1 and x2 will always improve discrimination 
over the independent case [12]. Logit, OLS, and probit analyses, on the other 
hand, are all affected by collinearity in a similar manner. That is, the parameter 
estimates are unbiased but inefficient, and the statistical significance of individual 
coefficients cannot be determined separately. 

The relative advantage of one statistical technique over others seems to depend 
on the conditions (i.e., characteristics of the data) under which these methods are 
applied, and to the extent that these conditions violate the assumptions underlying 
each technique. This issue is examined empirically; first by using simulated data 
and then by using actual data. 

Empirical Comparisons Based on Simulated Data 

Two sets of simulations are conducted. Both simulations estimate the same un- 
derlying model. 

Yi = F(xli, x2i) (2) 

where 
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Yi = 1 if observation i is a member of group A and 0 if observation i is a 
member of group B, 

F(e) = the functional relationship between y and x1 and x2, 

xii = predictor variable 1 for observation i, and 

k?i = predictor variable 2 for observation i. 

The simulations differ primarily in the multivariate distribution of the predictor 
variables. In the first set of simulations, the predictor variables are bivariate nor- 
mals. The predictor variables are distributed log-normally in the second set of 
simulations. 

In the first set of simulations (the bivariate normal simulations), group A pre- 
dictors (x1, x2) have a standard bivariate normal distribution (i.e., both predictors 
have means equal to 0.0 and variances equal to 1.0) and a correlation coefficient 
(rX,X2 (A)) of either 0.0 or 0.9, depending on the cgmbination of attributes that are 
examined. Group B predictors have means of x,(B) = 1.0 and x2(B) = .05, 
variances of Sz, (B) = 1.0 or 4.0 and Sz, (B) = 1.0, and a correlation coefficient 

(r,,,, (B)) of 0.0 or 0.9, depending on the combination of attributes that are ex- 
amined. By varying S,2,(B), r,,,,(A), and r,.,,,(B), we examine the effect of unequal 

covariances and multicollinearity on these techniques to demonstrate potential 
empirical differences. 

An estimation sample and a prediction sample containing 600 observations (300 
observations in each group), are used to compare the five statistical techniques 
across six combinations of the sample attributes: (r,,,,(A) = 0.0, 0.9; Sz’, (B) = 

1.0, 4.0; rxlx2(B)=0.0, 0.9). Each of these samples was randomly generated and 
are denoted as simulations 1.1 through 1.6. The results of these simulations are 
presented in Table 2. Panel A of Table 2 describes the combination of sample 
attributes for each of the simulations. Simulation 1.1 is the case where the data 
are multivariate normal, the groups have equal variances and covariances, and the 
predictors are uncorrelated (i.e., no assumptions are violated). Simulation 1.2 is 
the case where the group covariances are unequal. Simulations 1.3 and 1.4 do not 
violate the multivariate normality or equal assumptions, but the predictor variables 
are correlated in one (simulation 1.3) or both (simulation 1.4) groups. Finally, 
simulations 1.5 and 1.6 violate the covariance matrix-equality assumption and have 
correlated predictor variables in one (simulation 1.5) or both (simulation 1.6) 
groups. 

Panel B of Table 2 includes the estimated coefficients for LDA, Logit, OLS, 
and Probit. While there exist differences in the parameter estimates, these differ- 
ences are consistent with the estimation differences we discussed in Section 2. The 
last row in Panel B shows the ratio of the coefficient for x, to the coefficient for 
x,. Since the parameter estimates across techniques are comparable using linear 
transformations, the ratios of the parameters can be used for comparing techniques. 
These results indicate that there is no substantial difference in these ratios across 
statistical techniques and hence, the parameter estimates are as expected from the 
conceptual discussion above. 

Panels C and D of Table 2 report the percentage of observations that are classified 
correctly for the estimation sample and predicted correctly for the prediction sam- 
ple. Qualitatively, Panels C and D provide equivalent results, hence, only the 
classification results are discussed. Comparing simulations 1.1 to 1.2 indicates that 
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Table 2. LDA, Logit, OLS, Probit, and QDA Comparisons: Simulated, Normally 
Distributed Data 

55 

Panel A: Sample Attributes 

2 PI 
rxl [A] 
rxlx2 [B] 
x1x2 

Intercept: 
LDA 
Logit 
OLS 
Probit 
QDA 

Coefficient for xl: 
LDA 
Logit 
OLS 
Probit 
QDA 

Coefficient for x2: 
LDA 
Logit 
OLS 
Probit 
QDA 

b[xl]lb[x2]: 
LDA2 
Logit 
OLS 
Probit 
QDA 

Group A: 
LDA 
Logit 
OLS 
Probit 
QDA 

Group B: 
LDA 
Logit 
OLS 
Probit 
QDA 

Total: 
LDA 
Logit 
OLS 
Probit 
QDA 

1.1 1.6 

1.0 
0.0 
0.0 

Simulation 
1.2 1.3 1.4 1.5 

4.0 1.0 1.0 4.0 
0.0 0.9 0.9 0.9 
0.0 0.0 0.9 0.0 

Panel B: Estimated Parameters 

4.0 
0.9 
0.9 

-0.59 -0.33 -0.52 -0.69 -0.31 -0.28 
-0.70” -0.21” -0.56 -0.96” -0.19” -0.16” 
0.35 0.44 0.38 0.31 0.45 0.47 

-0.41” -0.12” -0.33” -0.57” -0. 1z -0.10” 
n.a. n.a. n.a. n.a. n.a. n.a. 

0.90 0.21 0.95 2.13 0.18 -0.06 
1.06” 0.14” 1.00” 2.95 0.11” -0.04 
0.22” 0.03” 0.21’ 0.56’ 0.03” -0.01 
0.63” o.og 0.W 1.75” 0.07” -0.02 
n.a. n.a. n.a. n.a. n.a. n.a. 

0.48 0.82 0.10 -1.57 0.82 1.15 
0.57” 0.5P 0.12 -2.17” 0.50” 0.63“ 
0.12” 0.12” 0.03 -0.41” 0.12” 0.15” 
0.34” 0.33” 0.07 -1.29” 0.31” 0.39” 
n.a. n.a. n.a. n.a. n.a. n.a. 

1.87 0.25 9.60 -1.36 0.22 -0.05 
1.86 0.26 8.65 -1.36 0.22 -0.06 
1.84 0.27 8.00 -1.37 0.22 -0.05 
1.88 0.26 9.20 -1.36 0.22 -0.05 
n.a. n.a. n.a. n.a. n.a. n.a. 

Panel C: Classifications 

73% 64% 70% 74% 62% 
72% 64% 70% 74% 62% 
n.a. n.a. n.a. n.a. n.a. 
72% 63% 70% 74% 62% 
73% 76% 69% 74% 69% 

59% 
59% 
n.a. 

52% 

71% 62% 69% 77% 62% 
71% 62% 69% 77% 62% 
n.a. n.a. n.a. n.a. n.a. 
71% 62% 69% 77% 62% 
70% 52% 70% 77% 56% 

61% 
61% 
n.a. 
61% 

72% 
72% 
n.a. 
72% 
72% 

63% 70% 75% 62% 
63% 70% 75% 62% 
n.a. n.a. n.a. n.a. 
63% 70% 75% 62% 
64% 69% 75% 62% 

60% 
60% 
n.a. 
60% 
59% 
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Table 2. continued 

Panel D: Predictions 
Group A: 

LDA 
Logit 
OLS 
Probit 
QDA 

Group B: 
LDA 
Logit 
OLS 
Probit 
QDA 

Total: 
LDA 
Logit 
OLS 
Probit 
QDA 

76% 
76% 
n.a. 
76% 
76% 

73% 
73% 
n.a. 
74% 
72% 

75% 
75% 
ma. 
75% 
74% 

64% 72% 
64% 72% 
n.a. n.a. 
63% 72% 
79% 72% 

61% 
62% 
n.a. 
63% 
47% 

70% 
70% 
n.a. 
70% 
70% 

63% 
63% 
n.a. 
63% 
63% 

71% 
71% 
n.a. 
71% 
71% 

73% 
74% 
n.a. 
73% 
73% 

77% 
76% 
n.a. 
77% 
77% 

75% 
75% 
n.a. 
75% 
75% 

65% 
65% 
n.a. 
65% 
73% 

60% 
60% 
n.a. 
61% 
54% 

63% 
62% 
n.a. 
63% 
64% 

63% 
63% 
n.a. 
63% 
58% 

59% 
59% 
n.a. 
59% 
67% 

61% 
61% 
n.a. 
61% 
62% 

“Significant at the 95% confidence interval. 
Significant tests for LDA are not reported. 

8,(J) = the variance of predictor x(l) m group J (J = A, B), all other variances are fixed. 

‘X&V) = the correlation coefficient between x(l) and x(2) in group I (I = A, E). 

LDA = Linear Discriminant Analysis. 
QDA = Quadratic Discriminant Analysis. 
OLS = Ordinary Least Squares. Criteria coded (0 or 1) based upon group membership. 
n.a. = not applicable. 

unequal covariances diminishes the predictive ability of all techniques. Compar- 
simulations 1.1 to 1.4 and 1.2 to 1.6 indicates that collinearity among the pre- 
or variables can either increase or decrease predictive ability, depending on 
the direction of the inequality that appears in Equation (1). When 
(&- rD$/(l -?)>D,, then predictive ability is increased; if the inequality is 
reversed, then predictive ability is decreased. For example, in simulation 1.4 
(D*-rD,)V(l-2) = .84 and 0: = .25, thus, we would expect collinearity to 
improve discrimination. In simulation 1.6, on the other hand, (D,-rD$I(l-?) 

0.13 and 0: = .25, thus, we expect collinearity to reduce the discriminatory 
&we,. This effect is demonstrated in Table 2 for both the classifications and 
predictions. However, note that the data characteristics (e.g., predictor-variable 
correlations) in the classification and prediction samples are always identical. This 
may not be the case when using actual data and hence, similar results may not be 
observed in both classification and prediction samples. 

The important conclusion from these analyses is that the five statistical techniques 
provide equivalent results empirically if: 1) the data do not violate any of the 
underlying assumptions, 2) the group covariance matrices are unequal, and/or 3) 
the predictor variables are collinear. Thus, the simulation tests so far are not able 
to explain the empirical differences previously reported across these techniques 

P41. 
The second set of simulations, 2.1 through 2.6, are analogous to the fist set of 

simulations (1.1 through 1.6) with one exception; the predictor variables are trans- 
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Table 3. LDA, Logit, OLS, Probit, and QDA Comparisons: Simulated, Log-Normally 
Distributed Data 

Panel A: Sample Attributes 

2 PI 
1x1 [A] 
rxlx2 [B] 
x1x2 

Intercept: 
LDA 
Logit 
OLS 
Probit 
QDA 

Coefficient for xl: 
LDA 
Logit 
OLS 
Probit 
QDA 

Coefficient for x2: 
LDA 
Logit 
OLS 
Probit 
QDA 

b[xl]/b[x2]: 
LDA 
Logit 
OLS 
Probit 
QDA 

Group A: 
LDA 
Logit 
OLS 
Probit 
QDA 

Group B: 
LDA 
Logit 
OLS 
Probit 
QDA 

Total: 
LDA 
Logit 
OLS 
Probit 
QDA 

2.1 

1.0 
0.0 
0.0 

Simulation 
2.2 2.3 2.4 2.5 

1.5 1.0 1.0 1.5 
0.0 0.9 0.9 0.9 
0.0 0.0 0.9 0.0 

Panel B: Estimated Parameters 

2.6 

1.5 
0.9 
0.9 

-1.04 -0.83 -0.98 -0.48 -0.83 -0.41 
-1.41* -1.25* -1.17’ -0.89* -1.06* -0.41* 

0.22 0.30 0.23 0.34 0.31 0.42 
-0.81* -0.74* -0.64* -0.51* -0.59’ -0.24: 

n.a. n.a. n.a. n.a. n.a. n.a. 

0.18 0.05 0.18 0.37 0.05 0.06 
0.40” 0.30* 0.37* 1.13’ 0.27’ o.s2* 
0.07* 0.02* 0.07’ 0.16* 0.02* 0.03* 
0.22* 0.17* 0.19* 0.59* 0.15’ 0.48 
na. n.a. n.a. n.a. n.a. n.a. 

0.22 0.27 0.20 -0.32 0.28 0.04 
0.20* 0.20* 0.13* -0.97* 0.15* -0.95* 
0.05* 0.05* 0.04’ -0.13’ 0.05. -0.02 
0.12* 0.12’ 0.05* -0.51* 0.07* -0.57* 
na. n.a. n.a. na. n.a. n.a. 

0.85 0.19 0.90 -1.15 0.16 1.28 
1.98 1.46 2.94 -1.17 1.83 -0.86 
1.47 0.46 1.67 -1.20 0.44 -1.38 
1.81 1.44 3.88 -1.16 2.27 -0.84 
na. na. n.a. na. n.a. n.a. 

Panel C: Classifications 

86% 85% 85% 
82% 84% 82% 
n.a. n.a. n.a. 
83% 85% 83% 
93% 92% 91% 

92% 83% 
84% 85% 

s”;; 5; 
94% 92% 

94% 
88% 
n.a. 
88% 
97% 

53% 46% 
60% 54% 
n.a. n.a. 
57% 54% 
38% 28% 

52% 
57% 

5”;; 
35% 

46% 46% 
62% 54% 
n.a. n.a. 
58% 52% 
38% 28% 

36% 
52% 
n.a. 

69% 
71% 

7”d; 
66% 

65% 
69% 
n.a. 
70% 

69% 
69% 

;; 

69% 
73% 
n.a. 
72% 

65% 
70% 

6z 
60% 63% 66% 60% 

65% 
70% 
na. 
70% 
64% 
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Table 3. continued 

Group A: 

LDA 

Logit 

OLS 
Probit 

QDA 
Group B: 

LDA 

Logit 

OLS 

Probit 

QDA 
Total: 

LDA 

Logit 

OLS 

Probit 

QDA 

Panel D: Predictions 

84% 84% 84% 95% 84% 92% 
81% 83% 82% 85% 83% 91% 
n.a. ma. n.a. n.a. n.a. n.a. 
81% 83% 83% 88% 85% 91% 
91% 92% 90% 94% 91% 95% 

48% 45% 48% 44% 45% 31% 
57% 53% 57% 60% 53% 51% 
n.a. n.a. n.a. n.a. n.a. n.a. 

56% 53% 54% 58% 50% 50% 
39% 32% 36% 37% 32% 27% 

66% 65% 66% 69% 65% 62% 
69% 68% 70% 73% 68% 71% 
n.a. n.a. n.a. ma. n.a. n.a. 
68% 68% 69% 73% 68% 71% 

65% 62% 63% 66% 62% 61% 

formed so that they are log-normally distributed. The results of these simulations 
are reported in Table 3 and indicate some differences across estimation techniques. 
First, the simulation with unequal covariance matrices and collinear data (simu- 
lation 2.6) has coefficients (Panel B of Table 3) of different signs for predictor 
variable x2. The ratios of the coefficients (see the last set of rows in Panel B) also 
indicate differences across estimation techniques. Second, the discriminant models 
(LDA and QDA) tend to have less predictive ability, especially for group B. 

These results provide a possible explanation for previous results [ 141 and identify 
a set of conditions of which researchers should be aware. The techniques researchers 
commonly use to estimate models with binary dependent variables can result in 
different statistical inferences and classifications if the predictor variables are not 
normally distributed and the data are highly collinear. Thus, researchers should 
be aware of these problems when estimating such models since many predictor 
variables used in research are not normally distributed and are often collinear (e.g., 
security prices, security returns, and financial ratios). Actual data are examined 
next that are not normally distributed and are highly collinear to determine if the 
same results are observed using actual data and also to determine if eliminating 
the collinearity can ameliorate this problem. 

Empirical Comparisons Based on Actual Data 

The empirical comparison reported is based upon a bankruptcy-prediction model 
similar to the numerous such models appearing in the literature. The empirical 
investigation was designed to complement the simulation studies. The simulations 
examined only two predictor variables. This empirical study includes a greater 
number of predictors. Two alternative models are used as a basis for the tests; one 
model consists of nine variables (some of which are highly correlated) and the 
other consists of three orthogonalized factors. A comparison between these two 
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models provides some insights as to the effects of multicollinearity on these tech- 
niques using financial ratios as predictor variables (which we know are not normally 
distributed [7]). The sample used in this analysis came from the following sources: 
For bankrupt firms, 10K reports were available over the 1972 to 1978 time period 
under study including the last report filed with SEC before the filing of the bank- 
ruptcy petition (found in the Cornell University 10K collection). A total of 129 
firms have filed petitions for bankruptcy. Complete data are available for 72 of the 
firms. The sample of nonbankrupt firms consisted of all firms that are contained 
on the 1979 COMPUSTAT Annual Industrial Tape and have complete data over 
this period. A total of 3,573 firms were included in the nonbankrupt sample. 

The first model contains three sets of highly correlated variables, each attempting 
to measure a particular financial characteristic: liquidity, financial leverage, and 
rate of return. (See Table 4 for a description of these variables). Descriptive 
statistics and a correlation matrix for these variables are reported in Table 4. An 
examination of the groups’ means (see Panel A, Table 4) indicates that the bankrupt 
firm sample has, on average, lower liquidity measures, higher levels of financial 
leverage, and lower rates of return. The correlations matrix (see Panel B, Table 
4) indicates that the variables are highly correlated within the three financial char- 
acteristic measures. Thus, the construction of this model induces problems of severe 
multicollinearity. 

The results from estimation for the five statistical techniques are reported in 
Table 5. All five estimations indicate that the overall model is statistically significant. 
An examination of the individual coefficients indicates the potential existence of 
multicollinearity, (i.e., the various measures of the financial characteristics have 
different signs with some (but not all) coefficients significantly different from zero). 
An F ratio testing the null hypothesis of group variance-covariance matrix equality 
is 68.905 with 45 and 56,113 degrees of freedom. This value rejects the null hy- 
pothesis at less than the .OOl level. Thus, the LDA assumptions are violated and 
the QDA is more appropriate. 

An examination of the coefficients across methodologies indicates similar results 
to those reported previously [14]. Both the signs of the coefficients and the statistical 
inferences across methodologies are inconsistent. Examing the percentage of firms 
classified correctly across methodologies indicates that, overall, the techniques 
appear to classify firms equally well. However, there are some differences within 
individual groups. LDA appears better at classifying nonbankrupt firms, but it does 
not have an overall correct classification rate significantly different from the other 
techniques. 

In an attempt to eliminate the potential problem of multicollinearity, another 
model was tested that consists of three orthogonalized factors. The nine variables 
from the above model are factor analyzed and factor scores are computed for each 
observation. As one would expect, the three sets of variables (liquidity, financial 
leverage, and rate of return) “loaded” almost uniquely on the first three factors. 
The first three factors explain 93% of the total variance, with the rate-of-return 
factor explaining 44%, the liquidity factor 33%, and the financial-leverage factor 
16%. The remaining six factors have little ability to explain any of the remaining 
variance. These first three factors, which are orthogonal by design, are used to 
formulate the factor-score (orthogonal) model. 

The estimation results using the alternative methodologies for the factor-score 
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Table 4. Variables for Comparing Statistical Techniques on Actual Data: Descriptive 
Statistics and Correlation Coefficients 

Panel A: Descriptive Analysis 

Variables 

Bankrupt Nonbankrupt 

Standard Standard 

Mean Deviation Mean Deviation 

Overall 

Standard 

Mean Deviation 

Liquidity 

1. CAtoCL’ 

2. CASH to CL 

3. (CA-INV) to CL 

Financial Leverage 

4. ID to TA 

5. (TD+PD) to TA 

6. LTD to TA 

Rate of Return 

7. NI to TA 

8. CFtoTA 

9. EBIT to TA 

Panel B: Correlations 

Variables 

Liquidity 

1. CAtoCL4 

2. CASH to CL 

3. (CA-INV) to CL 

Financial Leverage 

4. TD to TA 

5. (TD+PS) to TA 

6. LTDtoTA 

Rate of Return 

7. NI to TA 

8. CF to TA 

9. EBIT to TA 

1.87 21.97 2.84 24.42 2.82 24.13 
.12 20.34 .84 23.98 .82 23.69 
.99 6.45 1.64 18.41 1.63 18.19 

.90 .67 .48 .16 .49 .20 

.90 .67 .49 .17 SO .21 

.33 .25 .21 .14 .23 .14 

-.16 .29 .05 .07 .05 .09 

-.lO .35 .16 .06 .15 .12 

-.13 .36 .12 .lO .12 .12 

1 2 3 4 5 6 7 8 9 
--------- 

1.08 1.00 1.00 -.06 -.06 -.02 .04 .Ol .04 
1.00 1.00 -.04 -.04 -.02 .03 .Ol .03 

1.00 -.06 -.06 -.02 .04 .Ol .04 

1.00 -.99 .55 -.48 -.45 -.47 

1.00 .56 -.49 -.45 -.47 

1.00 -.27 -.23 -.26 

1.00 .94 .% 

1.00 .98 

1.00 

“CA = current assets. 
CL = current liabilities. 
CASH = cash plus marketable securities. 
INV = inventory. 
TD = total debt. 
TA = total assets. 
PS = preferred stock. 
LTD = long-term debt. 
NI = net income. 
CF = cash flow. 
EBIT = earnings before interest and taxes 

model are reported in Table 6. The overall model is statistically significant across 
all techniques. The F ratio testing the null hypothesis of group variance-covariance 
matrix equality is 237.44 with 6 and 93,968 degrees of freedom again rejecting the 
null hypothesis (of equality) at less than .OOl level. However, contrary to previous 
results [14], the signs of the coefficients and the statistical inferences are consistent 
across all estimation techniques. The alternative methodologies appear to classify 
firms equally well, and LDA better classified the nonbankrupt firms, but it does 
not classify the total sample better than any other technique. 
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Table 5. LDA, Logit, OLS, Probit, and QDA Comparisons: Nine Variable Model- 
Actual Data 

LDAb QDA’ Logit Probit OLS 

Liquidity 

1. CAtoCr 

2. CASH to CL 

3. (CA-INV) to CL 

Financial Leverage 

4. ID to TA 

5. (TD+PS) to TA 

6. LTD to TA 

Rate of Return 

7. NI to TA 

8. CFtoTA 

9. EBIT to TA 

Constant 

_,14a=4 .28 .02 -.lHJ 
_.14a=7 -1.89 -1.15’ -.W 

.38a=’ .08 .23 .Olh 

20.3SR=s 16.86 4.65s .N 
-11.36a=s -8.74s -1.54 -.22f 

-3.69a=’ -.84 -.43 -.07f 

-33.72R=6 25.99.‘ 8.22 -.66J 
-13.57R=2 -17.8Sh -8.34g -.27g 

20.51R=’ -14.52’ -2.75 .4of 

-6.43 -3.97’ -2.94’ -.02” 

F ratio 71.65’ 

-2x log of Likelihood - 

Ratio’ 

R-Squared - 

71.65’ - - 
- 154.81’ 318.64’ 

- .26 .20 .17 

Percent Correctly Classified: 

Bankrupt 

Nonbankrupt 

Overall 

48 34 38 40 

99 99 99 99 
98 98 98 98 

71.67’ 
- 

- 

“CA = current assets. 
CL = current liabilities. 
CASH = cash plus marketable securities. 
INV = inventory. 
TD = total debt. 
TA = total assets. 
PS = preferred stock. 
LTD = long-term debt. 
NI = net income. 
CF = cash flow. 
EBIT = earnings before interest and taxes. 

bR = rank as estimated via the conditional deletion procedure - see Karson and Martell (1980). 
‘QDA = quadratic equation results (54 parameters) are not reported. 
“A small sample of nonbankrupt firms was used because the likelihood function would not converge with the 

entire data set. 
‘Distributed as a chi-square with 9 degrees of freedom. 
‘Significant at less than the .Ol level. 
gSigniticant at less than the .05 level. 
%ignificant at less than the .lO level. 

Summary and Conclusions 

It is clear from the results that the choice of statistical technique should be data 
dependent. Table 7 and Table 8 present a summary of data conditions and technique 
performance. Statisticians have often reminded social scientists of the need for 
identification of the properties of the data prior to selection of an estimation 
technique [4, 26, 311. 

Each technique numerically calibrates a model that is based upon a set of as- 
sumptions about the data. Violations of these underlying assumptions cause esti- 
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Table 6. LDA, Logit, OLS, Probit, and QDA Comparisons: Three Orthogonal Factor 
Model-Actual Data 

LDA” QDAb Logit Probit OLS 

1. Liquidity 
2. Rate of return 
3. Financial leverage 

Constant 

-.03R=’ R=3 .02 .Ol .oo 
-2.2aR=’ R=l -1.15 -.4Y -.05 

1.91R=* R=2 1.27’ .57’ .w 
-3.55 -4.8W -2.44’ -.02’ 

F ratio 186.36 186.36 - - 186.37 
-2x Log of Likelihood - - 264.88 266.84 - 

Ratio“ 
R-squared - - .26 .21 .15 

Percent Correctly Classified: 
Bankrupt 48 34 48 38 
Nonbankrupt 99 99 99 99 
Overall 98 98 98 98 

“R = rank as estimated via the conditional deletion procedure - see Paksoy et. al. (1977). 
bQDA = quadratic equation results (9 parameters) are not reported. 
‘Significant at the .Ol level. 
dDistributed as a chi-square with 3 degrees of freedom. 

- 
- 
- 

Table 7. Data Conditions and Technique Performance 

Criteria 

Predictor Characteristics 
Group Data 

Distribution Means Variances Correlations Covariances Condition 

Group 1 
Group 2 

Group 1 
Group 2 

Group 1 
Group 2 

Group 1 
Group 2 

Group 1 
Group 2 

Group 1 
Group 2 

Data 
Condition 

Normal 
Normal 

Normal 
Normal 

Normal 
Normal 

Normal 
Normal 

Normal 
Normal 

Normal 
Normal 

Coefficient 
Size 

Equal Equal Orthogonal 
Unequal Equal Orthogonal 

Equal Equal Orthogonal 
Unequal Unequal Orthogonal 

Equal Equal Collinear 
Unequal Equal Orthogonal 

Equal Equal Collinear 
Unequal Equal Collinear 

Equal Equal Collinear 
Unequal Unequal Orthogonal 

Equal Equal Collinear 
Unequal Unequal Collinear 

Equal 1 

Equal 2 

Unequal 3 

Equal 4 

Unequal 5 

Equal 6 

Ratio 
Signs 

Techniques That Performed Best: 
Correct Correct 
Classifications Predictions 

1 All same 
2 All same 
3 All same 
4 All same 
5 All same 
6 All same 

Au(+) 
Ail (+) 
All (+) 

Au (-) 
AJJ (+) 
All (-) 

All equal 
QDA 
All equal 
All equal 
AU equal 
LDA, Logit, Probit 

LDA, Logit, Probit 
All equal 
All equal 
All equal 
QDA 
QDA 
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Table 8. Data Conditions and Estimation Technique Performance 

Predictor Characteristics 
Group Data 

Criteria 

Group 1 
Group 2 

Group 1 
Group 2 

Group 1 
Group 2 

Group 1 

Group 2 

Group 1 

Group 2 

Group 1 
Group 2 

Distribution Means Variances Correlations Covariance Condition 

Log-normal Equal Equal Orthogonal Equal 1 

Log-normal Unequal Equal Orthogonal 

Log-normal Equal Equal Orthogonal Equal 2 

Log-normal Unequal Unequal Orthogonal 

Logt-normal Equal Equal Collinear Unequal 3 

Log-normal Unequal Equal Orthogonal 

Log-normal Equal Equal Collinear Equal 4 

Log-normal Unequal Equal Collinear 

Log-normal Equal Equal Collinear Unequal 5 

Log-normal Unequal Unequal Orthogonal 

Log-normal Equal Equal Collinear Equal 6 

Log-normal Unequal Unequal Collinear 

Data Coefficient 

Condition Size 

1 Varies 

2 Varies 
3 Varies 
4 Varies 

5 Varies 
6 Varies 

Ratio 

Signs 

All (+) 
All (+) 

All (+) 
All (-) 

All (+) 
Varies 

Techniques That Performed Best On: 
Correct Correct 

Classifications Predictions 

Logit & Probit Logit, Probit 
Logit & Probit Logit, Probit 

Logit Logit, Probit 
Logit Logit, Probit 
Logit Logit, Probit 
Loait & Probit Logit. Probit 

mation problems for each technique and an improper estimation of model 
coefficients. 

Empirical problems (such ai coefficient interpretations changing as different 
techniques are applied) were simulated by inducing multicollinearity and using 
nonnormal predictors simultaneously. Predictive ability was shown to vary as a 
result of the degree and direction of collinearity among predictor variables. Thus, 
the simulations that are performed in this paper demonstrate how each technique 
will vary with violations of different assumptions. Applying the knowledge gained 
from the simulations to the problem of predicting corporate bankruptcies, a linear 
transformation of collinear predictor variables to orthogonal factors eliminated the 
coefficient inconsistencies. 

The results indicate that various techniques for analyzing binary data are likely 
to differ in their performance under the following conditions: the distribution of 
the predictor variables deviates substantially from normality, there is multicolli- 
nearity between the predictor variables, and the number of predictors is large. 
While these conditions are by no means exhaustive, the existence of any of these 
conditions should caution the researchers that the choice of a particular technique 
should be made carefully. 

Consistent with past studies, the performance of logit and probit was similar 
under the various conditions. Hence, a choice between these two may not be 
consequential (except in computational cost). In cases where there are a large 
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number of predictors, the QDA may not be practical. However, the choice between 
logit or probit, LDA and OLS is still not straightforward. Hence, the researcher 
should first conduct some preliminary data analysis to determine the statistical 
properties of the predictor variables. Perhaps part of the data could be analyzed 
by these techniques to determine which one is most appropriate. Alternatively, 
the researcher could transform the data to comply with the assumptions of a par- 
ticular technique. 
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