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The study of water hammer flows has great significance in a wide range of 
industrial and municipal applications including power plants, petroleum 
industries, water distribution systems, etc. The understanding of water 
hammer phenomena is also important in hydraulic conveyance systems such 
as stormwater and sanitary sewer systems. Although the latter two systems 
are generally designed based on gravity flow, in practice large variations in 
the inflow and outflow from these systems may result in the pressurization 
of the systems that, in turn, may produce water hammer phenomena. For 
modeling this type of flows, several numerical approaches have been 
proposed. The efficiency of a model is a critical factor for Real-Time 
Control (RTC), since several simulations are required within a control loop 
in order to optimize the control strategy, and small simulation time steps are 
needed to reproduce the rapidly varying hydraulics (León et al. 2006). RTC 
is becoming increasingly indispensable for industrial and municipal 
applications in general. For instance, in the case of water distribution 
systems, RTC facilitates delivery of safe, clean and high-quality water in the 
most expedient and economical manner.  

Among the approaches proposed to solve the water hammer equations 
are the Method of Characteristics (MOC), Finite Differences (FD), Wave 
Characteristic Method (WCM), Finite Elements (FE), and Finite Volume 
(FV). In-depth discussions of these methods can be found in Chaudhry and 
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Hussaini 1985, Ghidaoui and Karney 1994, Szymkiewicz and Mitosek 2004, 
Zhao and Ghidaoui 2004, and Wood et al. 2005. Among these methods, 
MOC-based schemes are most popular because these schemes provide the 
desirable attributes of accuracy, numerical efficiency, programming 
simplicity, and ability to handle complex boundary conditions (e.g., Wylie 
and Streeter 1993; Ghidaoui et al. 2005; Zhao and Ghidaoui 2004). In fact, 
in a review of commercially available water hammer software packages, it is 
found that eleven out of fourteen software packages examined use MOC 
schemes (Ghidaoui et al. 2005). 

Recently, FV Godunov-Type Schemes (GTS), which belong to the 
family of shock-capturing schemes, have been applied to water hammer 
problems with good success. The underlying idea of GTS is the Riemann 
problem that must be solved to provide fluxes between adjacent 
computational cells. The first application of GTS to water hammer problems 
is due to Guinot (2000), who presented first and second-order schemes based 
on Taylor series expansions of the Riemann invariants. He showed that his 
second-order scheme is largely superior to his first-order scheme, although 
the Taylor series development introduces an inevitable inaccuracy in the 
estimated pressure, especially in the case of low pressure-wave celerities. A 
second application is due to Hwang and Chung (2002), whose second-order 
accuracy scheme is based on the conservative form of the compressible flow 
equations. Although this scheme requires an iterative process to solve the 
Riemann problem, these authors state that their scheme requires a little more 
arithmetic operation and CPU time than the so-called Roe's scheme, but is 
able to get more accurate computational results than the latter scheme. Later, 
Zhao and Ghidaoui (2004) presented first and second-order schemes for 
solution of the non-conservative water hammer equations. They show that, 
for a given level of accuracy, their second-order GTS requires much less 
memory storage and execution time than either their first-order GTS or the 
fixed-grid MOC scheme with space-line interpolation. Although highly 
efficient, this chapter shows that the second-order scheme of Zhao and 
Ghidaoui (2004) has an overall accuracy of at most first-order.  

The reason why the second-order scheme of Zhao and Ghidaoui (2004) 
has at most only first-order rate of convergence is because this scheme uses 
a second-order formulation solely at the internal cells, but not at the 
boundaries for which only a first-order formulation is used. This chapter 
focuses on the formulation and assessment of a second-order accurate 
(internal and boundary nodes) FV scheme for modeling water hammer 
flows. Unlike the scheme of Zhao and Ghidaoui (2004), the proposed 
approach uses the conservative form of the water hammer equations. To 
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achieve second-order accuracy at the internal cells in the proposed approach, 
the Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) - 
Hancock method is used, which also was used by Zhao and Ghidaoui 
(2004). Thus, the only difference between the second-order scheme of Zhao 
and Ghidaoui and the proposed approach is in the order of accuracy used at 
the boundaries (first-order in the scheme of Zhao and Ghidaoui and second 
order in the proposed approach). 

21.1  Governing Equations  

The governing equations for water hammer flows are classically derived 
from the conservation of mass and momentum. For a pipe of constant 
diameter, the water hammer equations can be written in their vector 
conservative form as follows (e.g., Guinot 2003): 

       (21.1) 

where the vector variable U, the flux vector F and the source term vector S 
may be written as: 

  (21.2) 

Where: 
ρf = the fluid density,  
Af = the full cross-sectional area of the conduit,   

Ω = ρf Af = the mass of fluid per unit length of conduit,  
 Qm = Ωu = the mass discharge,  

p = the pressure acting on the center of gravity of Af,  
g = the gravitational acceleration,  

S0 = the slope of the conduit, and  
Sf  = the slope of the energy line.  

Equation 21.1 does not form a closed system in that the flow state is 
described using three variables: Ω, p and Qm. However, it is possible to 
eliminate the pressure variable by introducing the definition of the celerity of 
the pressure-wave (a), which relates p and Ω:  
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    (21.3) 

In Equation 21.3, “a” is computed as usual (using pipe properties). 
Integrating the differentials dΩ and dp (Af is constant) in Equation 21.3 leads 
to the following equation that relates p and Ω: 

 (21.4) 

where pref is a reference pressure for which the density is known (ρf ref), and 
Ωref = ρf ref Af. The water density measured at a temperature of 4 degrees 
Celsius under atmospheric pressure conditions is 1000 kg/m3. Thus, the 
reference density and pressure when the liquid is water can be taken as 
1000 kg/m3 and 101325 Pa, respectively. The flow variables used in this 
chapter are Ω and Qm. However, the engineering community prefers to use 
the piezometric head h and flow discharge Q. The latter variables can be 
determined from Ω and Qm as follows: 

      (21.5) 

where h is measured from the conduit bottom. The absolute pressure head 
(H) in meters of water can be obtained as H = h + 10.33. 

21.2  Formulation of Finite Volume Godunov-type  
          Schemes 

This method is based on writing the governing equations in integral form 
over an elementary control volume or cell, hence the general term of Finite 
Volume (FV) method. The computational grid or cell involves discretization 
of the spatial domain x into cells of length ∆x and the temporal domain t into 
intervals of duration ∆t. The ith cell is centered at node i and extends from i-
1/2 to i+1/2. The flow variables (Ω and Qm) are defined at the cell centers i 
and represent their average value within each cell. Fluxes, on the other hand 
are evaluated at the interfaces between cells (i-1/2 and i+1/2). For the ith 
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cell, the integration of Equation 21.1 with respect to x from control surface i-
1/2 to control surface i+1/2 yields: 

    (21.6) 

where the superscripts n, n+1/2,  and n+1 reflect the t, t+∆t/2, and t+∆t time 
levels, respectively. In Equation 21.6, the determination of U at the new time 
step n+1 requires the computation of the numerical flux (F 2/1

2/1
+
+

n
i ) at the cell 

interfaces and the evaluation of the source terms within each cell. The source 
terms are introduced into the solution through time splitting using a second-
order Runge-Kutta discretization (e.g., Zhao and Ghidaoui 2004, León et al. 
2006). In the Godunov approach, the flux F 2/1

2/1
+
+

n
i  is obtained by solving the 

Riemann problem with constant states U n
i  and U n

i 1+ . This way of computing
the flux leads to a first-order accuracy of the numerical solution. To achieve 
second-order accuracy in space and time, the MUSCL-Hancock method is 
used in this chapter. For details about the MUSCL-Hancock method, see 
Toro 2001. In what follows, an efficient approximate Riemann solver for 
water hammer flows is proposed.  

21.2.1 Riemann Solver for Water Hammer  

In this type of flow, the pressure-wave celerity is constant and the order of 
magnitude of u is much smaller than a, so the convective term in the 
governing equations is neglected. The fact that u is much smaller than a 
means that the characteristics travel in opposite directions and the star region 
(*), which is an intermediate region between the left (L) and right (R) states, 
contains the location of the initial discontinuity. Thus, the flow variables in 
the star region are used to compute the flux. Simple estimates for Ω* and 
Qm* (neglecting convective terms in governing equations) can be obtained 
by solving the Riemann problem for the linearized hyperbolic system ∂U/∂t 
+ ∂F(U)/∂x = 0 that yields: 

   (21.7)  



416    Finite-Volume Scheme for Modeling Water Hammer Flows 

   (21.8) 

The flux is obtained by plugging the estimated values of Ω* and Qm* 
into the expression for F in Equation 21.2.   

21.3  Second-Order Accurate Boundary Conditions  

For the quality of the numerical solution to be preserved, it is necessary to 
use the same order of reconstruction in all the cells of the computational 
domain (e.g. Guinot 2003). The MUSCL-Hancock scheme uses one cell on 
each side of the cell in which the profile is to be reconstructed. Therefore, 
one cell is missing when the profile is to be reconstructed within the first and 
last cells of the computational domain. The missing information at the 
boundaries is restored by adding one virtual cell at each end of the 
computational domain. The virtual cell on the left-hand side is numbered 0, 
while the cell on the right-hand side of the domain is numbered Nx+1 (Nx = 
number of cells in the computational domain). The algorithm consists of two 
steps: (i) determination of U at the boundaries 1/2 and Nx+1/2, and (ii) 
determination of the average flow variables U over the virtual cells.  

Figure 21.1  Second-order boundary conditions by adding virtual cells. 
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21.3.1  Determination of Flow Variables at the Boundaries 

It is assumed that the average flow variables in the cells 0 to Nx+1 are 
known from the previous time step and that a second-order reconstruction 
has been carried out in the cells 1 and Nx (Figure 21.1). The unknown 
boundary flow variables (Ub) are determined using the theory of Riemann 
invariants. The reader is referred to Leveque 2002 for a deeper discussion on 
this theory. The generalized Riemann invariants for water hammer flows 
(neglecting convective terms) are given by (e.g. Guinot 2003): 

  (21.9) 

Due to space limitations, only the procedure to compute the flux at the 
left-hand boundary is provided in this section. However, the algorithm is 
very similar for the right-hand boundary. The left-hand boundary (b) is 
connected to the left of the first cell (1,L) along the characteristic dx/dt = - 
am (Figure 21.2).  

Figure21.2  Path of integration at left-hand boundary. 

Thus, for the left-hand boundary, the second relationship of Equation 
21.9 is integrated between b and 1,L, which integration leads to the 
following relation: 
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    (21.10) 

Another relationship is available from the boundary condition.  

 (21.11) 

Depending on the type of boundary condition imposed, it may or may not 
be necessary to use an iterative technique to solve the system of Equations 
21.10 and 21.11. For instance, let's consider that the pressure is prescribed at 
the left-hand boundary (pb). This is equivalent to prescribing a mass per unit 
length Ωb, computed from Equation 21.4. 

  (21.12) 

Since Ωb is known, Qmb can be determined from Equation 21.10. Once 
Ωb, Qmb, and Af pb are known, the flux at the left-hand boundary Fb = F1/2 
can be computed by using the flux relation in Equation 21.2.  

21.3.2  Determination of U in the Virtual Cells 

Virtual cells are used only to achieve second-order accuracy in the first and 
last cells of the computational domain. Therefore, they should maintain the 
conservation property of the FV scheme. The latter means that no unphysical 
perturbations into the computational domain may be introduced by the 
virtual cells. These constraints may be satisfied: (i) by assuming that the 
outflowing wave strengths in the virtual cells are the same as those at the 
boundaries, and (ii) by adjusting the inflowing wave strengths in the virtual 
cells in such a way that the fluxes in these cells are the same as those at the 
respective boundaries. For the left hand boundary, a simple formulation that 
satisfies these two conditions is given by (Guinot 2003): 

 (21.13) 
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Note that the inflowing and outflowing fluxes in the cell 0 are the same, 
which means that no perturbations are introduced from the virtual cells into 
the computational domain when updating the solution. Notice also that with 
this formulation, the outflowing information advected by the virtual cells is 
the same as that at the boundaries. 

21.4  Evaluation of the Model  

The numerical efficiency of the proposed scheme is tested against the 
second-order FV scheme of Zhao and Ghidaoui (2004), and the fixed-grid 
MOC scheme with space-line interpolation. These schemes are chosen for 
comparison because the first one is highly efficient and the second one 
currently is the most popular approach for modeling water hammer 
transients. Three test cases are considered in this section. These are:  

1. Gradual and partial downstream gate closure in a
frictionless horizontal pipe. 

2. Instantaneous downstream gate closure in a frictionless
horizontal pipe.  

3. Instantaneous downstream gate closure in a pipe with
friction.  

The proposed approach is valid for pipes with and without friction. In the 
two first tests, frictionless pipes are used only because in such cases the 
physical dissipation is zero, so any dissipation or amplification in the results 
is solely due to the numerical scheme.  

In the following sections, the number of grids, grid size and Courant 
number used in each example are indicated in the relevant figures and thus 
will not be repeated in the text. The CPU times that are reported in this 
chapter were averaged over three realizations and computed using a HP 
AMD Athlon ™ 64 processor 3200 + 997 MHz, 512 MB of Ram notebook. 

21.4.1 Test 1  

This test is used to compare the numerical efficiency of the proposed scheme 
with the second-order scheme of Zhao and Ghidaoui (2004) and the fixed-
grid MOC scheme with space-line interpolation for smooth transients (i.e., 
flows that do not present discontinuities). It is recalled that these schemes 
are chosen for comparison because the first one is highly efficient and the 
second one currently is the most popular approach for modeling water 
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hammer transients. The test considers one horizontal frictionless pipe 
connected to an upstream reservoir and a downstream gate. Because of the 
absence of friction, any dissipation or amplification in the results is solely 
due to the numerical scheme. The length of the pipe is 10000 m and its 
diameter is 1.0 m, the pressure-wave celerity is 1000 m/s, the upstream 
reservoir constant head h0 is 200 m, and the initial steady-state discharge is 
2.0 m3/s. The transient flow is obtained after a gradual and partial closure of 
the downstream gate. For simplicity, this gate is ideally operated in such a 
way that the flow discharge at the gate is given by the following 
relationship: 

Notice that after a gate is partially closed, the flow discharge at the gate 
is not constant but oscillates with the same frequency of the water hammer 
flow until steady state is reached. In this test, for simplicity, after the gate is 
partially closed, a constant discharge is enforced at the gate, which in a real 
case would correspond, for instance, to fluctuating the opening of the gate 
with the same frequency as the water hammer flow. However, the results 
presented in this section are valid as long as the resulting flow corresponds 
to a smooth transient.  

As suggested by Ghidaoui et al. (1998), the energy equation of Karney 
(1990) can be used to obtain a quantitative measure of numerical dissipation. 
The energy equation states that the total energy (sum of internal and kinetic) 
can only change as work is done on the fluid in the conduit or as energy is 
dissipated from it. In this test the friction is set to zero, so the rate of total 
energy dissipation is zero. Thus, any dissipation is solely due to the 
numerical artifacts. At the downstream boundary, fluid is exchanged with 
the environment across a pressure difference; therefore work is produced at 
this boundary. At the upstream boundary, the head at the reservoir is the 
same as the head after the transient flow has reached steady state. Thus, no 
work is produced at the upstream end of the pipe (see Karney 1990). 
Because work is produced at the downstream boundary, the total energy 
(sum of kinetic and internal) is not invariant with time. Rather it changes 
periodically with time. 

Figure 21.3 shows relative energy traces for the schemes under 
consideration. The relative energy is expressed as (E - Es)/(E0p - Es), where 
E0p is the total energy after the flow discharge at the gate is constant 



Finite-Volume Scheme for Modeling Water Hammer Flows     421 

(e.g. first energy peak in Figure 21.3), Es is the total energy after flow has 
reached steady state (i.e., by numerical dissipation) and E is the total energy 
at any time. Figure 21.3 shows clearly a reduction in the relative energy as 
the gate is gradually closed until the flow discharge at the gate is constant (t 
= 20 s). For t > 20 s, the energy plot changes periodically with the same 
frequency of the water hammer flow. If numerical dissipation would be zero, 
the energy peaks in Figure 21.3 must be maintained. Thus, the numerical 
dissipation (numerical error) can be obtained as follows: 

 (21.14) 

In this way, if E = E0p there is no numerical dissipation. Likewise, if E = 
Es (steady state), the numerical dissipation is 100 %. The evaluation of E is 
made at the ninth energy peak in Figure 21.3  (t  ≈ 370 s). 

Figure 21.3  Energy traces for test No 1 (Nx = 40 cells, ∆x = 250 m, Cr = 0.8). 

To compare the efficiency of the schemes, the numerical dissipation is 
plotted against the number of grids on log-log scale and shown in 
Figure 21.4. In this figure, the reduction in numerical dissipation when the 
number of grids is increased can be approximated as piecewise linear (on 
log-log scale). Therefore, for a range of Nx, the relationship between 
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numerical dissipation and Nx can be fitted to power functions of the form 
(E0p - E)/ (E0p - Es)= c1 Nxc2. In this power function form, c2 represents the 
rate of convergence of the scheme. The power functions presented in Figure 
21.4 show that the rate of convergence of the proposed scheme is second-
order, however the order of convergence of the MOC scheme and the 
scheme of Zhao and Ghidaoui, which is 2nd order at the internal cells but 
only 1st order at the boundaries is at most only first-order. The fact that the 
formulated boundary conditions preserve the accuracy of the numerical 
scheme for the internal cells (second-order), demonstrates that the proposed 
boundary conditions are second-order.   

Figure 21.4  Numerical error versus number of grids for test No 1  
(t  ≈  370 s, Cr = 0.8). 

An objective comparison of efficiency requires measuring the CPU time 
needed by each of the schemes to achieve a given level of accuracy (i.e., 
Zhao and Ghidaoui 2004, León et al. 2005). Five levels of numerical error in 
the range from 0.5% to 10% were selected. The number of grids needed by 
each of the schemes to achieve the five levels of numerical error were 
obtained from Figure 21.4, and when necessary using the power functions 
shown in this figure. The number of grid points is in turn used to compute 
the CPU times. The plot of numerical error versus CPU time is shown in 
Figure 21.5. For the conditions presented in Figure 21.5, it is found that the 
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proposed scheme is about 9 to 2100 times faster to execute than the MOC 
scheme, and 10 to 15200 times faster than the scheme of Zhao and Ghidaoui. 
The difference in efficiency between the proposed scheme and the other two 
schemes increases exponentially with the level of accuracy. 

Figure 21.5  Relation between level of accuracy and CPU time for  
test  No 1 (t = 370 s, Cr = 0.8). 

21.4.2 Test 2 

This test is used to compare the accuracy and numerical efficiency of the 
proposed scheme with the other schemes under consideration for strong 
transient flows (i.e., flows that do present discontinuities). The test rig is the 
same as the previous test, except that in this case, the transient flow is 
obtained after an instantaneous closure of the downstream gate. A portion of 
the simulated pressure traces for the resulting transient as simulated by the 
schemes under consideration using a coarse grid (Nx = 10 cells) for Cr = 0.5 
and Cr = 0.1 are shown in Figures 21.6 (a) and 21.6 (b), respectively. 
Additional simulations were performed using a Cr = 1.0. As expected, all 
schemes under consideration have reproduced the analytical solution when 
Cr = 1.0 (For clarity, results are not shown). A very coarse grid was used 
only to illustrate better the benefit of the proposed scheme over the other 
schemes under consideration for Cr < 1.0. The reason of using low Courant 
numbers in the present test is because conduits in large systems tend to have 
different lengths and pressure wave celerities can be very different specially 
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in two-phase flows making it impossible to satisfy a Courant condition equal 
to one.  

As shown in Figures 21.6 (a) and 21.6 (b), the MOC scheme is much 
more dissipative than either the second-order scheme of Zhao and Ghidaoui 
or the proposed scheme. The results also show that the proposed scheme is 
less dissipative than the scheme of Zhao and Ghidaoui. It is recalled that the 
only difference between the second-order scheme of Zhao and Ghidaoui and 
the proposed approach, is that only a first-order boundary condition is used 
in the former approach, and a second-order one in the latter. Thus, the 
proposed scheme is less dissipative (more accurate) than that of Zhao and 
Ghidaoui, solely because a higher-order of accuracy is used at the 
boundaries. 

Figure 21.6  Pressure traces at downstream gate for test No 2  
(Nx = 10 cells, ∆x = 1000 m) using (a) Cr = 0.5, and (b) Cr = 0.1. 

As in the previous test, the energy equation of Karney (1990) is used to 
obtain a quantitative measure of numerical dissipation. In this test the 
friction is set to zero, so the rate of total energy dissipation is zero. 
Moreover, because the downstream gate is closed instantaneously, no fluid 
is exchanged with the environment across a pressure difference; therefore 
the work produced at the downstream end of the pipe is also equal to zero 
(Ghidaoui et al. 1998). Thus, the total energy (sum of kinetic and internal) in 
the pipe E is invariant with time (i.e., E/E0 = 1), where E0 is the initial total 
energy.  

Figure 21.7 shows relative energy traces E/E0 for the schemes under 
consideration for a relatively coarse grid (Nx = 10 cells). This figure shows 
that, the numerical dissipation produced by the proposed scheme is 
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significantly smaller than that obtained by either the MOC scheme or the 
Zhao and Ghidaoui approach. For instance, after 200 s, 93% of the initial 
energy has been dissipated by the MOC scheme, 61% by the scheme of 
Zhao and Ghidaoui and 50% by the proposed scheme. The pressure head 
trace results in Figure 21.6 and the energy trace results in Figure 21.7 show 
that, for coarse grids, the proposed scheme is more accurate than either the 
MOC scheme or the approach of Zhao and Ghidaoui. However, it is recalled 
that an objective comparison requires measuring the CPU time needed by 
each of the schemes to achieve the same level of accuracy (i.e., Zhao and 
Ghidaoui 2004, León et al. 2005).  

Figure 21.7  Energy traces for test No 2  
(Nx = 10 cells, ∆x = 1000 m, Cr = 0.5). 

To compare the efficiency of the schemes, the numerical dissipation 
(numerical error) is plotted against the number of grids on log-log scale and 
shown in Figure 21.8. The power functions for the proposed and Zhao and 
Ghidaoui schemes for Nx larger than 640 are almost the same and it is given 
approximately by (E0 - E)/ E0 = 2.852 Nx-0.666. For the MOC scheme, the 
power function is given approximately by (E0 - E)/ E0  = 5.046 Nx-0.50, for 
Nx > 640. 

As shown in Figure 21.8, the rate of convergence of the MOC scheme is 
smaller than that of Zhao and Ghidaoui and the proposed scheme. Among 
the last two approaches, for relatively coarse grids, the rate of convergence 
of the scheme of Zhao and Ghidaoui is greater than that of the proposed 
scheme, however the accuracy of the proposed scheme is superior to that of 
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Zhao and Ghidaoui. For relatively fine grids, the rate of convergence of the 
scheme of Zhao and Ghidaoui converges to that of the proposed scheme, and 
the accuracy of the proposed scheme converges to that of Zhao and 
Ghidaoui. It was pointed out previously that the proposed scheme is less 
dissipative (more accurate) than that of Zhao and Ghidaoui, solely because a 
second-order boundary condition is used in the proposed approach and only 
a first-order boundary condition in the scheme of Zhao and Ghidaoui. The 
last two sentences imply that when a large number of grids is used, the effect 
of the order of accuracy used at the boundary condition becomes negligible. 

Figure 21.8  Numerical error versus number of grids for test No 2  
(t  =  400 s, Cr = 0.5). 

The reader can notice that the rate of convergence of the schemes under 
consideration is not even first-order (0.67 for the proposed and Zhao and 
Ghidaoui schemes and 0.50 for the MOC scheme). This is because of the 
presence of discontinuities in the solution (strong transients), in which case a 
second-order Total Variation Diminishing (TVD) method is at most 
first-order accurate at the discontinuity regions (i.e., LeVeque 1990). The 
maximum rate of convergence, which usually is used to name the order of 
accuracy of a scheme is achieved when applying the scheme to the solution 
of smooth transients. The order of rate of convergence of the proposed 
scheme for smooth transients is second order (Test 1). Thus, the proposed 
scheme is second-order away from discontinuity regions and automatically 
reverts to first-order at discontinuities. 
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Figure 21.9  Relation between level of accuracy and CPU time for test  No 2 
(t = 400 s, Cr = 0.5). 

For comparison of CPU times, five levels of numerical error were 
selected (1% - 15%). The number of grids needed by each of the schemes to 
achieve the five levels of numerical error, were obtained from Figure 21.8, 
and when necessary using the power functions above given. These number 
of grids in turn were used to compute the CPU times, which results are 
shown in Figure 21.9. The results show that, to achieve the same degree of 
accuracy, the proposed scheme is much faster to execute than the MOC 
scheme, and significantly faster than the scheme of Zhao and Ghidaoui for 
coarse grids. For instance, for a numerical error of 10%, the proposed 
scheme requires a CPU time of only about 1/50 of that required by the MOC 
scheme, and is about 10% faster to execute than the Zhao and Ghidaoui 
approach. When the level of numerical error approaches to zero (large 
number of grids is used), the numerical efficiency of the proposed scheme 
converges to that of Zhao and Ghidaoui (See Figures 21.8 and 21.9). For the 
conditions presented in Figure 21.9, it is found that the proposed scheme is 
about 30 to 1600 times faster to execute than the MOC scheme, and 5% to 
17% faster than the scheme of Zhao and Ghidaoui.  

21.4.3  Test 3  

This test is used (i) to compare the accuracy of the proposed scheme with the 
scheme of Zhao and Ghidaoui in presence of friction, and (ii) to measure the 
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relative magnitude of numerical and physical dissipation. The wall friction is 
modeled using the modified formula of Brunone by Vítkovsky et al. (2000).  

 (21.15)   

where fq is the Darcy-Weisbach friction factor, u denotes velocity, k is the 
Brunone’s friction coefficient, and sign(u) = +1 for u ≥ 0 or –1 for u < 0. 

The test rig is the same as in test 1, except that in this case, friction is 
introduced with fq = 0.020 and k = 0.025. The transient flow, as in test 2, is 
obtained after an instantaneous closure of the downstream gate that 
corresponds to a strong transient flow. Since for strong transient flows, the 
fixed-grid MOC scheme with space-line interpolation is much less efficient 
than both the proposed approach and the scheme of Zhao and Ghidaoui, only 
the two latter schemes are considered in this test. Figure 21.10 shows the 
energy traces obtained with the schemes under consideration. The 
computations were performed for different number of grids (Nx). The 
“exact” solution curve is obtained by ensuring that the numerical dissipation 
tends to zero through setting Cr = 1.0 and performing grid refinement. This 
means that the dissipation shown by the “exact” curve is purely physical. For 
instance, after 130 s of simulation time, 86% of the initial energy is 
dissipated by wall friction (zero numerical dissipation). The energy plots of 
the proposed scheme and the scheme of Zhao and Ghidaoui for Cr = 0.5, and 
Nx = 10 and 50 cells display both physical and numerical dissipation. For 
instance, for Nx = 10 cells and after 130 s of simulation time 93% (i.e., 86 % 
physical and 7% numerical) of the initial energy is dissipated by the scheme 
of Zhao and Ghidaoui, and 91% (i.e., 86% physical and 5% numerical) of 
the initial energy is dissipated by the proposed scheme. The CPU times 
required by both schemes are very similar, which means that the proposed 
scheme is more accurate for the same computational effort. To contrast the 
numerical efficiency of these schemes, the number of grids needed by each 
of the schemes to achieve zero numerical dissipation were estimated by trial 
and error. These numbers of grids in turn were used to compute the CPU 
times. It was determined that the proposed scheme required 20% less CPU 
time than the scheme of Zhao and Ghidaoui. As is test 2, the superiority in 
numerical efficiency of the proposed approach with respect to the scheme of 
Zhao and Ghidaoui is not too important as in the case of smooth transient 
flows.  
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  Figure 21.10  Energy traces showing both numerical and physical dissipation. 

21.5  Conclusions 

This chapter focuses on the formulation and assessment of a FV-based 
second-order accurate shock-capturing scheme for modeling water hammer 
flows. The key results are as follows: 

1. Numerical tests show that the proposed second-order
formulation at boundary conditions (achieved by using 
virtual cells) is second-order. In addition, the proposed 
formulation maintains the conservation property of FV 
schemes and introduces no unphysical perturbations into 
the computational domain.  

2. Numerical tests were performed for smooth (i.e., flows
that do not present discontinuities) and sharp transients. 
The results show that the efficiency of the proposed 
scheme is superior to both the MOC scheme and the 
second-order FV scheme of Zhao and Ghidaoui.  

3. The high efficiency of the proposed scheme is important
for RTC of water hammer flows in large networks.  
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