
HCI-Task Models and Smart Environments

Maik Wurdel*, Stefan Propp* and Peter Forbrig*

University of Rostock, Department of Computer Science
Albert-Einstein-Str. 21, 18059 Rostock, Germany
{maik.wurdel, stefan.propp, peter.forbrig}@uni-rostock.de

Abstract The paper discusses the idea of using HCI-task models to support smart
environments. It introduces a collaborative task modeling language CTML that al-
lows the specification of collaboration and comprehensive dependencies in an
OCL-like style. Additionally some ideas are presented that allow informing users
and usability experts about the state of actors within smart environments. The pa-
per provides the first results of a prototypical implementation.

Keywords. HCI, Task Models, Model-based Usability Evaluation

1. Introduction

In the domain of HCI task analysis and modeling is a mature research area. Task
models are used to elicit requirements in early stages of development by describ-
ing how people achieve goals by performing a set of tasks. However, in recent
years, task models have also been employed for system design. Exemplary in the
research field of model-based user interface (UI) development task models serve
as initial model for model-based processes. In contrast in the research field of
smart environments HCI task models have only been used barely. From our point
of view this fact is quite surprising because smart environments comprise a vast
complexity in terms of task performance of users. A thorough understanding of
the tasks users are executing within such environments is a precondition to deliver
an appropriate assistance.

In this paper we focus on using task models in smart environments to, first, un-
derstand the envisioned assistance and, second, to track the task performance dur-
ing runtime. This approach consists of two major components: (1) the collabora-
tive task modeling language to model the behavior of actors within smart
environments and (2) usability evaluation methods to provide usability experts
with evaluation support and to inform actors about the current state of the system.

*Supported by a grant of the German National Research Foundation (DFG), Graduate School
1424, Multimodal Smart Appliance Ensembles for Mobile Applications (MuSAMA)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357313208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Maik Wurdel, Stefan Propp, and Peter Forbrig

Additionally we introduce our tool support which allows for modeling and si-
mulation of collaborative tasks and their execution environment. Our simulation
environment allows for interactively walk through the designed artifact, while
conducting the usability evaluation.

The remainder of the paper is structured as follows: in Secion 2 we stress some
background information to tasks and smart environments. Section 3 introduces our
Collaborative Task Modelling Language (CTML) and the corresponding tool sup-
port which is followed by Section 4 where usability evaluation methods for smart
environments are discussed. Finally we draw the conclusion and give an outlook
for future research avenues.

2. Modeling Tasks in Smart Environments

Within smart environments tasks are barely carried out in isolation, but have to be
synchronized with other users’ tasks. Some tasks cannot be started while others
are still in progress. To motivate our research we illustrate the challenges of smart
environments concering task models by a scenario. Afterward we reiterate through
existing approaches of task modeling and its employements.

The session chair Dr. Smith introduces herself and defines the topic of the ses-
sion. Afterwards she gives the floor to the first speaker who sets up her equipment,
the laptop switches to presentation mode and the speaker starts with the talk. Dur-
ing the presentation the audience accesses additional information related to the
talk using their personal devices. While the meeting proceeds the personal devices
provide guidance and offer related information according to the current talk and
the meeting progress. The chairman interrupts the speaker since she overruns her
time slot. The plenum is asked for some brief questions which are answered by the
speaker. Eventually the chairman closes the talk and announces the next one. Sub-
sequent talks are given in a simliar same manner.

We consider a smart environment as location where people are collaborating
using a set of stationary and mobile devices. The devices are supposed to support
the users’ tasks which have to be performed to achieve a certain goal (like giving a
talk). Addtionally interaction with the environment is performed in a much broad-
er way (Shirehjini, 2007) then in desktop applications. The initiative can be ex-
pressed explicitly or implicitly. An implicit interaction is understood as an action
not performed to interact with the environment but interpreted by the system. Ide-
ally an implicit proactive meeting assistant for instance does not wait for an ex-
plicit user command, but senses movements and gestures of the user via sensors to
derive the assumed user intention and automatically provides support for the ex-
pected next task.

Based on the introductionary scenario we can elicit the key characeteristic of
smart environments from the view of task modeling: (1) A vast amount of poten-
tial tasks supported by a dynamic set of devices. (2) The temporal order of tasks

HCI-Task Models and Smart Environments

depends on the collaboration of actors within the environment. (3) The state of the
smart environment (defined as composed state based on each device) can further-
more restrict or enable the execution of a certain set of tasks.

Diverse notations for task models have been introduced (GOMS, HTA, CTT,
WTM (Bomsdorf, 2007; van Welie, 1998)). Even though they differ in terms of
presentation, expressiveness, level of formality and granularity they all share the
same following basic principle: tasks are arranged hierarchically representing the
decomposition of tasks and tasks are performed to achieve a certain goal. The de-
composition of tasks stops when an atomic level is reached: the action. It builds
the fundamental execution unit.

The most common notation ConcurTaskTrees (CTT) supports, amongst others,
the concept of temporal relations which restricts the valid sequences of tasks to
achieve a certain goal. Another asset of this notation is its tool support: CTTE
(Mori, 2002). Various extensions have been introduced: Examplarily in (Boms-
dorf, 2007; Klug, 2005) an action is not seen as atomic anymore, but defined by a
life cycle. This defines a task more precisely which is employed to trigger events.
The first approach does not consider a temporal operator as state chart whereas the
latter does not consider abortion or skipping of tasks.

Modeling cooperation of users in terms of task models has been addressed by
CCTT (Collaborative ConcurTaskTrees) (Mori, 2002). Similar to the corporative
task modeling language presented in this paper, CCTT uses a role-based approach.
A CCTT specification consists of multiple task trees. One task tree for each in-
volved user role and another as a “coordinator” that specifies the collaboration and
global interaction between involved user roles.

Model-based usability evaluation approaches, like RemUSINE (Paterno, 2007),
capture interaction events to derive the performed user interaction on an abstract
task-based level. A trace of task events contains qualitative information about ac-
complished tasks, as well as quantitative measures about durations of fulfilled
tasks. Analysis approaches comprise e.g. (Malý, 2007; Paterno, 2007). The sug-
gested visualizations are based on a linear time-based scale. However, the visuali-
zation approach presented in this paper applies a semantic lens to focus on a cer-
tain period of time.

After reviewing existing approaches we introduce our specification language
which comprises the characteristics of smart environments for task modeling.

3. CTML – the Collaborative Task Modeling Language

CTML is based on the idea that in limited and well-defined domains the behavior
of an actor can be approximated through her role and, second, the behavior of each
role can be adequately expressed by an associated collaborative task expression.

According to this statement we correspondingly define a collaborative task
model as a tuple consisting of a set of actors, a set of roles, a set of devices and a

Maik Wurdel, Stefan Propp, and Peter Forbrig

set of collaborative task expressions (one for each role) where each actor belongs
to one or more role(s).

Definition 1: (Collaborative Task Model). A collaborative task model G is a tu-
ple pa,rFA,R,T,DG= ,,, where:

A,R,T,D are non empty sets of actors, roles and collaborative task expressions
and devices. F is the set of features of the model consisting of elements of the
following kind: valuekey,

�(R)a:A → is a function that associates an actor with a set of roles.
Tr:R → is a bijective function that associates a role with a task model.

FDp:A →∪ is a relation associating features to the actors and devices
Each collaborative task expression has the form of a task tree, where nodes are

either tasks or temporal operators. Each task is attributed with a (unique) identi-
fier, a precondition and an effect. Intuitively, the precondition defines a required
state of the collaborative environment for executing the task, whereas an effect
denotes the resulting state after having executed the task. Addtionally temporal
operators restrict the potential sequences of task performance.

Definition 2: (Collaborative Task Expression). A collaborative task expression
CTE is a tuple T,hCTE= where,

T is a non-empty set of tasks of the form fectdition, efid, precon

 OpList(T) h: T ×→ , with opt} ,# *, , ,[,| |||, |,| [], { >>>>==Op is a function
that maps a task t to an ordered list of tasks and a temporal operator.
The former represents the children of task t, whereas the latter denotes the exe-
cution order of the children according to the given definition in (Sinnig, 2007).

We say a collaborative task expression is well formed if the corresponding task

tree is connected and free of cycles such that each task (except for the root task)
has exactly one parent. Moreover we demand that if a task has more than two
children it is associated with an n-ary operator. If a task has exactly two or one
child(ren) it is associated with a binary or unary operator respectively. Leaf tasks
are not related to a temporal operator by the function h. This definition results in a
bi-parit graph whose vertexes are either of T or Op. The function h defines the
edges of the graph.

In Fig. 1 a subset of the collaborative task model for the introductory example
is given that was interactively created using the CTML Editor. For the sake of
readability for each task only the hierarchical breakdown and temporal relations
are shown in a CTT-like style. Our editor is able to present temporal relations as
nodes or in the CTT-style. Preconditions and effects have been omitted for the ex-
ample below. An overview of the entire specification is given in the lower left
corner.

HCI-Task Models and Smart Environments

Fig. 1. Specification of the Example Using the CTML Editor

At runtime, for each active actor, an instance of the corresponding collaborative
task expression (identified by the assigned role) is created. To implement the op-
erational semantics of a CTML model all instance task expressions are translated
to sets of communicating state charts. On the one hand task state charts are re-
sponsible for checking the precondition and manipulating the system to achieve its
effect. On the other hand temporal operator state charts implement the semantics
of its corresponding operator. In particular they mediate messages between parent
and child task.

As already mentioned above a collaborative task expression can be interpreted
as a bi-parit graph whose nodes are either tasks or temporal operators. Since each
task and operator is mapped to a corresponding state chart a bi-parit graph of state
charts is created. Edges can be seen as communication channels (similar to CSP
(Hoare, 1978)). Thus state charts only communicate with adjacent state charts.
This approach supports the concept of separation of concerns and helps to reduce
complexity of the communication. Since each collaborative task expression is
transformed into a set of communicating state charts and a colabortative task mod-
el is defined by a number of task expressions we can accordingly say that the run-
time model is defined by a network of sets of communicating state charts.

Up to now we have explained the syntax and rationale of our model. In the next
section we elaborate on the modeling of cooperation and dependencies of the envi-
ronment according to our formally defined model.

Maik Wurdel, Stefan Propp, and Peter Forbrig

3.1 Modeling Collaboration and Comprehensive Dependencies

From the very beginning of classical task modeling the HCI community has re-
garded objects of the domain as highly related to the task performance. Artifacts
and tools are often mandatory to accomplish a task successfully. This fact also ap-
plies to smart environments, even though they can be physical objects, devices
(stationary or mobile) as well as digital information. Dependencies between tasks
and these objects have to be modeled as well to comprise the complexity of the
scenario.

Moreover collaboration between actors within the environments has to be sup-
ported as well. As pointed out in the scenario there exist various interrelation of
task between different users even in simple scenarios. Existing approaches of
modeling cooperation of users in HCI lacks flexibility and linkage to objects and
devices dependencies. CTML supports both requirements by using an OCL-like
language to specify additional execution constraints and effects of tasks.

To execute a task the logical statement in the precondition has to hold which
can be either based on the state of the system or the state of an actors’ task execu-
tion. The abstract syntax of a precondition defined in an EBNF-like notation is as
follows:

precondition = attributePrec | taskPrec;
attributePrec = identifier DOT check;
taskPrec = identifier DOT task DOT state;
identifier = (ROLE DOT quantifier) | NAME;
Note that we spare non terminals defined by char sequences (e.g. ROLE;

NAME). The first (attributePrec) checks whether a set of properties (syntactically
defined by the set F) has a certain value. Thus, preconditions allow for expressing
dependencies of tasks and devices and/or actors. The latter (taskPrec) is able to
express that a set of arbitrary tasks of actors are in a certain state (E.g. task t1 of
actor a1 has to be started before task t2 of actor a2 is able to be started). Note that
the life cycle of a task is defined in terms of a state chart whose states can be ref-
erenced in preconditions. Additionally preconditions support quantification of ac-
tors by means of roles. The meanings of the quantifier are described in Table 1.

Table 1. Semantics of Quantifiers used in Preconditions and Effects

Quantifiers
All-Quantifier allInstances All actors of the role have to satisfy the constraint.

Exist- Quantifier oneInstance At least one actor of the role has to satisfy the constraint.

Non-Quantifier noInstance The statement holds if no actor of the role satisfies the con-
straint.

To illustrate the rationale of preconditions some examples for the following
precondition are given in Table 2:

(1.) A presenter is allowed to start her presentation after the chairman has an-
nounced the talk.

HCI-Task Models and Smart Environments

(2.) The listeners are allowed to ask questions after the Dr. Smith has opened
the discussion session.

(3.) The chairman can wrap-up the session after all presenters have finished
their talk (specified by the property “presented”).

Table 2. Examples of Precondition using the Different Features of the Language

Role Task Precondition
(1.) Presenter StartsPresentation Chairman.oneInstance.AnnouncesTalk.completed

(2.) Listener AsksQuestion DrSmith.OpensDiscussion.completed

(3.) Chairman Wraps-UpSession Presenter.allInstances.presented == true
By the usage of precondition we are able to add execution constraints based on

elements of the environment. This comprises the extra complexity of the domain.
However to model the dynamics of such a scenario in an adequate manner the ef-
fect of a task execution has to be taken into account as well. In contrast to precon-
ditions, effects do not check whether a logical statement holds, but specify the sys-
tem state after execution the task. Similarly effects either address properties of
elements or tasks of actors. The abstract syntax is illustrated here:

effect = attributeEffect | taskEffect;
attributeEffect = identifier DOT assignment;
taskEffect = identifier DOT task DOT message;
identifier = (ROLE DOT quantifier) | NAME

Fig. 2. CTML Simulation incorporating Preconditions and Effects

Please note that an effect on a task is not necessarily taking place since if a
message is sent it is interpreted according to the potential transitions defined in the
task state chart. For example it is not possible to move from state disabled to run-
ning. In this case the running message will be ignored. This avoids inconsistencies
and supports the implementation of the message concept. For reasons of brevity
we spare examples for effects. The simulation taking into account preconditions
and effects to support collaborative task modeling is depicted in Fig. 2.

Maik Wurdel, Stefan Propp, and Peter Forbrig

4. Usability Problems in Smart Environments

Smart environments differ from desktop applications in various aspects, which
lead to an according adaptation of usability evaluation methods. Based on the
charcteristics of smart environments (Section 1) we derive appropriate evaluation
methods. Afterwards we show how to apply these methods for both: providing the
users with information about the current state of the system and providing the us-
ability expert with evaluation support.

4.1 Introduction to Usability Evaluation in Smart Environments

The advanced features of smart environments are able to provide a comfortable
usage experience, but also introduce new possible usability issues. The reason for
usability problems of proactive systems can be decomposed into four potential er-
ror components: (1) imprecise sensor values (e.g. wrong location values), (2) mis-
interpretations of sensor values (e.g. when applying a faulty user movement model
to clean the raw sensor data), (3) intention recognition errors (e.g. when predicting
the wrong user task) and (4) planning errors (e.g. when delivering the wrong func-
tionality).
To identify these error components we suggest a usability evaluation process
comprising three subsequent stages:

(1) Comparing interaction traces (Hilbert, 2000) with a predefined expected
behavior to identify possible usability issues.

(2) Analysis of captured sensor data and manual annotations to investigate
the reason for the problem.

(3) Investigation of the analysis metrics and visualizations to solve the issue.
Within smart environments a task can be accomplished cooperatively by a

number of users by support of their different devices. In addition a certain user can
start a task on one device (e.g. a mobile phone with speech input) completing the
task later with another device (e.g. a laptop with keyboard). In this case separate
interaction traces of the devices can hardly be compared. Therefore we suggest in-
terpreting the interaction trace according to an underlying task model as task trace
(Hilbert, 2000). A task trace is understood as arbitrary sequence of performed
tasks. Deviations according to the defined temporal order of tasks may occur and
need further investigation during evaluation.

Designing a usability test case comprises two activities. First the environment
has to be modeled as CTML model and afterwards a usability expert defines the
test plan, as it is common practice in usability evaluation.

For the execution of a usability test case we distinguish usability evaluation at
different development stages. In early phases, like design, the environment is si-
mulated as an animation of the defined CTML model (see Fig. 2). An interactive

HCI-Task Models and Smart Environments

walk through helps to expose weaknesses within the designed artifacts, to revise
the underlying CTML models.

After setting up the physical environment, the link to the underlying task mod-
els has to be kept to allow evaluation. We provide HTTP access to connect the
smart environment and the simulation engine (Fig. 2). During a simulation every
leaf task of the simulated task models can be triggered by the events “start” and
“stop”. These events are internally propagated between adjacent nodes in the task
model and cause the task nodes to change the state. All internal and external
events are captured to build a task event trace, which is defined as a sequence of
events. Each event comprises the corresponding usability test case, the task model,
the task, the fired event and a success value. The captured task event trace is used
to provide support for both: the usability expert for evaluation (Section 4.2) and
the actors within the environment for guidance (Section 4.3). Our approach pro-
vides evaluation simultaneously to the test as well as afterwards.

4.2 Visualization and Analysis for the Usability Expert

After capturing a trace of executed tasks and the corresponding sensor data, our
approach provides support for identification and analysis of usability issues. To
cope with the vast amount of captured data we distinguish between two solutions:
on the one hand removing data, which is out of evaluation scope, through filtering
and on the other hand keeping all data, but setting focus on data of evaluation in-
terest through aggregation.

For aggregation of the task trace we apply a semantic lens method. Analog to
an optical lens a semantic lens is defined by a focus point, a size of the lens and a
lens function (Griethe, 2005). Applied to a task trace, the task of interest is focus-
sed, the size of the lens is the number of previous and successive tasks which are
covered by the lens and the lens function defines how the aggregation works. The
lens function defines the level of aggregation for each position within the lens area
(Propp, 2007b). An example for the application of a semantic lens is shown below.

Fig. 3. Complete Example Task Trace

To continue the running example, an interaction trace for Dr. Smith, the chair-
man, is depicted in Fig. 3. The already performed tasks are highlighted. An appli-
cation of a semantic lens leads to a less detailed trace in Fig. 4. In particular we set

Maik Wurdel, Stefan Propp, and Peter Forbrig

the focus on the task in the center to provide a more concise overview. The more
distant the tasks are on the time scale in comparison to the focus, the higher the
level of aggregation.

Fig. 4. Aggregated Example Task Trace

The data is captured as a trace with a time stamp for each completed task. The
aggregation mechanism analyses the trace to find subsequences which have a
common parent within the task tree. Depending on the focus function certain tasks
are aggregated and represented by a parent or even more abstract task. The usabil-
ity expert is able to choose the focus in the time scale and vary the size of focus
accordingly. Adjusting the focus function provides a more or less detailed view.
The filtered and aggragted task trace can be visualized with different techniques.
One simple trace is depicted in Fig. 5.

Fig. 5. Visualization of the Task Trace for a Usability Expert

Our intention is to provide specific visualization techniques for different pur-
poses of evaluation and to have a tool box containing adaptable visualizations.
Additonally we provide a timeline view to compare different users according to
duration of accomplishing different tasks.

4.3 Visualization for the End User

We intend to support users with a guidance mechanism to visualize the current
progress of task execution. Especially in a smart environment it is necessary to
provide an overview of the current state of the system. Users might be astonished
about some reactions like switching off the light. Hence it might be needed to
rollback the system to prior state or forward to a new state.

Therfore we reuse the task trace to provide a history and an outlook of task ex-
ecution (Propp, 2007a). Traces are prepared in the same way as for the usability
expert in Section 4.2. First a filtering stage reduces accomplished tasks, e.g.

• fulfilled within the currently proceeding activity (branch of task model),
• within a predefined time interval in the past,

HCI-Task Models and Smart Environments

• with the devices that a user controls.
The subsequent aggregation step applies a semantic lens to provide a more

concise overview. Additionally to the performed trace the potential future tasks
are derived from the enabled task set, which contains all executable tasks at a cer-
tain moment in time. To accomplish the goal the user has a set of possibilities de-
fined in the task model. Therefore the reasonable alternatives are already known
and can be visualized as future avenues. We continue the example of the chapter
4.2 and visualize the data for user guindance in Fig. 6.

Fig. 6. Visualization of the Task Trace providing User Guidance

The example in Fig. 6 shows the chairmans’ PDA to summarize the current sit-
uation of the smart environment. The task trace proceeds from top to bottom on a
timeline. The focus is automatically set at the currently proceeding task, which is
highlighted. The bigger shapes depict tasks at a higher level of abstraction, which
are derived within the aggregation stage. The potential future tasks are visualized
as dashed oval shapes. Changes within the environment are recognized by sensors
and delivered to the usability framework to update the visualization accordingly.

5. Conclusion & Future Work

In this work we presented a collaborative task modeling language which can be
used to model the behavior of actors in smart environments. Therefore we ex-
tended classical task modeling notation to comprise the raised complexity of the
domain such as dynamic collaboration of actors and dependencies of user tasks
and the environment. To enable software designers using the notation we devel-

Maik Wurdel, Stefan Propp, and Peter Forbrig

oped an editor as well as a simulator for CTML. In the second part of this paper
we elaborated on usability problems within the domain of smart environments.
First we highlighted the challenges of usability in this particular domain followed
by an approach which makes use of CTML as runtime engine to track the task per-
formance of users. This approach tries to guide the user by visualizing the recent,
current and potential future task during task performance. Additionally different
visualization techniques are proposed which can help to evaluate task performance
by usability experts.

Future research avenues comprise the evaluation of the specification at runtime
by a “Wizard of Oz” experiment. This will help us to expose strengths and weak-
nesses of our approaches based on real data which applies for modeling as well as
usability evaluation. Based on these results extending CTML will be another issue
of investigation to integrate other elements of the environment. Further aspects of
the usability evaluation process will be directly intregated into the modeling envi-
ronment

6. References

Bomsdorf, B. (2007). "The WebTaskModel Approach to Web Process Modelling." TaMoDia
4849: 240-253.

Griethe, H., G. Fuchs and H. Schumann (2005). A Classification Scheme for Lens Technique.
WSCG (Short Papers) 2005, Plzen, Czech Republic.

Hilbert, D. M. and D. F. Redmiles (2000). "Extracting usability information from user interface
events." ACM Comput. Surv. 32(4): 384-421.

Hoare, C. A. R. (1978). "Communicating sequential processes." Commun. ACM 21(8): 666-677.
Klug, T. and J. Kangasharju (2005). Executable Task Models. TaMoDia. Gdansk, Poland.
Malý, I. and P. Slavík (2007). Towards Visual Analysis of Usability Test Logs Using Task Mod-

els. Task Models and Diagrams for Users Interface Design: 24-38.
Mori, G., F. Paternò; and C. Santoro (2002). "CTTE: Support for Developing and Analyzing

Task Models for Interactive System Design." IEEE Trans. Softw. Eng. 28(8): 797-813.
Paterno, F., A. Russino and C. Santoro (2007). Remote Evaluation of Mobile Applications. Ta-

MoDia 2007. Toulouse, France.
Propp, S. and G. Buchholz (2007a). A User Control Mechanism for Smart Appliance Ensembles.

KI 2007 Workshop. Osnabrück, Germany.
Propp, S. and G. Buchholz (2007b). Visualization of Task Traces. Interact 2007 Workshop on

New Methods in User-Centered System Design. Rio de Janeiro, Brasil.
Shirehjini, A. A. N. (2007). A Multidimensional Classification Model for the Interaction in Re-

active Media Rooms. Human-Computer Interaction. HCI Intelligent Multimodal Interaction
Environments: 431-439.

Sinnig, D., M. Wurdel, P. Forbrig, P. Chalin and F. Khendek (2007). Practical Extensions for
Task Models. TaMoDia, Springer. 4849: 42-55.

van Welie, M., G. van der Veer and A. Eliëns (1998). An Ontology for Task World Models.
DSV-IS 98. Abingdon, United Kingdom, Springer.

