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ABSTRACT

Applications augmented with adaptive capabilities are becoming common in parallel com-

puting environments. For large-scale scientific applications, dynamic adjustments to a com-

putationally-intensive part may lead to a large pay-off in facilitating efficient execution of the

entire application while aiming at avoiding resource contention. Application-specific knowl-

edge, often best revealed during the run-time, is required to initiate and time these adjustments.

In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a pro-

gram for ab initio quantum chemistry that places significant demands on the high-performance

computing platforms. Certain electronic structure calculations are characterized by high con-

sumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to

resource contention among concurrent GAMESS jobs and other programs in the dynamically

changing environment. Thus, it is desirable to improve GAMESS calculations by means of dy-

namic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge

may play a significant role in achieving this goal. The choice of implementation is facilitated

by a module-driven middleware easily integrated with GAMESS that assesses resource con-

sumption and invokes GAMESS adaptations to the system environment. We show that the

throughput of GAMESS jobs may be improved greatly as a result of such adaptations.
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CHAPTER 1. Introduction

Cluster computing has emerged as a mainstream platform for high-performance applica-

tions. More recently, low-cost CPUs enabled assembling clusters from symmetric multiproces-

sor nodes (SMP). This affordable means of parallel computing enabled wide-spread usage of

parallel applications for scientific computing. However, achieving a sustainable performance

across multiple SMP nodes became a challenge in part because of inadequate load manage-

ment leading to resource contention. Specifically, in a typical multiuser cluster environment,

where users could concurrently run a variety of high performance applications, simultaneous

processes may compete for shared resources.

1.1 Ab initio Quantum Chemistry

Chemistry is the science dealing with construction, transformation, and properties of

molecules (15). Traditionally molecules are considered as a collection of positively charged

nuclei and negatively charged electrons. The number of these particles and the physical force

between them shape the energies of the molecule and the distribution of electrons and nu-

clei in molecule space (i.e., geometry). The subfield of chemistry that studies the geometry,

energies, and properties of molecules is called quantum theory and is based on the simplified

time-independent Schrödinger equation:

Hψ = Eψ, (1.1)

where H is a Hamiltonian operator, ψ is set of wave-functions and E is the total energy of

the system. Solving the time-independent Schrödinger equation directly for molecules is very



2

complicated. Though, there are ways (semiempirical and ab initio) to approximate the solution

to the given equation. Semiemprical approximation uses experimental data to substitute some

of the mathematical terms in the equation. On the other hand, ab initio (Latin: “from

the beginning”) is a collection of methods that uses only mathematical means to iteratively

generate the approximate solution (15). Avoiding the use of experimental results comes at

the expense of significantly larger computational resources needed for ab initio methods. The

problem size for a typical computation depends on the accuracy desired for the final result.

An upper bound for a problem size is N4, where N is a number of basis functions, describing

an atom, which could go up to hundreds.

The report in (9) lists several applications that perform ab initio calculations. Just to

mention some of them, MOLPRO is a complete package of ab initio programs for molecular

electronic structure calculations. Using recently developed techniques, it is capable of highly

accurate and efficient calculations mostly small molecules (32). NWChem is a computational

chemistry package that is designed to run on high-performance parallel supercomputers as well

as conventional workstation clusters. It aims to be scalable both in its ability to treat large

problems efficiently, and in its usage of available parallel computing resources (12). MPQC

is another computational chemistry package that was built from the start to run in parallel.

Designed in object oriented fashion, MPQC runs on a wide range of computing architectures

(14). GAMESS is a popular generic ab initio program freely distributed and developed at Iowa

State University (24). Our research is applied to GAMESS, thus more detailed discussion of

the program is in the subsequent chapters.

1.2 Related Work

A crucial part of high-performance computing (HPC) systems is proper resource manage-

ment, such as load balancing. To share the common purpose of load balancing, preserve and

protect jobs until the end of execution, batch schedulers are commonly used tools for scheduling

jobs. There exists much research on batch schedulers: Many were abandoned and a few are

under constant improvement. Some of the popular batch schedulers currently available are.
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Portable Batch Scheduler (PBSPro/OpenPBS) is one of the most popular “all-purpose”

batch job and computer system resource management packages. PBS accepts batch jobs and a

shell script with the control attributes, preserves and protects the job before it starts, runs the

job, and delivers output to the submitter (2). PBS tries to map a job based on three factors:

required resource attributes set by the user, available system resources, and the implemented

scheduling policy. Depending on system parameters such as scale of the managed system,

OS and level of fault tolerance there are two versions of PBS. OpenPBS is a freely available

Open Source version of PBS, limited to Linux and UNIX Operating Systems. It supports

fair scheduling up to hundreds of CPUs and suits well the needs of relatively small systems.

PBSPro is a highly scalable commercial version that has better scheduling algorithms and

supports multiple platforms, operating systems and thousands of CPUs.

LoadLeveler (LL) manages both serial and parallel jobs over a network of machines. Initially

developed for the IBM SP machines, LL supports now a variety of platforms. Along with the

standard features for batch schedulers such as queueing submitted jobs, and running them

based on preferences set by the user and system administrator, LL supports an individual

load configuration for each computing unit. In addition, LL provides three different ways to

interact with the user, command line interface, graphical user interface and an API for a direct

interaction with the application (18).

Load Sharing Facility (LSF), by Platform Computing Corporation, is a software package

for managing and accelerating batch workload processing for compute- and data-intensive

applications (23). A distributed load sharing package for heterogeneous UNIX environments,

LSF manages a network of machines as a single transparent computing system. This feature

allows users to run programs remotely that are not available on a local host. As with PBS,

there are two different versions of LSF, Platform LSF and Platform LSF HPC. The first one

is a generic scheduling package that could handle batch, interactive, distributed and parallel

jobs. The second one is an optimized version to run parallel applications on HPC systems. A

distinctive feature of LSF is the ability to dynamically migrate running jobs between nodes.

In an environment where there is a need to execute multiple high-performance applications



4

while maximizing their throughput, a scheduling that diminishes resource contention based

on the knowledge of a current algorithmic stage is highly desirable. Unfortunately, modern

“all-purpose” (system-level) schedulers, such as PBS (2) and Load Leveler (18), have limited

capabilities in this respect since they do not have a means to “peek” into an application’s

execution. On the other hand, incorporating self-scheduling mechanisms into an application

based on the resource availability often appears infeasible since the system-level details may

obscure the application usage and development. The latter is of particular concern since

GAMESS is designed to run on a given computational platform by an application scientist

without any knowledge of computer science. Therefore, employing some middleware tools

(1; 5; 13), which may access the dynamic system conditions and invoke GAMESS adaptations

– via a separate function handler, – may be beneficial, assuming that such tools are lightweight

and may be turned on/off by the user in a simple manner. One such middleware tool is NICAN,

a framework which invokes adaptation functionality of distributed applications (25). In this

thesis we present an integration of NICAN into GAMESS as an application-level adaptation

facilitator.

1.3 Thesis Layout

The thesis is organized as follows. Chapter 2 gives background information on GAMESS,

NICAN, and SMP architecture. In Chapter 3, we present a three stage evaluation of the

GAMESS-NICAN integration model, its functional components, and adaptation mechanism.

Chapter 4 presents experimental results for each stage of the GAMESS-NICAN integration

case. The comparison is made for the original implementation of GAMESS and GAMESS-

NICAN integrated software. The 5th Chapter summarizes our research and outlines future

work.
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CHAPTER 2. Background

2.1 General Atomic and Molecular Electronic Structure System

The General Atomic and Molecular Electronic Structure System (GAMESS) was based

on HONDO5 and several other quantum chemistry applications (24). Since then, GAMESS

has emerged as a complex, widely used ab initio package, with a single code portable on

a wide range of computing platforms. Over time, most quantum chemistry applications in

GAMESS have been parallelized. This enables GAMESS to run on HPC environments and

utilize distributed resources, such as main memory and disk storage. More recent develop-

ments of GAMESS include implementation of the Distributed Data Interface (DDI). The DDI

data server model takes advantage of and better utilizes the shared memory on symmetric

multiprocessor (SMP) nodes (22).

The structure of atoms and molecules in Schrödinger equation is formulated by wavefunc-

tions. In general, these wavefunctions are approximated using iterative ab initio methods.

Iterative approximation methods include Hartree-Fock (HF) or Self-Consistent Field (SCF).

A wide range of HF wavefunction calculations that GAMESS can perform includes Restricted

HF (RHF), Restricted Open-Shell HF (ROHF), and Unrestricted HF (UHF). A more detailed

list of current capabilities of GAMESS is given in the appendix. There are two different im-

plementations, direct and conventional, of the SCF method in GAMESS. The direct algorithm

recomputes integrals “on-the-fly” for each iteration mainly consuming physical memory and

CPU resources. Conversely, the conventional disk-based algorithm calculates integrals once,

stores them on disk, and reuses them during iterations resulting in a heavy disk I/O usage.

We have observed (29) that a parallel job in which computing processes are equally dis-

tributed (scattered) over different nodes runs faster the one using multiple processors within
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the same SMP node. This could be due to the inability of certain communication layer imple-

mentations to efficiently handle shared-memory access (26; 7). On the other hand, by using a

single processor per node (scattering), each process utilizes the networking hardware without

waiting for CPU or memory. In addition, we have observed that a GAMESS conventional

parallel job on two processors of the same SMP node may be actually slower compared to

its sequential counterpart. The poor performance could be the result of a disk I/O channel

bottleneck due to simultaneous access by more than one conventional processes constituting a

parallel job. On the other hand, running concurrently scattered parallel GAMESS jobs with

only one designated as a conventional SCF algorithm on the same set of SMP nodes, has

shown rather good performance. Thus, the choice of an SCF algorithm has a significant effect

on performance.

2.2 NICAN Middleware Tool

The main idea of integrating Network Information Conveyer and Application Notification

(NICAN) with an application is to decouple the process of monitoring system information from

the execution of the application, while providing the application with critical system knowledge

in a timely manner through adaptation handlers (27). NICAN was successfully integrated with

several application to aid their execution in a distributed environment. In his Master’s thesis,

Gan Chen has used NICAN to monitor the network bandwidth, analyze the collected data and

notify the network benchmarking tool NetPIPE (6). In a similar way, Sosonkina and Kulkarni

had integrated NICAN with the Parallel Algebraic Multilevel Solver (pARMS), where NICAN

augments pARMS’s execution to changes in the network condition (16).

The NICAN architecture could be divided into two main parts, the front end and the back

end. The front end consists of a NICAN interface to the integrated application (Figure 2.1,

NICAN Interface) and a set of adaptation triggering conditions in an XML file (Figure 2.2).

The back end performs necessary monitoring and system resource analysis to aid the execu-

tion of the application in a dynamically changing environment. More specifically, the NICAN

engine is encapsulated into a separate thread (Figure 2.1, Module Manager). Each module is
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Application ProcessNICAN Interface
Uses

Module Manager Adaptation Handler
Invokes

Modifies

Module 1 ... Module n

ProvidesCreates

Controls

Figure 2.1 NICAN Layout

designated to perform a separable function, such as to watch over a certain system parameter or

to validate machine-dependent parameters. Whenever an analyzed system resource monitored

by NICAN reaches a critical range the module invokes adaptation handler (Figure 2.1, Adap-

tation Handler) which in turn changes the execution pattern of the application. Triggering

conditions for a critical range are set by the user in the XML file. If, for a particular resource,

a critical range is never met, then the adaptation is never triggered and the application will

proceed as if NICAN had never been started. Enhanced with “general-use” modules, such

as CPU monitoring or Packet Probing, NICAN may not require customized integration with

an application – these modules may be utilized “as is” in a variety of applications. However,

to explore application-specific trigger conditions, “specific-use” NICAN modules may also be

needed.

<s p e c i f i c a t i o n>
<module group handler = ‘ ‘ HandlerOne ’ ’>

<module f i l e = ‘ ‘ cpu load . so ’ ’
i n t e r v a l = ‘ ‘10 ’ ’
monitor = ‘ ‘ONE’ ’
t r i g g e r = ‘ ‘ABOVE’ ’
va lue = ‘ ‘ . 6 ’ ’ />

</module group>
</ s p e c i f i c a t i o n>

Figure 2.2 Sample XML file monitoring load on CPU
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In a sample XML file (Figure 2.2) NICAN cpu load.so modules monitors CPU load ev-

ery ten seconds (interval=“10”) for a one minute (monitor=“ONE”) period. Whenever the

CPU load rises above a triggering point (value = “.6”), NICAN calls the adaptation handler

HandlerOne() which makes the necessary adaptation for the integrated application .

2.3 Symmetric Multiprocessor Architecture

Symmetric Multiprocessor (SMP) is an architecture with multiple processors on the same

system that have identical access to the system resources (11). A single Operating System

(OS), specifically build for SMP, controls all CPUs and interchangeably uses them to run

simultaneous processes. OS could map multiple sequential applications at the same time

or run in parallel a single multithreaded application. Such concurrent execution of multiple

processes is only efficient if processes ideally overlap with one another. Since system resources

are equally shared among processors, simultaneous access could lead to resource contention

due to the bottleneck of resource hardware or communication media (30).

Figure 2.3 SMP architecture. 4 CPUs on a single node. Node resources,
such as memory, are equally shared among CPUs

Figure 2.3, from Desktop Computer Encyclopedia, shows a diagram of the SMP architec-
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ture. All CPUs have equal access to the physical memory (RAM) and OS could concurrently

run multiple applications. The number of CPUs on a typical SMP node could vary from two

processors up to 32. One of the first SMP systems was built by Sequent, Pyramid and Encore

(10). Currently, most HPC vendors such as IBM, HP and Dell provide solutions based on SMP

systems.
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CHAPTER 3. Adapting GAMESS

To address the challenges that GAMESS faces running on SMP clusters, we may need an

adapting mechanism for improving performance. Modifying GAMESS source code to imple-

ment self-adaption is rather difficult. It may decrease its usability by application scientists and

its portability, which is highly acclaimed feature of GAMESS.

The GAMESS package consists of two main parts. The first one, written in C, handles

the setup of DDI needed for efficient memory management in parallel executions (22). The

second part, the native code written in Fortran, does the actual computations. In order to

avoid making changes in the computation part of GAMESS we consider a high-level approach

to adaptation: Adjust GAMESS input settings based on current system conditions and on

the settings of the “peer” GAMESS jobs already running. Therefore, employing middleware

tools, such as NICAN, may be beneficial. An attractive feature of NICAN is that it does not

require substantial code modifications to the high-performance application with which NICAN

is interfaced. In the case of GAMESS, we have only a few changes. First, the application

includes a header file that contains declarations for the NICAN interface functions. Second,

two single lines are inserted, to initialize and to finalize the NICAN thread, at the beginning

and at the end of the execution, respectively. Third, a simple handler function is added to

resume GAMESS after NICAN has finished the decision making process.

The efficient execution of GAMESS with the aid of NICAN middleware was evolved in three

stages. The first stage focused on improving concurrent execution of sequential GAMESS jobs.

In the second, the integrated model was modified to include parallel GAMESS jobs on SMP

clusters. In the final stage, with slight modifications to the native code, GAMESS was able to

dynamically adapt to the changing environment.
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3.1 Adapting Sequential GAMESS in Dedicated Environment

The initial work in improving GAMESS was started with sequential runs. The execution

media was assumed to be dedicated to GAMESS jobs only. Thus, the adapting mechanism

was aimed to facilitate concurrent electronic structure calculations on a single SMP node.

GAMESS is integrated with NICAN through its interface in front end (2.2). Users pass

instructions to NICAN through option tags in an XML file. The first option (do check

= ‘‘YES’’) activates the system environment checking modules, and the second (use sug

=‘‘YES’’) enables or disables the adaptation by NICAN. By default, both of these options

are set to NO. In any case, NICAN records the execution pattern (direct or conventional)

of the current job in the active list. Useful in scheduling concurrent GAMESS jobs that are

arriving, the active list is a data structure stored in the shared memory for the interprocess

communication.

Figure 3.1 GAMESS-NICAN Integration model for dedicated environment

As depicted in Figure 3.1, GAMESS spawns a NICAN thread which, in turn, starts the

Manager. General-use modules are labeled with (G) and specific-use ones with (S). The

Manager parses the XML file for options and checks the active list for the presence of other

GAMESS-NICAN processes and their execution patterns. In parallel with the Manager, the

Check module re-runs GAMESS on the user input file but with the special “check” execution

mode. This execution mode is designed in GAMESS to very quickly estimate the required

main memory with respect to the desired electronic structure calculations without actual com-

putation (24). Then, the input file may be updated with this estimate. Without this estimate,
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a user could mispredict the required amount and the computations may fail due to a lack of

physical memory. To prevent this, the Manager detects free memory, compares it to the esti-

mate from the Check module, and halts the job until available memory in the system reaches

the required amount. The Daemon module is implemented in the second stage and discussed

in the next section.

Granted the permission to make changes to the GAMESS input file, the Manager selects

an execution pattern according to a predefined set of rules (Figure 3.2). Namely, it updates the

input file flag specifying direct or conventional execution pattern. The Manager also records the

execution pattern in the active list, and resumes GAMESS. Note that the GAMESS execution

is postponed (expressed as the dotted arrow in Figure 3.1) while NICAN modules examine the

system and decide on the execution pattern to be suggested for the continuation of GAMESS.

After a GAMESS job has completed the task, it calls NICAN Finalize to remove itself from

the active list.

Figure 3.2 NICAN Manager decision tree
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Figure 3.2 depicts the decision tree of the co-scheduler. Some types of GAMESS calculations

do not have clear separation into the direct and conventional methods. Thus, regardless of

the current job pool, the co-scheduler records them in the active list as jobs with conventional

method because of their possible massive consumption of I/O resources. If none of the active

jobs are designated as conventional, NICAN will designate n−1 (n is a number of processors in

the system) jobs to execute using direct method. Only a single job is assigned the conventional

integral calculation method.

The decision tree could be modified to better utilize the Hyper-Threading (HT) technology

if the processes are not allowed to migrate to other logical processors. At present, however,

such a migration happens on the HT-enabled machines. The scheduling modification to utilize

HT could be achieved by setting the CPU affinity mask of a process. The affinity mask is a

system data structure in which each bit relates the process to a logical processor. If a given

bit is set then the process is allowed to execute on the corresponding logical processor. The

affinity system calls (processor assignments) are introduced in the later releases of the kernel

(17). Thus a corresponding modification of the decision tree is left for the future work. We

study performance of GAMESS in a system equipped with HT technology as a separate section

in the Test Results 4.4.

3.2 Adapting Parallel GAMESS in SMP Clusters

Many GAMESS calculations have parallel implementations which enable the utilization of

distributed resources, such as main memory and disk storage. Applying the same integration

model from sequential GAMESS to parallel was not straightforward. The main constraint

was the distributed nature of parallel jobs which complicated analysis of concurrently running

peer GAMESS jobs. A part of a distributed GAMESS job could be running on an SMP node

alone and another part could be sharing a node with other GAMESS jobs. Since there is only

one instance of the NICAN manager per job running on the master host, where GAMESS

was launched, remotely maintaining an active list on a local host was impractical. The en-

hanced integration model presented here handles execution of both sequential and parallel
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Figure 3.3 Decision making by NICAN to invoke GAMESS adaptations

GAMESS jobs across multiple SMP nodes interconnected in a cluster environment. The same

assumption remains that a cluster system is dedicated to run GAMESS jobs only. In other

words, no non-GAMESS/NICAN application is expected to run on the cluster. Thus, adapt-

ing GAMESS, for efficient execution, could take place at the preprocessing stage of electronic

structure calculations.

The integration model for parallel GAMESS is the same as that for sequential GAMESS

(Figure 3.1). The only difference is the Daemon module which starts the NcnD daemon (shaded

color in the Figure 3.1) if there is no other NcnD running on the node. The daemon is self-

contained and is independent from the job for which it has been started. The daemon performs

standard operations, such as read, write, delete, and self-destroys if there are no more records.

Each record consists of a process ID and a description to the job. Thus, the Manager can

record any useful information about the processes executed on the node.

Figure 3.3 depicts the decision making process implemented as a controller on the Manager.

On input, the controller receives the list of nodes (NODE LIST) assigned by the scheduler and

the GAMESS SCF method. On output, the controller returns the new adapted SCF method

for the job. The control algorithm is shown in the rectangular box in Figure 3.3. The Manager

communicates (line 1) with NICAN daemons on all the nodes Si, i = 1, ..., m. Each daemon
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returns a list of GAMESS jobs running on the node and the corresponding SCF methods.

Nodes with no GAMESS jobs (NodeS2 and NodeS3) will not have NcnD and will not respond

to the request. In that case, the node is regarded as vacant and the job could run on it

efficiently with any SCF method. With the information supplied by NcnD daemons, the

controller selects an optimal SCF method for the current job (line 3). The decision process

is based on the assumption that an SMP node has a single I/O channel and that running

concurrent conventional jobs on such systems is very costly (30). Thus, the Manager avoids

running more than one conventional job on the same SMP node. In the case of multiple

I/O channels, the Manager controller is easily adaptable. For example, if there are two I/O

channels, then the Manager could schedule two conventional jobs on the same SMP node.

After successfully starting the parallel GAMESS computation, the Manager records its SCF

method in NcnD daemon to efficiently run future GAMESS jobs mapped on the same node.

3.3 Dynamic Algorithm Selection in GAMESS Calculations

The first two GAMESS-NICAN integrations models were designed to encapsulate the entire

GAMESS computation code (29; 30). A high-level approach was considered for adaptation:

Adjust GAMESS input settings based on the system conditions and on the settings of the

“peer” GAMESS-NICAN jobs co-existing in the system. NICAN Manager made changes to the

GAMESS input parameters by selecting the appropriate SCF algorithm at the preprocessing

stage. The design assumed that the system is dedicated to run only GAMESS jobs. However,

the assumption is too restrictive for modern realistic computing environments when e.g., several

applications may reside on the same SMP node or when the I/O channel is shared by many

applications. Thus, adaptations made only in the preprocessing stage may not always lead to

an improvement under such system conditions, and thus dynamic adaptations are desirable.

The SCF algorithm is one of the computationally-intensive parts of an electronic structure

calculation that GAMESS performs. Thus, a proper selection of its implementation has a

considerable effect on the overall calculation. Figure 3.4, modified from Introduction to Com-

putational Chemistry (15), sketches the SCF algorithm (24). The main difference between
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Figure 3.4 Illustration of the SCF algorithm as conventional (C) and direct
(D) implementations

the two implementations is the handling of the two-electron (2-e) integrals. In the direct SCF

method, the 2-e integrals are recalculated for each iteration. This method has a high demand

for CPU time but avoids the possible disk I/O bottleneck. In the conventional SCF method,

the 2-e integrals are calculated once at the beginning of the SCF process (box with dashed-line

border in Figure 3.4) and stored in a file on disk for subsequent iterations. This implementa-

tion performs best on a system where the available physical memory exceeds the file size for

2-e integrals, so the file is cached in physical memory. Thus, it is faster to re-read buffered

2-e integrals than to recalculate them as in the direct method. Since the SCF algorithm (Fig-

ure 3.4) is of an iterative nature, switching between conventional and direct implementations

may be possible in an arbitrary SCF iteration. Although the precise implementation details

of the switching are rather complex. The following is a brief outline of the procedure. One

may pre-compute the 2-e integrals before commencing the iteration cycle as required for the

conventional SCF algorithm. Then at each new iteration, the 2-e integrals are either fetched

from a file or (partly) recomputed for the conventional or direct implementations to be used,

depending on the resource availability. Similarly, any quantum computation algorithm that

may be implemented to recompute certain large quantities, such as 2-e integrals, may be a

candidate for the algorithm selection technique presented here.

Following the previous work on improving GAMESS in a dedicated environment, the mid-
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Figure 3.5 GAMESS-NICAN Integration

dleware NICAN (25) was chosen to guide the toggling between the two implementations of

the SCF algorithm in GAMESS. Figure 3.5 depicts the GAMESS-NICAN integration for the

GAMESS adaptations to be performed at runtime (shown as a bold-faced double arrow). These

adaptations are implemented as changes to iteration start parameters and result in switching

from one algorithm to the other in between two SCF iterations.

Figure 3.6 GAMESS adaptation scheme

Figure 3.6 details how the interaction between the NICAN Manager and GAMESS SCF cal-

culation is implemented. At the beginning of an SCF iteration, GAMESS calls the adaptation

handler GMS NCN which communicates with the NICAN manager and implements adapta-

tion decisions (if any) as returned by the NICAN manager, via the controller port Adapt?. The

decision is made by Manager’s controller, which analyzes the job’s past performance, system

resource information collected by modules, and the state of peer GAMESS jobs as obtained

from NcnD daemons.
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CHAPTER 4. Test Results

In this chapter we present test results for each stage of the GAMESS-NICAN integration

development as well as performance of GAMESS in hyper-threading (HT) enabled systems.

4.1 Sequential GAMESS

The tests were executed on a 2.8 GHz Intel XEON HT-disabled dual-processor SMP ma-

chine. We compared the execution of a pool of concurrent GAMESS jobs with adaptation at

preprocessing stage (GAMESSprep) and without (GAMESSorig). The execution of all the

jobs was managed by the PBS scheduler.

Figure 4.1 Execution time of 12 identical jobs

In the first series of experiments (Figure 4.1), we have queued 12 jobs and recorded their

completion time. By choosing 12 jobs, we tried to simulate a rather large pool of similar

(identical) jobs. “Identical” means that each job calculates the same analytical gradient for

the Luciferin (31) molecule. One half of these jobs was pre-set to use the direct (D) SCF

method, the other half used the conventional (C) method. Concurrent jobs had the best and
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the worst performance when they were assigned different and identical patterns of execution,

respectively. In the Figure 4.1 we have results for five different orders of the jobs in a queue.

GAMESSorig had the best (Figure 4.1, the first point on y-axis) performance when the two

types of jobs were queued in alternating order (D,C,D,C,...). Conversely, it had the worst

(Figure 4.1, the last point) performance when the jobs using the one SCF method were queued

following the other method (D,..,D,C,..,C). The other three points in Figure 4.1 correspond

to a sample of arbitrary ordered queues. The average time taken to complete these samples

is summarized in the first pair of bars in Figure 4.2. This set of experiments shows that the

execution of GAMESSprep has a uniform performance, which is no worse than the performance

of the best execution of GAMESSorig.

Figure 4.2 Time to complete a pool of 12 jobs

In the second series of experiments (Figure 4.2, the second pair of bars), we simulated a more

generic case. A mix of 12 different GAMESS jobs, each calculating a structure of a different

molecule, was chosen. In contrast with the previous experiment, the jobs in this mix were not

pre-set to use a specific SCF method. Instead, to simulate a real-world scenario, GAMESS was

started with existing input parameter files. Clearly, both experiments show that concurrent

GAMESS jobs, running with GAMESSprep, have better utilized the computing resources in

an SMP environment, and have resulted in a much better performance as compared with the

GAMESSorig.
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4.2 Parallel GAMESS

The tests were executed on the “4pack” cluster at the Scalable Computing Laboratory

(SCL) in Iowa State University (ISU). 4pack is a 32 node Beowulf type cluster consisting of

16 single-processor Macintosh G4 nodes with 512 MB physical memory and 16 dual-processor

(Macintosh G4) SMP nodes with 1 GB physical memory (19). The peak processor speed varies

from 450 MHz to 999 MHz and the nodes are connected with the Myrinet network. Since our

focus is on SMP clusters, we have performed our experiments only on the dual-processor G4

nodes using the PBS scheduler. Each node has its own scratch directory for the temporary

storage of files used by parallel applications. This leads to an efficient performance of GAMESS

jobs with either of the SCF algorithms. Note that 4pack is configured and routinely used to run

GAMESS. In addition to 4pack, we have executed our experiments on the “hpc-class” cluster

located also at ISU. The cluster has 44 dual-processor 2.8 GHz Xeon SMP nodes connected

with Fast Ethernet. The scratch directory is NFS mounted on a local hard drive of one of

the nodes. The latter makes hpc-class not well suitable for the parallel jobs that have a large

periodic disk I/O accesses as required by GAMESS with the conventional SCF algorithm.

Therefore, all GAMESS jobs should use the direct SCF algorithm on hpc-class and the test

results are not presented here.

First, as in sequential GAMESS, we compare the performance of parallel (GAMESSorig)

and (GAMESSprep) on a pool of identical electronic structure calculations. Particularly, we

had submitted 12 identical jobs to calculate the AM1 geometry of antibacterial drug Penicillin

(Figure 4.3). The molecular structure, as resulted from the calculation, was plotted using the

MacMolPlt program (4). One half of these 12 jobs was set to use the direct (D) and the other

half to the conventional (C) SCF algorithm.

Figures 4.4 and 4.5 present results for the five different orderings of the queued GAMESS

jobs. GAMESSorig had the best (x-axis label Best) performance when the parallel jobs were

forced to queue in alternating order (D, C, D, C,. . .) of the SCF algorithm and had processes

scattered across the nodes. Conversely, it had the worst (x-axis label Worst) performance

when jobs with one SCF method followed the other, for example (D,. . ., D, C,. . ., C). Note
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Figure 4.3 AM1 structure of Penicillin molecule obtained by GAMESS
RHF calculation

that, at any given time, PBS had a pair of jobs running on the same set of nodes, i.e., parallel

GAMESS jobs were equally scattered among assigned nodes. The other three x-axis labels

(Figures 4.4 and 4.5) correspond to some arbitrarily ordered queues.

The experiments show that GAMESSprep has a uniformly better performance than the

performance of GAMESSorig, which is due to a diminished resource contention as a result of

GAMESS adaptations.

In Figure 4.6, we a simulation of a more generic case. A mix of eight different GAMESS

jobs, each calculating a structure of a different molecule (Absinthin, Adamantane, Cyclic AMP,

Darvon, Ergosterol, Luciferin, Penicillin, and Tetrodotoxin), was chosen. The jobs were not

pre-defined with a specific SCF method. Instead, to simulate a real-world scenario, GAMESS

was started with existing input settings of the SCF method. To see the benefit of adaptive

mechanisms, the jobs were chosen such that their execution time is from several minutes to

several hours. This set of jobs was executed multiple times, in different orders, on eight

processors. The longest time equals to three hours was observed in calculating the Absinthin

molecule, while the shortest was one minute for the Adamantane molecule. In Figure 4.6, the

legend specifies different orders for executing the test set and the y-axis shows the execution
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Figure 4.4 Four-processor calculations of twelve identical molecules

Figure 4.5 Eight-processor calculations of twelve identical molecules

time normalized by the time of GAMESSprep (bar Best). The other bars correspond to

the execution of GAMESSorig jobs. Regardless of the queue order, GAMESSprep changes

the execution pattern to the most efficient one. Note that, with a certain order in a queue,

GAMESSorig jobs may perform as well as GAMESSprep. However, such a specific order

is quite difficult to achieve without application-specific knowledge. The worst performance

is observed (bar Worst) when all the jobs with one SCF algorithm precede all the jobs with

another one and when multiple processes with the conventional algorithm run on the same SMP

node. This is in agreement with the previous set of experiments. As we see from Figure 4.6,

the throughput for GAMESSprep is better than for GAMESSorig.
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Figure 4.6 Execution of all GAMESS eight-processor jobs in a queue

4.3 Dynamic Algorithm Selection in GAMESS

We consider the behavior of parallel and sequential GAMESS calculations in a dynami-

cally changing computing environment. In particular, the computing platform is shared by

the GAMESS calculations integrated with NICAN and other applications that burden the re-

sources critical for GAMESS execution. To study the adaptive features of the SCF algorithm

in GAMESS which, in the conventional mode, requires much disk I/O, another application

competing for this resource has been introduced during the GAMESS runtime. The iozone

benchmarking tool (21) has been taken as such an application. Although this tool is used

mainly for measuring a variety of operations on files, we are interested in its ability to congest

the disk I/O channel by writing to disk files of a particular size, and thus occupying a certain

percentage of the I/O channel.

The tests were executed on the Tools cluster owned by the SCL group. This cluster has

eight SMP nodes, one half of which are 2.2 GHz Intel XEON dual-processor nodes and the

other half is 1.7 GHz AMD Athlon MP 2100+ dual-processor nodes. All the nodes have 768

MB of physical memory. Each XEON node has its own scratch directory mounted on a 250 GB

7200 RPM hard drive. On the other hand, the hard drives for the AMD nodes have varying

characteristics. To correlate the performance of GAMESS with the I/O bandwidth consumed
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by iozone and to exclude the effects of processor differences, all the experiments were performed

on the XEON nodes only.

As a test problem, we consider the computation of the Luciferin molecular structure using

the RHF energy calculation. In Figure 4.7, the molecule structure is plotted using MacMolPlt

program (4; 31). For the luciferin energy calculation, GAMESS converges in 15 iterations with

the conventional SCF algorithm requiring files of at most 3.57 GB to be stored. By default,

GAMESS is given the conventional mode on input.

Figure 4.7 Luciferin molecule structure obtained by GAMESS RHF calcu-
lation

In the first set of experiments, we compare the performances of the original GAMESS with

the conventional mode (GAMESSorig), i.e., GAMESS without any kind of adaptation, and

of GAMESS in which NICAN triggers the dynamic selection of the SCF algorithm. The latter

is denoted as GAMESSdyn. Each job was executed on two processors, one per SMP node,

such that any GAMESS process may not share the (same SMP) I/O channel with another

process of the same parallel GAMESS calculation. At the GAMESS runtime, iozone starts to

introduce a certain amount of I/O Congestion (denoted here as Cio) by writing a large file to

disk on one of the SMP nodes to which the GAMESS calculation is mapped. Since parallel

GAMESS algorithms synchronize at certain times, the Cio perceived on an I/O channel may

affect the execution of all the GAMESS processes.
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Figure 4.8 Two-processor execution of parallel GAMESS job for different
amounts of I/O congestion, Cio

Figure 4.8 depicts the time per SCF iteration. Each curve represents the GAMESS perfor-

mance when different percentages, Cio, of I/O bandwidth are consumed by iozone, which starts

at the point of the fourth GAMESS iteration and continuous to the GAMESS convergence.

(Note that iteration four was chosen arbitrarily to start I/O congestion at runtime. If the

I/O congestion is present at the very start of a GAMESS calculation then the preprocessing

adaptation of GAMESS, described in (29) and denoted in this section as GAMESSprep, will

detect this congestion and adjust the SCF algorithm accordingly.) Until the fourth iteration,

GAMESSorig and GAMESSdyn have the same performances. Starting at the fourth iter-

ation, the execution time for the next SCF iterations has increased, depending on Cio. In

GAMESSdyn (solid lines in Figure 4.8), NICAN monitors the time spent to perform an SCF

iteration and compares it with the time required to perform the previous two iterations. If

the time has first increased by 10% and then either keeps constant or increases further, the

adaptation handler is invoked and the SCF algorithm is toggled from conventional to direct. In

other words, this adaptation control strategy is based on the window of three iterations and on

the increase of 10%. In the present experiments, these parameters have been dictated mainly

by the type of the molecule and type of the GAMESS calculation considered. In addition,
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the architecture parameters, such as the I/O bandwidth and the main memory size, may need

to be considered. This is left as a future research. The dashed lines in Figure 4.8 show the

performance of GAMESSorig, while the solid lines reflect the change in the course of GAMESS

execution at the sixth iteration when GAMESSdyn is used. For any Cio, the performance of

GAMESSdyn is almost indistinguishable from the “no-congestion” case (denoted with circles

in Figure 4.8) and it may be more than two times better than when GAMESSorig is used with

an I/O bandwidth fully consumed.

Figure 4.9 Total time to complete two simultaneous parallel GAMESS jobs
for different adaptivity settings

The aim of the next set of experiments is to observe the multiple parallel peer GAMESS

calculations executing concurrently in the same computing environment that experiences con-

gestion of I/O channels. Two jobs of the same GAMESS calculation using three adaptivity

settings — non-adaptive (GAMESSorig), at runtime (GAMESSdyn), and only in the prepro-

cessing stage (GAMESSprep) — are executed on either two or four processors. Figure 4.9

shows the total time taken by two jobs for each adaptivity setting. In each pair, the jobs are
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started one after another with minimal delay. GAMESSorig jobs have finished as conventional

resulting in bad resource utilization caused by mutual competition, as described in (30). With

the I/O congestion, the performance of multiple GAMESSorig jobs deteriorates further (gray

bars in Figure 4.9). Since GAMESS selects by default the conventional mode, this scenario

is rather likely to happen in a multiuser cluster environment. When preprocessing is used, in

GAMESSprep and GAMESSdyn, once the presence of the peer GAMESS conventional calcu-

lation is detected for the job starting second, its SCF algorithm is switched to the direct mode.

Thus, the GAMESSprep pair finishes with one conventional and one direct SCF algorithm

(dark bars in Figure 4.9). The GAMESSdyn pair, however, is adapted further to the I/O

channel congestion Cio = 46% by changing the algorithm of the job started first to the the

direct mode (light-colored bars in Figure 4.9). Similar to the previous set of experiments, this

change happens at the sixth iteration since the I/O congestion procedure and the control strat-

egy are taken as in the first set of the experiments in Section 4.3. We observe that dynamic

adaptations of GAMESS calculations bring 10% to 15% improvement in the cumulative exe-

cution time of two jobs on four and two processors, respectively. We expect this improvement

to hold for massively parallel large GAMESS calculations performed on computing platforms

with few I/O channels, which are requested simultaneously by many GAMESS processes.

4.4 Hyper-Threading

This subsection notes on the execution of concurrent GAMESS jobs on Intel processor

platforms equipped with Hyper-Threading (HT) technology. HT makes a physical processor

appear to the operating system (OS) as a dual logical processor. The purpose of HT is to

enable an efficient resource utilization by scheduling programs (or their parts) concurrently,

such that the idle time for the computational resources involved is minimized. In HT, there

is a copy of the architecture state for each logical processor, and the logical processors share

a single set of physical execution resources. In fact, OS recognizes the existence of multiple

logical processors as an SMP node. Thus, OS and the user programs could schedule processes

(threads) on logical processors as they would on conventional physical processors in a multi-
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processor system (20). The experiments in this section were tested on a single 2.4 GHz Intel

XEON processor machine.

Figure 4.10 Concurrent jobs: single CPU

Initially, results for the separate runs of the direct and conventional methods were obtained.

The execution times appeared rather close (Figure 4.10, the first two points). In Figure 4.10,

D and C stand for direct and conventional, respectively. To observe the effect of the HT

technology two concurrent sequential jobs were tested while recording the mean completion

time for these two jobs. Three different combinations (DD, CC, and DC in Figure 4.10) have

resulted in different execution times. As predicted, two jobs with the direct method (DD)

took almost twice as much time as a single direct execution. Since the direct method has

high CPU utilization and both jobs are performing the same task, there is a competition

for the same resource (28). Two jobs with conventional method (CC) resulted in a much

worse performance, which is not a surprise either. Due to the slower response time of the I/O

channel, both processes had to spend more time idling while competing and waiting for the I/O

resources. A combination of two different methods (DC) has resulted in the best performance

out of the three latter experiments, requiring only about 35% more time than a single D job.

This is due to the fact that D and C burden different functional units of the computer and are

scheduled for efficient execution by OS.

Another set of experiments was conducted on a two-processor SMP machine. As mentioned

earlier, HT makes a single physical processor appear as two logical processors. In this case,
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Figure 4.11 Concurrent jobs: SMP node with dual CPU

the system became a four-processor machine when HT-enabled and two-processor SMP node

when HT-disabled. In this experiment, HT was analyzed by comparing the performance of

four concurrent tasks (DDDD, DDCC, and DDDC in Figure 4.11) and the combination DDDC

has the best performance. DCCC and CCCC tests were not included in Figure 4.11 because

of their poor results effecting the plot scaling.

The presence of HT (Figures 4.10 and 4.11) did not change the pattern of the graphs.

But there is a significant difference in the execution of concurrent conventional jobs. Poor

performance under HT might be due to a lack of HT-awareness in the Linux kernel scheduler

used. In multi-processor systems, the process scheduler could even execute concurrent threads

on two logical processors corresponding to the same physical processor, while the other physical

processor is vacant (8). New releases of the kernel have patches that make the kernel HT-

aware(3). But even in such a case, application-specific execution patterns may remain unknown

to the kernel and to the operating system.
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CHAPTER 5. Conclusion and Future work

In this thesis, we have shown an improvement of electronic structure calculations exe-

cuted on SMP clusters. The advantage is observed when a GAMESS calculation adapts its

execution pattern by choosing either an in-core or out-of-core implementation. We have en-

abled the adaptation process by integrating GAMESS with the middleware NICAN. NICAN

general- and specific-use modules discover system parameters, analyze peer GAMESS jobs,

and choose a particular execution pattern for GAMESS. An attractive feature of the proposed

integration is that it requires only a few lines of trivial modifications to the original GAMESS

code and provides an example of how to utilize NICAN general-use modules for many other

high-performance applications. The throughput for the adaptive GAMESS calculations was

observed to be several times higher than for non-adaptive ones. The results were obtained for

the identical as well as different molecules.

Initially, we have considered specific case of dedicated SMP clusters, where an adaptation at

preprocessing stage is sufficient to gain throughput improvement. The adaptation is applied to

incoming jobs in order to start execution efficiently based on the current state of the computing

environment. This choice depends on system characteristics and on the execution patterns of

the peer GAMESS calculations. Later, we have presented a more sophisticated adaptation

mechanism that works in realistic environments. The GAMESS-NICAN integration is able

to switch dynamically between algorithms to adapt to the changing environment. While a

precise calibration of the decision making is of paramount importance, in this research, we

concentrated mostly on the toggling abilities of the SCF calculations and their implementation

using the middleware. To demonstrate the capabilities of GAMESS to adapt to dynamic

changes in vital system resources, we considered the effect of the disk I/O channel congestion.
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As the result of adaptations, the SCF algorithm mode may be switched dynamically based on

the the current state of the multiuser computing environment. This switching is performed by

the NICAN middleware that is tightly integrated with GAMESS and controls the adaptation

process.

Although our tests do not cover all the possible GAMESS calculations which use the SCF

algorithm, the obtained results already indicate that GAMESS benefits considerably from an

application-level middleware that facilitates its execution. The GAMESS-NICAN integration

model for dynamic adaptations may be used for any application to achieve similar purpose

of improving the resource utilization and application performance. An essential condition for

such an integration is that an application has dynamically interchangeable execution modes

or algorithms while system monitoring and job performance analysis are delegated to NICAN

modules.

5.1 Future Work

In the future, we envision to apply similar technique for post Hartree-Fock and non-SCF

calculations as well as to develop multiple adaptation control strategies suitable for many

GAMESS calculations. In particular, we plan to consider the effect of the available main

memory on dynamic adaptations. Our observations have shown that with the sufficient main

memory, the data in the out-of-core implementation could be cached in the main memory

making it accessible faster than recomputing the data in the in-core implementation. The

presented results may also be extended to various types of heterogeneity in computing platforms

and resources.
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APPENDIX. GAMESS Capabilities

A wide range of quantum chemical computations are possible using GAMESS, which

1. Calculates RHF, UHF, ROHF, GVB, MCSCF or density functional theory (DFT) self-
consistent field molecular wavefunctions.

2. Calculates the electron correlation energy correction for these SCF wavefunctions Config-
uration Interaction (CI), Many Body Perturbation Theory (MP2), coupled-cluster (CC)
or equation of Motion CC (EOM-CC) methodologies. (see summary table below).

3. Calculates semi-empirical MNDO, AM1, or PM3 models using RHF, UHF, ROHF, OR
GVB wavefunctions.

4. Calculates analytic energy gradients for any of the SCF wavefunctions, closed or open
shell MP2, or closed shell reference-based CI.

5. Optimizes molecular geometries using the energy gradient, using internal or Cartesian
coordinates.

6. Searches for saddle points (transition states) on the potential energy surface.

7. Computes the energy Hessian, and thus normal modes, vibrational frequencies, and IR
intensities. Raman intensities are a follow-up option.

8. Obtains anharmonic vibrational frequencies and intensities (fundamentals or overtones).

9. Traces the intrinsic reaction path from the saddle point towards products, or back to
reactants.

10. Traces gradient extremal curves, which may lead from one stationary point such as a
minimum to another, which might be a saddle point.

11. Follows the dynamic reaction coordinate, a classical mechanics trajectory on the potential
energy surface.

12. Computes excited state energies, wavefunctions, and transition dipole moments at various
levels
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• SCF (e.g. ROHF or MCSCF) Introduction 1-4

• CIS (RHF plus single excitations)

• more general CI functions

• Equation of Motion Coupled Cluster.

13. Evaluates relativistic effects, including

• scalar corrections, via 3rd order Douglas-Kroll transformations. Gradients are avail-
able.

• spin-orbit coupling matrix elements and the resulting spin-mixed wavefunctions.

14. Evaluates the molecular linear polarizability and the first and second order hyperpolar-
izabilities for all wavefunctions, by applying finite electric fields.

15. Evaluates both the static and frequency dependent polarizabilities for various non-linear
optical processes, by analytic means, for RHF wavefunctions. Nuclear derivatives of
the polarizabilities lead to analytic Raman spectra, also for RHF wavefunctions. The
imaginary frequency dependent polarizabilities can also be obtained.

16. Obtains localized orbitals by the Foster-Boys, Edmiston-Ruedenberg, or Pipek-Mezey
methods, with optional SCF or MP2 energy analysis of the LMOs.

17. Calculates the following molecular properties:

• dipole, quadrupole, and octopole moments

• electrostatic potential

• electric field and electric field gradients

• electron density and spin density

• Mulliken and Lowdin population analysis

• virial theorem and energy components

• Stone’s distributed multipole analysis

18. Models solvent effects by

• effective fragment potentials (EFP)

• polarizable continuum model (PCM

• surface and simulation of volume polarization for electrostatics (SS(V)PE)

• conductor-like screening model (COSMO)

• self-consistent reaction field (SCRF)
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19. Performs all-electron calculations based on the Fragment Molecular Orbital (FMO) method.

20. When combined with the add-on TINKER molecular mechanics program, performs Sur-
face IMOMM or IMOMM QM/MM type simulations. Download from
http://www.msg.ameslab.gov/GAMESS/GAMESS.html

21. When combined with the add-on VB2000 program, performs valence bond calculations.
See http://www.scinetec.com/ vb for more information.

22. When combined with the add-on NBO program, performs Natural Bond Order analyses.
This program is available at http://www.chem.wisc.edu/ nbo5, for a modest license fee.


