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Some Connections Between Modern and 
Classical Control Concepts 
This is a tutorial paper that discusses the synthesis of optimum constant-gain feedback 
controllers for stationary linear systems. These controllers minimize the mean value 
of a weighted sum of squared output error and squared input in the presence of sta
tionary random gaussian disturbances. Symmetric root locus is shown to be a useful 
graphical technique for visualizing closed loop pole locations as functions of the per
formance index weighting parameters and the disturbance spectral densities. The 
main component of the optimal controller is a minimum variance observer that esti
mates the system state variables using a measurement of the output and a set of observer 
gains. These estimated states are fed back to the input with a set of optimal regulator 
gains. This optimal controller is interpreted here as a classical compensator. A 
fourth order example is used throughout the paper to help clarify the concepts. 

Stationary Linear Systems With Quadratic 
Criteria and No Disturbances 

Consider a stationary linear dynamic system with a single 
input u{t), a single output y(t), and no disturbances. Such a sys
tem may be described by giving the transfer function F(s), where 

F(s) A y(s)/u(s) and Y(s) = JV(s)/A(s). (1) 

[y(s), u(s)} are the Laplace transforms of [y(t), u(t)], and 

A(s) = s" + ens"'1 + ... a„, (2) 

N(s) = 6lS»-» + to""2 + . . .&„ (3) 

The system may also be described in terms of arbitrary state 
variables 

x = Fx + gu; hTx, (4) 

where £ is a state vector with n-components [xi: . . ., xn], F is 
the dynamics matrix, g is the input distribution vector, and h 
is the output distribution vector. Clearly 

Y(s) = hT(sI - F)~ig. 

If only (1), (2), and (3) are given, a convenient state variable 
form is obtained by using y and its first n — 1 derivatives as the 
states, i.e., 

xT = Iv, 2/i, • • -i V 

where 

Vi = dWy/dtM, i = 1, 

In this case it can be shown that 

(5) 

(6) 
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V = [1,0, . . . , 0 ] . 

(7) 

(8) 

(9) 

The form (5) is sometimes called the "observability canonical 
form" and the quantities gt are called "Markov parameters." 

A simple set of criteria for comparing regulator designs is as 
follows: 

Specify the initial conditions, 

[x,(0), ...,z„(0)] = ^ (0) (10) 

Evaluate a weighted sum of the integral-square output error 
and the integral-square input: 

J 
- ' • / • 

(ay2 + bu2)dt (11) 

where a and b are specified constants. 

The optimal regulator minimizes [11] subject to (1) and [10]; 
it involves linear feedback of the state vector (see e.g. [1]): 

U = — CiXi Cft-Cft ^—^ C iCj (12) 

where cr A. [a, . . ., c„] are the feedback gains, which are inde
pendent of the initial conditions. The closed-loop eigenvalues 
are determined by the gains as the roots of the characteristic 
equation 
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\sl - F + gcT\ = 0, (13) 

which is obtained by substituting (12) into (2): 

x = (F - gcT)x -* [si - F + ffcrMs) = 0. (14) 

Symmetric Root Locus for Determining the Poles 
of the Optimal Regulator 

It has been shown [2, 3, 4] that the closed-loop poles (or eigen
values) of the optimal regulator are the stable (left-half plane) 
roots of 

aY{s)Y{-s) + 6 = 0, (15) 

which we shall call the "symmetric root characteristic equation" 
(SRCE) because its roots are symmetric with respect to the real 
and imaginary axes in the s-plane. In Evans' root locus form, 
the SRCE is 

-b/a = iV(s)iV(-s)/A(s)A(-s) (16) 

Thus, to plot a locus of the optimal closed-loop poles versus the 
parameter a/b, one "reflects" the poles and zeros of the open-
loop transfer function across the imaginary axis of the s-plane 
and plots either the 0 deg or the 180 deg root locus, whichever 
one has no locus segments crossing the jw axis (cf. [4]). We 
shall call this a "symmetric root locus" (SRL). 

An example helps to clarify the concept. Consider a system 
consisting of the two equal masses connected by a spring (see 
Fig. 1), where we wish to position the right mass at y — 0, 
using a control force u, acting on the left mass. We shall take 
as performance index, 

/ - Vi 
/ : 

(ay2 + bu2)dt. (17) 

If we measure time in units of \fmfk and u in units of ft, then the 
transfer function from u to y becomes 

y(s)/u(s) = l/s2(s* + 2) A N(s)/A(s) = F(s). (18) 

The SRL equation is, therefore, 

-b/a = l/s*(s2 + 2)2. (19) 

Fig. 2 shows the SRL versus a/b. 

For a/b = 1, the roots of (19) are: 

s = ( + 0.156 + 1.457J), ±(0.531 + 0.428J). (20) 

For a/b = 0, the roots of (19) are double the open-loop roots 
of s = 0, 0, ± -\/2j and the obvious minimum of (17) with a = 0, 
6 =# 0, is u = 0. This is a trivial result since with a = 0 we are 
not weighting the output error. 

For a/b —> oo, the roots of (19) are 

cos — ± j sin -
> 

3ir 
cos — ± j sin 

3?r \ 

8 ) ' 
(21) 

the so-called "Butterworth configuration" of poles. The control 
amplitude and bandwidth become very large; in fact, the con
trol tends to a sum of impulses and derivatives of* impulses (cf. 
[5]). 

Determination of the Optimal Regulator Gains 
For single-input, single-output systems (y and u scalars), the 

state feedback gains (12) may be determined by comparing coef
ficients of the closed-loop characteristic equation (13) with those 
of the desired characteristic equation, i.e., a characteristic equa
tion whose roots are the stable (left half plane) roots of (15). 

For the example described by equation (16), 

*- m 
k 

-nmtpsv^-
<H 

m 

Fig. 1 Example system. Output is y, input is u. 

Fig. 2 Symmetric root locus of optimal regulator poles versus ratio 
of weighting parameters a/b 
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Fig. 3 Pole-zero configuration of Laplace transform of output yis) 
divided by Al, where y(0) = A/, = y(0) =y(0) = ytO) = 0 

u = — CiV - c2y - cai) - ciy, (22) 

and the closed-loop characteristic equation (19) is given by 

s< + clS3 + (2 + c3)S2 + ciS + d = 0. (23) 

For a/b = 1, the desired characteristic equation is, from (20): 

Us + 0.156)2 + (1.457)2][(s + 0.531)2 + (0.429 )2] = 0, 

or 
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s* + 1.374S3 + 2.943s2 + 2.425s + 0.997 = 0. (24) 

Comparing coefficients of like powers of s in (23) and (24) gives: 

ci = 0.997, c2 = 2.425, c3 = 0.943, c4 = 1.374. (25) 

An efficient computer program for calculating the poles and 
gains of the optimal regulator is described in [6]. 

The Laplace transform of the response of the closed-loop sys
tem to the initial conditions 

2/(0) = A;, 0(0) = 2/(0) = 1/(0) = 0 (26) 

is shown in Fig. 3 in the form of a pole-zero plot. From the 
figure it is clear that the response will be primarily associated 
with the complex poles at s = — 0.531 + 0.428,7, since the other 
complex poles at s = — 0.156 + 0A57J are quite close to zeroes. 
Thus most of the output error will attenuate with a time con
stant of 1/0.531 = 1.9 time units, but there will be a small 
amplitude oscillation at a frequency of 1.457 rad/time unit 
that will attenuate with a time constant of 1/0.156 = 6.4 time 
units. 

Minimum Variance Observers for Stationary 
Linear Systems With Random Disturbances 

Consider the same stationary linear system (4) with stationary 
random disturbances added: 

x = Fx + gu + yw 

z — hTx + v, 

(27) 

(28) 

where w and v are independent zero-mean, white noise processes 
with constant spectral densities q and r, respectively. The initial 
conditions are also random with zero-mean and covariance 
matrix, Xo. 

If the transfer function from w to y is given 

where 

y(s)/w(a) = Nw(s)/A(s), 

Nw(s) = As"-* + As""2 . . . + d„. 

(29) 

(30) 

and 2/ and its derivatives are used as states (cf. equation (5)), 
then by an analogy to (8) 

1.. 

_ O n _ i . . . d i 1 

"<*!-

dn 

(31) 

An observer or state variable estimator for this system has the 
form of (cf. [7]): 

x — Fx + gu + k(z — hTx), 

x(0) = 0, 

(32) 

(33) 

where the constant gain vector, k, is to be chosen. 
The gain vector of the minimum variance observer is chosen so 

as to minimize the expected value of 

r (z - hHfdt. (34) 

The minimum variance observer is identical to the steady-state 
Kalman filter [8]. 

The estimate error is defined as 

x Â  x — x, (35) 

By subtracting (27) from (32) and using (28) to eliminate z, 
we have 

Thus, the eigenvalues of the estimate-error equations are deter
mined by the gain vector k as the roots of the characteristic 
equation 

\sl - F + khT\ = 0. 

Symmetric Root Locus for the Poles of the 
Minimum Variance Observer 

(37) 

The poles of the minimum variance observer (cf. [4] are the 
left half plane roots of 

where 

l/rZ{s)Z(-s) + \/q = 0, 

Z{s) £ y{s)/w{s) = hT(sI - F)~iy, 

(38) 

(39) 

is the transfer function from the disturbance w to the output 
V ^ hTx. Equation (38) is another symmetric root characteristic 
equation (SRCE) like (15). In Evans' root locus form, the SRCE 
is: 

where 

-r/q = Nm(s)N„(s)/A(s) A(-s) , 

Z{s) A Nw(s)/A(s), 

(40) 

(41) 

Obviously a symmetric root locus (SRL) versus the parameter 
q/r may be plotted using the form (40). 

For the example introduced in (18), let use assume that a 
random force acts on the right mass so that (with time in units 
of \/m,/k, and {u, w) in units of k) the transfer function from w 
to 2/ is 

y(s)/w(s) = (s2 + l)/s2(s2 + 2) A JV„(s)/A(s) = Z(s). (42) 

The SRL equation is, therefore, 

-r/q = (s2 + l ) 2 Ms 2 + 2)2 (43) 

Fig. 4 shows the SRL versus q/r. For q/r = 1, the roots of (43) 
are: 

= ±(0.181 + 1.378J), +(0.438 + 0.571,/). (44) 

/ \ ' 

x = (F — khT)x + kv — yw (36) 
Fig. 4 Symmetric root locus of minimum variance observer poles 
versus ratio of noise spectral densities q/r 

Journal of Dynamic Systems, Measurement, and Control JUNE 1979, Vol. 101 / 93 
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



For q/r —> 0, the roots of (43) are: 

«-»±d ± j?/, ^ y 4 , ± ( ^ j . ± V ^ Y (45) 

Thus for <?/?• = 0, the roots are double the open-loop roots at 
s = 0, 0, + \/2j and the corresponding gain vector is k = 0. This 
is an unsatisfactory result, since the measurement z is not being 
used (k — 0) and the estimate-errors will not attenviate (the 
Kalman filter has time-varying gains that depend on X0 and the 
estimate-errors do tend asymptotically to zero). In this case, 
we might add a constraint tha t the real parts of the estimate-
error poles must be less than some negative number: 

Rl(si) < - o\ (46) 

Such constrained minimum variance observers are discussed in [9]. 

For q/r —> «>, the roots of (43) are 

. - ± ( i ± i > ( £ y \ ± ( v . ^ ± i ) w 

i.e., four of the poles go to the four zeros a t ±j, while four other 
poles tend to infinity in another Butterworth configuration. The 
observer bandwidth becomes very large; in fact, the observer 
tends to become partly a differentiator: 

y = z, j/i = z, 

$i — 2 + u \ 
for r = 0, q •? 0. (48) 

Thus for r/q = 0, we again have an unsatisfactory result, since 
the estimate errors associated with j / 2 and y3 will not attenuate 
(again the Kalman filter has time-varying gains that depend on 
Xo which bring all the estimate errors to zero asymptotically). 
In this case we might add an estimate-error eigenvalue con
straint like (46), and also an upper bound on the magnitude of 
the eigenvalues 

M < w. (46) 

Determination of the Minimum Variance 
Observer Gains 

For single-disturbance single-measurement systems (w and 
v scalars), the observer gains may be determined by comparing 
coefficients of the closed-loop characteristic equation (37) with 
those of the desired characteristic equation, i.e., a characteristic 
equation whose roots are the stable (left half plane) roots of (38). 

For the example described by equation (42), the Laplace trans
form of the estimate-error equation (36) is: 

v(s) 

~S + fti 

k2 

h 

k4 

- 1 

s 

0 

0 

0 

- 1 

s 

2 

0" 

0 

- 1 

s 

~y(s) 

Vi(s) 

Ms) 

_Ms)_ 

\~ 

ki 

ks 

_kt_ 

0 

- 1 

0 

1 

w(s) (50) 

Hence the closed-loop characteristic equation (37) is: 

s^ + hs* + (2 + fe)s2 + (2fti -)- ks)s + 2fe + kt = 0. (51) 

For q/r = 1, the desired characteristic equation is, from (44): 

[(s + 0.181)2 + (1.378)2][(s + 0.438)2 + (0.571)2] = 0, 

or 

s* + 1.238s» + 2.767s2 + 1.880s + 1.000 = 0. (52) 

Comparing coefficients of like powers of s in (51) and (52) gives 

ftj = 0.642, fe = 0.233, k3 = 1.238, ki = 0.767. (53) 

An efficient computer program for calculating the poles and 
gains of the minimum variance observer is described in [6]. 

Stationary Linear Systems With Quadratic 
Performance Criteria and Random Disturbances 

If we consider the system (27)-(28) and ask for the control 
history u(t) that minimizes the expected value of 

I (ay* + bv?)dt, (54) 

it has been shown (cf. [10], [11], [12], and [1]) that the minimizing 
solution is to feed back the estimated state from the Kalman filter 
(which, in general, has time-varying gains, k(t)) with the optimal 
regulator gains, i.e., 

u = — cTx, (55) 

x = Fx + gu + k(z — hTx), x(0) 0. (56) 

If we replace the Kalman filter by the minimum variance (MV) 
observer (i.e., the steady-state Kalman filter), we may get a 
reasonably good sub-optimal solution. However, this is not 
the case when the MV observer has neutrally-stable eigenvalues; 
in this case eigenvalue constraints may be placed on the MV ob
server, as mentioned above equation (46); (cf. [9]). 

One of the remarkable and useful facts about this "certainty-
equivalence" solution is that the closed-loop system has eigen
values that are the MV estimate-error eigenvalues plus the op
timal regulator eigenvalues. This is easily seen by using x and 
x as states instead of x and x: 

F - gc? j -go? 

0 F-khT 

X 

|__ x _ 
+ 

" 0 " 

_k_ 
v + 

y " 

_ - 7 _ 
w, 

(57) 

The one-way coupling shows that the eigenvalues are those of 
(13) and (37). 

Interpretation of Estimated-State-Feedback 
as an Optimal Compensation 

Feeding back the estimated-state from the minimum variance 
observer with the optimal regulator gains gives observer equa
tions: 

i = (F - gcT - khT)x + kz. (59) 

Thus, for v = 0, transfer function from the output y = z to the 
control, u = — cTx, is 

u(s)/y(s) = - cT(sI - F + gcT + kW)-% A - Tc(s), (59) 

which may be interpreted as a classical compensator. Note the 
poles of this transfer function are neither the poles of the op
timal regulator nor the poles of the minimum variance estimator. 

If we multiply the right side of (59) by a scalar gain, K, then 
a closed-loop root locus versus K for the compensated system 
should have the poles of (13) and (37) when K = 1: 

y(s) = Y(s)u(s), 

u(s) = - KTc(s)y(s), 

-» - | = Y(s)Tc(s). 

(60) 

(61) 

For the example with a/b = q/r = 1, the compensator transfer 
function may be determined from: 
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s + fci - 1 0 

fc2 s — 1 
*3 0 s 
ki + Ci C2 2 + C3 

0 
0 

- 1 
S + C4 

8(s) 
2/i(s) 

iii(s) 
m(s) 

ciy CzVt - CiVa, 

z(s), 

(62) 

(63) 

which yields: 

Vis) " 

1.801(s + 0.233)[(s + O.01O)2 + (1.545)2] 

[(s + 1.097)2 + (0.820)2][(s + 0.210)2 + (1.605)2] 

(64) 

The plant transfer function is given in equation (18). The root 
locus versus K for the compensated system is shown in Fig. 5. The 
compensator poles (x) and zeros (o) are marked with a C, the 
unmarked poles are those of the plant (which happens to have 
no zeros in this example). The black dots marked with an R are 
the optimal regulator poles, and the black dots marked with an 
E are the estimator (minimum variance observer) poles. Note the 
root locus versus K does pass through the black dots for K = 1. 

This compensator has a real zero to compensate the rigid 
body double pole at s = 0 and a "notch" near the plant vibra
tion poles at s = + s/2j. i.e., there is both a compensator pole 

c 
Im(s) 

'1.5 

Fig. 
a/b 

5 Root locus versus overall gain K for compensated system, 
= q/r = 1. Optimal compensation -* K = 1. 
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Fig. 6 Pole-zero configurations of the closed-loop transfer functions 
from disturbances w and v to output error y for q/r = a/b = 1 
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Fig. 7 Pole-zero configurations of the closed-loop transfer functions 
from disturbances w and v to control input u for q/r = a/b = 1 
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with q/r = a/b = 1 
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Fig. 10 Pole-zero configurations of the closed-loop transfer func
tions from disturbances w and v to output error y for a/b = 1, q/r = 
1/256 

and compensator zero quite close to the plant vibration pole. 
The real zero is standard in classical design. "Notch compensa
tion" is also well known to classical designers, who know, too, 
that such compensation is quite sensitive to errors in estimating 
the plant vibration frequency! 

This is one of the drawbacks of modern control synthesis, 
namely, it may yield sensitive compensation; small changes in 
the plant parameters away from their design values give degraded 
performance and may even produce instability (cf. e.g. [13]). 
Nonetheless, the pole-zero configuration of the optimal compen
sator may suggest unusual types of compensation; small changes 
in the pole-zero positions could reduce the sensitivity of the 
design with only small increases in the performance index (cf. 
e.g. [9]). 

Closed Loop Response of Output and Input to 
Disturbances 

The objective of the stochastic design problem described above 
equation (54) is to minimize the expected value of a weighted 
sum of output y squared and control u squared in the presence 
of random disturbances. Hence it is of interest to look at the 
transfer functions from the disturbances w and v to y and u for 
the closed-loop system. 

K ^ 4 , 5 

Fig. 9 Root locus versus overall gain K for compensated system, 
a/b = 1, q/r = 1/256. Optimal compensation -» K = 1. 

If we write the Laplace transform of the closed-loop system 
in the form 

?/(«) = Y(s)u(s) + Z(s)w(s), 

u(s) = - Tc(s)[y(s) + v(s)}, 

then it is straightforward to show that 

(65) 

(66) 

y(s) 
= ( - ) 

' Ac(s) -N(s) -

_ ;Vc(s) A(s) „ 

A'»,(s)u)(.s-) 

_ Nc(s)v(s) 

AK(S)AE(S) 

'A(s) = Nc(s)/Ac(s), 

Afl(s) = | s / - F + gcT\, 

AM (s) = \sl - F + khr\, 

(67) 

(68) 

(69) 

(70) 

and we used 

A«(s)AB(s) = A(s)Ac(s) + iV(s)iV0(s). (71) 

Figs. 6 and 7 show the pole-zero configuration of these four 
transfer functions for the example problem with q/r = 1, a/b 
= 1. Again, poles marked with an R or an E are regulator or 
estimator poles, respectively (from AR{S) = 0 or AE(S) = 0). 
Zeros marked with a P or C are associated with plant or com
pensator transfer functions respectively. The figures show that 
the y and u responses to an impulse in w and the u response to 
an impulse in v are primarily at s •= — 0.5 ± 0.5j since there are 
two sets of complex zeros close to the two sets of complex poles 
near — 0.2 + lAj. They also show that the y response to an 
impulse in v is at both frequencies and there will be a long-
lasting response at s = — 0.2 + lAj, since there is only one set 
of nearby complex zeros to offset the two sets of complex poles 
there. 
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Fig. 11 Pole-zero configurations of the closed-loop transfer functions 
f rom disturbances w and v to control input u for a/fa = 1 , q/r = 1/256 
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From equation (67) the spectral densities of y and u due to 
white noise w and v, are given by: 

_S„(w) J L NJf, AA J \_NeNcr J.. . 
(72) 

AjeAjjAzjAE 

where (~) indicates complex conjugate and (q, r) are the spectral 
densities of w and v, respectively. Fig. 8 shows these two spectral 
densities for the example problem with a/b = q/r = 1. Note 
the control spectral density has a peak around oi = 0.7, whereas 
the output spectral density peaks at to = 0 with a lower peak 
near the open-loop resonant frequency, OJ = 1.4. 

Limits as Process Noise and/or Measurement 
Noise Tend to Zero 

If the process noise v is negligible compared to the measure
ment noise v, then q/r —> 0. Fig. 9 shows the root locus versus 
K for the optimally compensated system for the example prob
lem with q/r = 1/256, a/b = 1. Note the estimator poles are 
very close to the open-loop poles and the compensator "notch" 
is very close to the open-loop vibration pole; in effect the com
pensator zero is nearly cancelling the vibration pole and replacing 
it with a compensator pole that is more stable. Such a design is 
very sensitive to the location of the vibration pole. If the vibra
tion frequency were uncertain, it would be prudent to move the 
compensator "notch" farther away from the location of the 
nominal vibration pole. This could be done directly or, alterna
tively, the observer design could be modified with an eigenvalue 
constraint, say Rl{si) < 0.2 (see [9]). 

Figs. 10 and 11 show the pole-zero configurations of the closed-
loop transfer functions from disturbances w and V to the output 
y and the input u with q/r = 1/256, a/b = 1. Since v is much 
larger than w, the optimal controller places zeros close to the 
lightly-damped estimator poles in y(s)/v{s) and u(s)/v(s) but 
not in y(s)/w(s). 

At the other limit, where the measurement noise is negligible 
compared to the process noise, then q/r —> a>. Fig. 12 shows the 
root locus versus K for the optimally compensated system of the 
example problem with q/r = 256, a/b = 1. Note the observer 
bandwidth is high, which is reasonable since the measurement 
contains very little noise. One set of estimator poles is very 
close to s = ± j ; the reason for this is clear from Figs. 13 and 14, 
where the pole-zero configurations of the closed-loop transfer 
functions from w and v to y and u are shown. The estimator 
poles are placed so as to nearly cancel with the plant zeros at 
s = + j in y(s)/w(s) and u(s)/w(s). Another set of zeros is close 
to the regulator poles at s = — 0.16 + 1.45,?, so that the dominant 
y response to w is at s = — 0.53 + 0.43,/. However, prudence 
would dictate that the complex estimator pole be placed slightly 
farther to the left of s = + j to avoid an instability through small 
errors in setting the controller gains which might move these 
poles into the right half plane. 

The pole-zero configurations of y(s)/v(s) and u(s)/v(s) do 
not look too good until one remembers that v is very small com
pared to w, so the controller is properly concentrating on re
ducing the effects of w and not worrying about v. 

Another, rather academic, limit is when both measurement 
noise v and process noise w are negligible, i.e., q = r = 0; this is 
the case treated in the first section of this paper. A "com
pensator" interpretation of the optimal controller must treat 
the "observer" as a differentiator: 

Fig. 12 Root locus versus overall gain K for compensated system, 
a/b = 1, q/r = 256. Opt imal compensation - + / < = ! . 
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Fig. 13 Pole-zero configurations of the closed-loop transfer func
tions from disturbances w and v to output error y for a/fa =» 1, q/r = 
256 
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Fig. 14 Pole-zero configurations of the closed-loop transfer func
tions f rom disturbances w and v to control input u for a/b = 1, q/r = 
256 

Differentiating the measurements is not unreasonable if there is 
no noise. The control law (22) with (73) becomes 

u = — ciy — c3y — cty 

y - z 

Hi = z 

2/2 = 'i 

2/3 = 2' 

u(s) = — [ds* + c3s
2 + CiS + ci]y(s) (74) 

(73) Substituting the optimal gains (25) into (74) gives a compensator 
transfer function that has only zeros: 

u(s)/y(s) = - 1.374(s + 0.439)[(s + 0.124)2 + (1.281)2]. (75) 
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This may be interpreted as a "proportional plus derivatives" feed
back controller. 

Multiplying this "transfer function" by K, a root locus versus 
K is plotted in Fig. 15 for the compensated system; K = 1 gives 
the optimal regulator poles. This plot is obviously similar to 
those in Figs. 5, 9, and 12. 
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Conclusions 
Use of symmetric root locus helps to visualize the closed-loop 

pole locations for (a) the optimal regulator as a function of 
the ratio of weighting parameters a/b in the quadratic perform
ance index, and (b) the minimum variance observer as a func
tion of the ratio of process noise spectral density to measurement 
noise spectral density q/r. 

A good stochastic controller is often obtained by feeding back 
the estimated states from the minimum variance observer using 
the optimal regulator gains and it may be interpreted as a 
classical compensator. However, this not always the case since 
the optimal controller, in general, has an estimator with time-
varying gains (the Kalman filter); in order to use constant gains, 
a minimum variance observer with eigenvalue constraints is sug
gested (cf. [9]). 
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