
APPROXIMATING THE STIELTJES INTEGRAL VIA A
WEIGHTED TRAPEZOIDAL RULE WITH APPLICATIONS

S.S. DRAGOMIR AND I. FEDOTOV

Abstract. In this paper we provide sharp error bounds in approximating the
weighted Riemann-Stieltjes integral

R b
a f (t) g (t) d� (t) by the weighted trape-

zoidal rule f(a)+f(b)
2

R b
a g (t) d� (t) : Applications for continuous functions of

selfadjoint operators in complex Hilbert spaces are given as well.

1. Introduction

One can approximate the Stieltjes integral
R b
a
f (t) du (t) with the following sim-

pler quantities:

1

b� a [u (b)� u (a)] �
Z b

a

f (t) dt ([18], [19]),(1.1)

f (x) [u (b)� u (a)] ([11], [12])(1.2)

or with

(1.3) [u (b)� u (x)] f (b) + [u (x)� u (a)] f (a) ([17]),

where x 2 [a; b] :
In order to provide a priory sharp bounds for the approximation error, consider

the functionals:

D (f; u; a; b) :=

Z b

a

f (t) du (t)� 1

b� a [u (b)� u (a)] �
Z b

a

f (t) dt;

�(f; u; a; b; x) :=

Z b

a

f (t) du (t)� f (x) [u (b)� u (a)]

and

T (f; u; a; b; x) :=

Z b

a

f (t) du (t)� [u (b)� u (x)] f (b)� [u (x)� u (a)] f (a) :

If the integrand f is Riemann integrable on [a; b] and the integrator u : [a; b]! R
is L�Lipschitzian, i.e.,
(1.4) ju (t)� u (s)j � L jt� sj for each t; s 2 [a; b] ;

then the Stieltjes integral
R b
a
f (t) du (t) exists and, as pointed out in [18],

(1.5) jD (f; u; a; b)j � L
Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt:
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The inequality (1.5) is sharp in the sense that the multiplicative constant C = 1 in
front of L cannot be replaced by a smaller quantity. Moreover, if there exists the
constants m;M 2 R such that m � f (t) �M for a.e. t 2 [a; b] ; then [18]

(1.6) jD (f; u; a; b)j � 1

2
L (M �m) (b� a) :

The constant 12 is best possible in (1.6).
A di¤erent approach in the case of integrands of bounded variation were consid-

ered by the same authors in 2001, [19], where they showed that

(1.7) jD (f; u; a; b)j � max
t2[a;b]

�����f (t)� 1

b� a

Z b

a

f (s) ds

�����
b_
a

(u) ;

provided that f is continuous and u is of bounded variation. Here
Wb
a (u) denotes

the total variation of u on [a; b] : The inequality (1.7) is sharp.
If we assume that f is K�Lipschitzian, then [19]

(1.8) jD (f; u; a; b)j � 1

2
K (b� a)

b_
a

(u) ;

with 1
2 the best possible constant in (1.8).

For various bounds on the error functional D (f; u; a; b) where f and u belong
to di¤erent classes of function for which the Stieltjes integral exists, see [16], [15],
[14], and [8] and the references therein.
For the functional � (f; u; a; b; x) we have the bound [11]:

j� (f; u; a; b; x)j(1.9)

� H
"
(x� a)r

x_
a

(f) + (b� x)r
b_
x

(f)

#

� H �

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

[(x� a)r + (b� x)r]
�
1
2

bW
a
(f) + 1

2

���� xW
a
(f)�

bW
x
(f)

����� ;
[(x� a)qr + (b� x)qr]

1
q

"�
xW
a
(f)

�p
+

�
bW
x
(f)

�p# 1
p

if p > 1; 1
p +

1
q = 1;

�
1
2 (b� a) +

��x� a+b
2

���r bW
a
(f) ;

provided f is of bounded variation and u is of r �H�Hölder type, i.e.,

(1.10) ju (t)� u (s)j � H jt� sjr for each t; s 2 [a; b] ;

with given H > 0 and r 2 (0; 1]:
If f is of q �K�Hölder type and u is of bounded variation, then [12]

(1.11) j� (f; u; a; b; x)j � K
�
1

2
(b� a) +

����x� a+ b2
�����q b_

a

(u) ;

for any x 2 [a; b] :
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If u is monotonic nondecreasing and f of q�K�Hölder type, then the following
re�nement of (1.11) also holds [8]:

j� (f; u; a; b; x)j � K
"
(b� x)q u (b)� (x� a)q u (a)(1.12)

+ q

(Z x

a

u (t) dt

(x� t)1�q
�
Z b

x

u (t) dt

(t� x)1�q

)#
� K [(b� x)q [u (b)� u (x)] + (x� a)q [u (x)� u (a)]]

� K
�
1

2
(b� a) +

����x� a+ b2
�����q [u (b)� u (a)] ;

for any x 2 [a; b] :
If f is monotonic nondecreasing and u is of r �H�Hölder type, then [8]:

j� (f; u; a; b; x)j(1.13)

� H
"
[(x� a)r � (b� x)r] f (x)

+ r

(Z x

a

f (t) dt

(b� t)1�r
�
Z b

x

f (t) dt

(t� r)1�r

)#
� H f(b� x)r [f (b)� f (x)] + (x� a)r [f (x)� f (a)]g

� H
�
1

2
(b� a) +

����x� a+ b2
�����r [f (b)� f (a)] ;

for any x 2 [a; b] :
The error functional T (f; u; a; b; x) satis�es similar bounds, see [17], [8], [3] and

[2] and the details are omitted.
Motivated by the above results, we consider in this paper the problem of provid-

ing sharp error bounds by approximating the weighted Riemann-Stieltjes integralR b
a
f (t) g (t) d� (t) in terms of the weighted trapezoidal rule f(a)+f(b)

2

R b
a
g (t) d� (t) :

Applications for continuous functions of selfadjoint operators in complex Hilbert
spaces are given as well.

2. The Results

The �rst main result is as follows:

Theorem 1. Let f : [a; b]! C be a function of bounded variation on [a; b] and let

denote by
bW
a
(f) its total variation on [a; b] :
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(i) If � : [a; b]! C is of bounded variation on [a; b] ; g : [a; b]! C is continuous
on [a; b] and the Riemann-Stieltjes integral

R b
a
f (t) g (t) d� (t) exists, then

�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(2.1)

� sup
t2[a;b]

"
max
s2[a;t]

jg (s)j
t_
a

(�) + max
s2[t;b]

jg (s)j
b_
t

(�)

#
b_
a

(f)

� 1

2
max
t2[a;b]

jg (t)j
b_
a

(�)
b_
a

(f) :

The constant 12 is best possible in (2.1).
(ii) If � : [a; b] ! C is Lipschitzian with the constant L > 0 on [a; b] and

g : [a; b] ! C is Riemann integrable on [a; b] ; then and the Riemann-
Stieltjes integral

R b
a
f (t) g (t) d� (t) exists and

�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(2.2)

� 1

2
L

Z b

a

jg (t)j dt
b_
a

(f) :

The constant 12 is best possible in (2.2).
(iii) If � : [a; b] ! R is monotonic nondecreasing on [a; b] ; g : [a; b] ! C is

continuous on [a; b] and the Riemann-Stieltjes integral
R b
a
f (t) g (t) d� (t)

exists, then

�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(2.3)

� 1

2

Z b

a

jg (t)j d� (t)
b_
a

(f) :

The constant 12 is best possible in (2.3).

The case when the function f is Lipschitzian is of interest and is incorporated
in the following result.

Theorem 2. Let f : [a; b]! C be a Lipschitzian function with the constant K > 0
on [a; b] :
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(a) If � : [a; b]! C is of bounded variation on [a; b] ; g : [a; b]! C is continuous
on [a; b] ; then the Riemann-Stieltjes integral

R b
a
f (t) g (t) d� (t) exists and�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(2.4)

� 1

2
K

Z b

a

"
max
t2[a;t]

jg (s)j
t_
a

(�) + max
t2[t;b]

jg (s)j
b_
t

(�)

#
dt

� 1

2
K (b� a) max

t2[a;b]
jg (s)j

b_
a

(�) :

The constant 12 is best possible in (2.4).
(aa) If � : [a; b] ! C is Lipschitzian with the constant L > 0 on [a; b] and

g : [a; b] ! C is Riemann integrable on [a; b] ; then and the Riemann-
Stieltjes integral

R b
a
f (t) g (t) d� (t) exists and�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(2.5)

� 1

2
K

Z b

a

"����Z t

a

g (t) d� (t)

����+
�����
Z b

t

g (t) d� (t)

�����
#
dt

� 1

2
KL (b� a)

Z b

a

jg (t)j dt:

(aaa) If � : [a; b] ! R is monotonic nondecreasing on [a; b] ; g : [a; b] ! C is
continuous on [a; b] ; then the Riemann-Stieltjes integral

R b
a
f (t) g (t) d� (t)

exists and�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(2.6)

� 1

2
K

Z b

a

"����Z t

a

g (t) d� (t)

����+
�����
Z b

t

g (t) d� (t)

�����
#
dt

� 1

2
K (b� a)

Z b

a

jg (t)j d� (t) :

The constant 12 is best possible in (2.6).

Remark 1. It is an open problem for the authors wether or not the constant 12 in
(2.5) is best possible.

3. Proofs

We need the following lemma that is interesting in itself as well:

Lemma 1. Assume that the functions f; g; � : [a; b]! C are such that the Riemann-
Stieltjes integrals

R b
a
f (t) g (t) d� (t) and

R b
a
g (t) d� (t) exist. Then we have the
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equality

f (a) + f (b)

2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)(3.1)

=
1

2

Z b

a

 Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

!
df (t) :

Proof. Observe that

1

2

Z b

a

 Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

!
df (t)(3.2)

=
1

2

Z b

a

 Z t

a

g (s) d� (s)�
Z b

a

g (s) d� (s) +

Z t

a

g (s) d� (s)

!
df (t)

=

Z b

a

 Z t

a

g (s) d� (s)� 1
2

Z b

a

g (s) d� (s)

!
df (t) :

Integrating by parts in the Riemann-Stieltjes integral, we haveZ b

a

 Z t

a

g (s) d� (s)� 1
2

Z b

a

g (s) d� (s)

!
df (t)(3.3)

=

 Z t

a

g (s) d� (s)� 1
2

Z b

a

g (s) d� (s)

!
f (t)

�����
b

a

�
Z b

a

f (t) d

 Z t

a

g (s) d� (s)� 1
2

Z b

a

g (s) d� (s)

!

=

 Z b

a

g (s) d� (s)� 1
2

Z b

a

g (s) d� (s)

!
f (b)

+

 
1

2

Z b

a

g (s) d� (s)

!
f (a)�

Z b

a

f (t) d

�Z t

a

g (s) d� (s)

�
:

On applying the well known property of the Riemann-Stieltjes integral with inte-
grators that are expressed by an integral (see for instance [1, p. 158-p. 159]) we
have Z b

a

f (t) d

�Z t

a

g (s) d� (s)

�
=

Z b

a

f (t) g (t) d� (t)

and by (3.2) and (3.3) we deduce the desired representation (3.1).
This concludes the proof of the lemma. �

It is well know that, if the Riemann-Stieltjes integral
R b
a
p (t) dv (t) exists, where

v : [a; b] ! C is of bounded variation on [a; b] and p : [a; b] ! C is bounded on
[a; b] ; then we have the inequality

(3.4)

�����
Z b

a

p (t) dv (t)

����� � sup
t2[a;b]

jp (t)j
b_
a

(v) :
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Now, since f : [a; b]! C is a function of bounded variation on [a; b] ; then by (3.1)
and utilizing the property (3.4), we have�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(3.5)

� 1

2
sup
t2[a;b]

�����
Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

�����
b_
a

(f) ;

which is an inequality of interest in itself.
(i) Since � : [a; b] ! C is of bounded variation on [a; b] and g : [a; b] ! C is

continuous on [a; b] ; then by the property (3.4) we have�����
Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

����� �
����Z t

a

g (s) d� (s)

����+
�����
Z b

t

g (s) d� (s)

�����(3.6)

� max
s2[a;t]

jg (s)j
t_
a

(�) + max
s2[t;b]

jg (s)j
b_
t

(�)

� max
s2[a;b]

jg (s)j
b_
a

(�)

for any t 2 [a; b] :
Taking the supremum over t 2 [a; b] in (3.6) and making use of the inequality

(3.5), we deduce the desired result (2.1).
(ii) It is well known that, if p : [a; b]! C is Riemann integrable and v : [a; b]!

C is Lipschitzian with the constant L > 0; then the Riemann-Stieltjes integralR b
a
p (t) dv (t) exists and we have the inequality

(3.7)

�����
Z b

a

p (t) dv (t)

����� � L
Z b

a

jp (t)j dt:

Now, on utilizing this property, we have that�����
Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

����� �
����Z t

a

g (s) d� (s)

����+
�����
Z b

t

g (s) d� (s)

�����(3.8)

� L
Z t

a

jg (s)j ds+ L
Z b

t

jg (s)j ds

= L

Z b

a

jg (s)j ds

for any t 2 [a; b] :
Taking the supremum over t 2 [a; b] in (3.8) and making use of the inequality

(3.5), we deduce the desired result (2.2).
(iii) It is well known that, if p : [a; b] ! C is continuous and v : [a; b] ! R is

monotonic nondecreasing on [a; b] ; then the Riemann-Stieltjes integral
R b
a
p (t) dv (t)

exists and we have the inequality

(3.9)

�����
Z b

a

p (t) dv (t)

����� �
Z b

a

jp (t)j dv (t) :
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Now, on utilizing this property, we have that�����
Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

����� �
����Z t

a

g (s) d� (s)

����+
�����
Z b

t

g (s) d� (s)

�����(3.10)

�
Z t

a

jg (s)j d� (s) +
Z b

t

jg (s)j d� (s)

= L

Z b

a

jg (s)j d� (s)

for any t 2 [a; b] :
Taking the supremum over t 2 [a; b] in (3.10) and making use of the inequality

(3.5), we deduce the desired result (2.3).
Now, for the best constants.
If we choose � : [a; b] ! R, � (t) = t; g : [a; b] ! R, g (t) = 1 and f : [a; b] ! R

be a function of bounded variation on [a; b] ; then the assumptions in (i) ; (ii) and
(iii) of Theorem 1 are satis�ed and the inequalities (2.1), (2.2) and (2.3) become

(3.11)

�����f (a) + f (b)2
(b� a)�

Z b

a

f (t) dt

����� � 1

2
(b� a)

b_
a

(f) ;

that holds for any function f : [a; b] ! R be a function of bounded variation on
[a; b] :
Assume that (3.11) is valid with a constant C > 0 instead of 12 ; i.e., we have the

inequality:

(3.12)

�����f (a) + f (b)2
(b� a)�

Z b

a

f (t) dt

����� � C (b� a)
b_
a

(f) ;

for any function f : [a; b]! R be a function of bounded variation on [a; b] :
Consider the function f0 : [a; b]! R given by

f0 (t) :=

8<: 1 if t = a
0 if t 2 (a; b)
1 if t = b:

This function is of bounded variation with
R b
a
f0 (t) dt = 0 and

bW
a
(f0) = 2: Replacing

these values in (3.12) give b� a � 2C (b� a) which implies that C � 1
2 :

To prove Theorem 2, we observe that, since f : [a; b] ! C is Lipschitzian with
the constant K > 0, then by the identity (3.1) and the property (3.7) we have the
following inequality�����f (a) + f (b)2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)

�����(3.13)

� 1

2
K

Z b

a

�����
Z t

a

g (s) d� (s)�
Z b

t

g (s) d� (s)

����� dt;
which is an inequality of interest in itself.



APPROXIMATING THE STIELTJES INTEGRAL 9

(a) Since � : [a; b] ! C is of bounded variation on [a; b] and g : [a; b] ! C is
continuous on [a; b] ; then by the property (3.4) we have the inequality (3.6), which
by integration on [a; b] and utilizing (3.13) produces the desired result (2.4).
The statements (aa) and (aaa) follow in a similar manner and the details are left

to the reader.
In order to prove the sharpness of the constant 12 in (2.4) and (2.6) we consider

the function f : [a; b] ! R, f (t) :=
��t� a+b

2

�� ; which is Lipschitzian with the
constant K = 1: If we take g (t) = 1; t 2 [a; b] then for any function � : [a; b] ! C
of bounded variation we have

I :=
f (a) + f (b)

2

Z b

a

g (t) d� (t)�
Z b

a

f (t) g (t) d� (t)(3.14)

=
b� a
2

Z b

a

d� (t)�
Z b

a

����t� a+ b2
���� d� (t)

=
b� a
2

[� (b)� � (a)]

�
Z a+b

2

a

�
a+ b

2
� t
�
d� (t)�

Z b

a+b
2

�
t� a+ b

2

�
d� (t) :

Integrating by parts in the Riemann-Stieltjes integral, we haveZ a+b
2

a

�
a+ b

2
� t
�
d� (t) = �b� a

2
� (a) +

Z a+b
2

a

� (t) dt

and Z b

a+b
2

�
t� a+ b

2

�
d� (t) =

b� a
2
� (b)�

Z b

a+b
2

� (t) dt:

Inserting these values in (3.14) we get

I =

Z b

a+b
2

� (t) dt�
Z a+b

2

a

� (t) dt:

If we take now the function � : [a; b]! R, � (t) = sgn
�
t� a+b

2

�
; then this function

is monotonic nondecreasing and we have I = b� a;
bW
a
(�) = � (b)� � (a) = 2 and

1

2
K (b� a) max

t2[a;b]
jg (s)j

b_
a

(�) = b� a

and
1

2
K (b� a)

Z b

a

jg (t)j d� (t) = b� a

which shows that the constant 12 is best possible in both inequalities (2.4) and (2.6).

4. Applications for Selfadjoint Operators in Hilbert Spaces

Let U be a selfadjoint operator on the complex Hilbert space (H; h:; :i) with the
spectrum Sp (U) included in the interval [m;M ] for some real numbers m < M and
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let fE�g� be its spectral family. It is well known that we have the following spectral
representation in terms of the Riemann-Stieltjes integral :

(4.1) U =

Z M

m�0
�dE�;

which in terms of vectors can be written as

(4.2) hUx; yi =
Z M

m�0
�d hE�x; yi ;

for any x; y 2 H: The function gx;y (�) := hE�x; yi is of bounded variation on the
interval [m;M ] and

gx;y (m� 0) = 0 and gx;y (M) = hx; yi
for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic nonde-
creasing and right continuous on [m;M ].
It is also known that for any continuous function f : [m;M ] ! R, we have the

following spectral representation:

(4.3) hf (U)x; yi =
Z M

m�0
f (�) d (hE�x; yi) ;

for any x; y 2 H:

Theorem 3. Let A be a selfadjoint operator on the complex Hilbert space (H; h:; :i)
with the spectrum Sp (A) included in the interval [m;M ] for some real numbers
m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is a continuous
function of bounded variation on [m;M ] and g : [m;M ] ! C is a continuous
function on [m;M ] ; then we have����hf (A) g (A)x; yi � f (m) + f (M)2

hg (A)x; yi
����(4.4)

� 1

2
max

t2[m;M ]
jg (t)j

M_
m

�

E(�)x; y

�� M_
m

(f)

� 1

2
max

t2[m;M ]
jg (t)j kxk kyk

M_
m

(f)

for any x; y 2 H and����hf (A) g (A)x; xi � f (m) + f (M)2
hg (A)x; xi

����(4.5)

� 1

2
hjg (A)jx; xi

M_
m

(f)

for any x 2 H:

Proof. If we use the inequality (2.1) we can write that�����f (m) + f (M)2

Z M

m�0
g (t) d hE�x; yi �

Z M

m�0
f (t) g (t) d hE�x; yi

�����(4.6)

� 1

2
max

t2[m;M ]
jg (t)j

M_
m

�

E(�)x; y

�� M_
m

(f)
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for any x; y 2 H:
Since, by the spectral representation (4.3) we haveZ M

m�0
g (t) d hE�x; yi = hg (A)x; yi

and Z M

m�0
f (t) g (t) d hE�x; yi = hf (A) g (A)x; yi ;

for any x; y 2 H; then by (4.6) we deduce the �rst inequality in (4.4).
To prove last part of (4.4), we �rst notice that if P is a nonnegative operator on

H; i.e., hPx; xi � 0 for any x 2 H; then the following inequality is a generalization
of the Schwarz inequality in H

jhPx; yij2 � hPx; xi hPy; yi
for any x; y 2 H:
Further, if d : m = t0 < t1 < ::: < tn�1 < tn =M is an arbitrary partition of the

interval [m;M ] ; then we have by Schwarz�s inequality for nonnegative operators
that

M_
m

�

E(�)x; y

��
= sup

d

(
n�1X
i=0

��
�Eti+1 � Eti�x; y���
)

� sup
d

(
n�1X
i=0

h
�
Eti+1 � Eti

�
x; x

�1=2 
�
Eti+1 � Eti

�
y; y
�1=2i)

:= I:

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we
also have that

I � sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

� sup
d

8<:
"
n�1X
i=0


�
Eti+1 � Eti

�
x; x

�#1=2 "n�1X
i=0


�
Eti+1 � Eti

�
y; y
�#1=29=;

=

"
M_
m

�

E(�)x; x

��#1=2 "M_
m

�

E(�)y; y

��#1=2
= kxk kyk

for any x; y 2 H: These prove the last part of (4.6).
Now, on utilizing the inequality (2.3), we also have�����f (m) + f (M)2

Z M

m�0
g (t) d hE�x; xi �

Z M

m�0
f (t) g (t) d hE�x; xi

�����(4.7)

� 1

2

Z M

m�0
jg (t)j d hE�x; xi

M_
m

(f) ;

for any x 2 H:
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Since Z M

m�0
g (t) d hE�x; xi = hg (A)x; xi

and Z M

m�0
f (t) g (t) d hE�x; xi = hf (A) g (A)x; xi ;

for any x 2 H; then (4.7) implies the desired inequality (4.5). �

The case when f is Lipschitzian is incorporated in the following result:

Theorem 4. Let A be a selfadjoint operator on the complex Hilbert space (H; h:; :i)
with the spectrum Sp (A) included in the interval [m;M ] for some real numbers
m < M and let fE�g� be its spectral family. If f : [m;M ] ! C is a Lipschitzian
function with the constant K > 0 on [m;M ] and g : [m;M ] ! C is a continuous
function on [m;M ] ; then we have����hf (A) g (A)x; yi � f (m) + f (M)2

hg (A)x; yi
����(4.8)

� 1

2
K (M �m) max

t2[m;M ]
jg (t)j

M_
m

�

E(�)x; y

��
� 1

2
K (M �m) max

t2[m;M ]
jg (t)j kxk kyk

for any x; y 2 H and����hf (A) g (A)x; xi � f (m) + f (M)2
hg (A)x; xi

����(4.9)

� 1

2
K (M �m) hjg (A)jx; xi

for any x 2 H:

The proof follows by the statements (a) and (aaa) of Theorem 2 and the details
are omitted.
The previous results can be used to provide inequalities for the quantity hh (A)x; yi

when the function h can be decomposed in a product of two functions f and g as
those considered above. A simple example of such a function is the "entropy func-
tion" h : (0;1)! R, h (t) = t ln t:
Let A be a positive de�nite operator on the complex Hilbert space (H; h:; :i) with

the spectrum Sp (A) included in the interval [m;M ] for some numbers 0 < m < M
and let fE�g� be its spectral family.
1. Now, if we apply Theorem 3 for the choice f (t) = t and g (t) = ln t, t > 0;

then we have ����hA lnAx; yi � m+M2 hlnAx; yi
����(4.10)

� 1

2
(M �m)max fjlnmj ; jlnM jg

M_
m

�

E(�)x; y

��
� 1

2
(M �m)max fjlnmj ; jlnM jg kxk kyk
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for any x; y 2 H and

(4.11)

����hA lnAx; xi � m+M2 hlnAx; xi
���� � 1

2
(M �m) hjlnAjx; xi

for any x 2 H:
Theorem 4 provides for the choice f (t) = t and g (t) = ln t, t > 0 the same

inequalities (4.10) and (4.11).
2. Now, if we apply Theorem 3 for the dual choice f (t) = ln t and g (t) = t,

t > 0; then we have���hA lnAx; yi � hAx; yi lnpmM ��� � 1

2
M ln

�
M

m

� M_
m

�

E(�)x; y

��
(4.12)

� 1

2
M ln

�
M

m

�
kxk kyk

for any x; y 2 H and

(4.13)
���hA lnAx; xi � hAx; xi lnpmM ��� � 1

2
hAx; xi ln

�
M

m

�
for any x 2 H:
Theorem 4 provides for the choice f (t) = ln t and g (t) = t, t > 0; the inequalities���hA lnAx; yi � hAx; yi lnpmM ��� � 1

2

M

m
(M �m)

M_
m

�

E(�)x; y

��
(4.14)

� 1

2

M

m
(M �m) kxk kyk

for any x; y 2 H and

(4.15)
���hA lnAx; xi � hAx; xi lnpmM ��� � 1

2

�
M

m
� 1
�
hAx; xi

for any x 2 H:
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