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Abstract. In elastography we have previously developed a tracking and correction method
that estimates the axial and lateral strain components along and perpendicular to the
compressor/scanning axis following an externally applied compression. However, the resulting
motion is a three-dimensional problem. Therefore, in order to fully describe this motion we need
to consider a 3D model and estimate all three principal strain components, i.e. axial, lateral and
elevational (out-of-plane), for a full 3D tensor description.

Since motion is coupled in all three dimensions, the three motion components have to be
decoupled prior to their estimation. In this paper, we describe a method that estimates and corrects
motion in three dimensions, which is an extension of the 2D motion tracking and correction method
discussed before. In a similar way as in the 2D motion estimation, and by assuming that ultrasonic
frames are available in more than one parallel elevational plane, we used methods of interpolation
and cross-correlation between elevationally displaced RF echo segments to estimate the elevational
displacement and strain. In addition, the axial, lateral and elevational displacements were used to
estimate all three shear strain components that, together with the normal strain estimates, fully
describe the full 3D normal strain tensor resulting from the uniform compression. Results of this
method from three-dimensional finite-element simulations are shown.

(Some figures in this article appear in colour only in the electronic version; see www.iop.org)

1. Introduction

Elastography is an imaging modality that provides insight into the elastic properties of
biological tissues by applying a small axial uniform compression, and imaging the resulting
local strains (Ophir et al 1991, Céspedes 1993, Garra et al 1997). Until recently, only the axial
strain component had been estimated and used to produce a strain image, the axial elastogram.
However, motion in tissues occurs in three dimensions which involves inevitable coupling
between the three main strain components. Therefore, estimation of motion in the other two
directions is imperative in order to provide important information on the mechanical properties
of tissues (Konofagou and Ophir 1998), such as anisotropy, compressibility, poroelasticity
(Konofagou et al 1999) and/or viscoelasticity, as well as correction for decorrelation in the axial
strain estimation (Chaturvedi et al 1998, Insana et al 1997, Konofagou and Ophir 1998). Signal
decorrelation, caused by the relative motion of tissue scatterers following the compression,
is the primary cause for the increase in the strain estimation variance (Kallel et al 1997).
Konofagou and Ophir (1998) recently discussed simultaneous estimation of both axial and
lateral motions using a precision tracking and recorrelation method. In this paper we apply the
same method in all three dimensions in order to estimate all three normal strain components,
i.e. axial, lateral and elevational (out-of-plane) components. The principle of the tracking
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and recorrelation method is that by decoupling the estimated motion components, the signals
used for motion estimation are recorrelated and the signal-to-noise ratio associated with the
estimation of each motion component is significantly increased (Konofagou and Ophir 1998).

Two distinct estimators for tracking elevational motion can be developed using (a) a single
plane or (b) multiple planes. When only one plane is available, motion in the elevational
direction can be tracked by using the decorrelation information (Li et al 1999). Bamber and
Bush (1996) also used the correlation coefficient of the signal envelope to generate lateral
displacement images. However, Alam and Ophir (1997) demonstrated that, in the axial
case, changes in the centre frequency and sonographic signal-to-noise ratio (SNRs) introduce
unknown variable bias errors. Therefore, this method was not considered. In the case where
multiple (1.5D or 2D) arrays are used (figure 1), an interplanar tracking method, similar to the
one used for interbeam lateral tracking (Konofagou and Ophir 1998), may be applied in the
elevational direction.

Figure 1. Simulation of a 3D phantom containing a cylindrical inclusion and scanned by a 1.5D
or 2D array. The phantom was uniformly compressed in the y- (axial) direction while the x- and
z-directions denote the lateral and elevational directions, respectively. The dotted lines represent
the parallel scanning planes in the z-direction.

In axial motion estimation, decorrelation noise is introduced by motion in the lateral and
elevational directions (Kallel and Ophir 1997). In a similar way, when elevational strain is
estimated, decorrelation noise due to undesired motion in the axial and/or lateral direction
is expected to corrupt the estimate, with the axial motion being the most important due to
loss of phase coherence (both the applied compression and ultrasonic scanning are in the
axial direction). Other sources of decorrelation, such as rotation and shear strain, were not
considered. A method that interchangeably estimates and corrects for motion in the axial,
lateral and elevational directions was developed (figure 2). A two-dimensional version of this
method was used by Konofagou and Ophir (1998) to correct the axial elastogram for lateral
decorrelation. The method decouples the three main strain components, and thereby estimates
and images all three orthogonal displacement components (ux , uy and uz) that can be used to
estimate the normal (εx , εy , εz) as well as shear (εxy , εyz and εxz) strain components that fully
characterize the 3D normal strain tensor given by

E =
[
εx εxy εxz
εyx εy εyz
εzx εzy εz

]
(1)

where

εij = 1

2

(
∂ui

∂Xj

+
∂uj

∂Xi

)
(2)

and X denotes the coordinate in the lateral (x-), axial (y-) and elevational (z-) directions.
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(i)

(ii)

Figure 2. (i) 3D recorrelation method of displacement and strain (elastogram) estimation and
correction and (ii) all elastograms follow the same order as (i), i.e. (a) first axial, (b) first lateral,
(c) first elevational, (d) second axial, (e) second lateral, (f ) second elevational, (g) third lateral,
(h) third axial elastograms. The true axial, lateral and elevational strain images are shown in
figures 4(a), (b) and (c) respectively. Positive and negative strain values denote compressive and
tensile strains respectively.

There are three distinct ways in which multiple planes can be generated in the elevational
direction. Firstly, this may be done by displacing a 1D linear array in the elevational direction
and acquiring successive frames at different parallel elevational planes. This method will
most probably not be workable in an experimental setting since the compression in each
scanning plane would involve different boundary conditions and thereby different motion
fields, rendering elevational tracking most difficult. Secondly, a 1.5D array can be used to
provide three to four elevational planes by firing different sets of elements in the elevational
direction. This method may yield the elevational component. Lastly, a 2D (or N × N ) array
may be used, providing as many planes in the elevational direction as there are beams in the
lateral direction. In this case, elevational motion can be estimated in a plane perpendicular to a
certain scanning plane. In all cases, an interplanar tracking approach can be applied, similar to
the lateral tracking method. In this paper, we simulated both 1.5D and 2D arrays, as described
below (figure 1).
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2. Theory

A three-dimensional point spread function (psf)

p(x, y, z) = pa(y)pl(x)pe(z) (3)

was simulated, where x, y and z are the axial, lateral and elevational coordinates respectively
and pa(y), pl(x) and pe(z) are the axial, lateral and elevational psf components respectively.
If we assume a Gaussian modulated emitted pulse of pulse length equal to σy , the axial psf
component is given by

pa(y) = A exp

(
− y2

2σ 2
y

)
cos

(
2π

y

λ

)
(4)

where A is a constant and λ is the central wavelength of the emitted pulse. The lateral and
elevational psf components may be modelled as Gaussian functions (Wagner et al 1983), and
are respectively given by

pl(x) = 1√
2πσx

exp

(
− x2

4σ 2
x

)
(5)

and

pe(z) = 1√
2πσz

exp

(
− z2

4σ 2
z

)
(6)

where σx and σz are the lateral and elevational correlation lengths respectively. In order to
simulate the pre- and postcompressed 3D RF sonograms, we followed a previously described
convolutional model. The pre- and post-compression echo signals can respectively be given
as follows†:

r1(x, y, z) = p(x, y, z) ∗ e(x, y, z) + n1(x, y, z) (7)

r2(x, y, z) = p(x, y, z) ∗ e(a1x − x0, a2y − y0, a3z − z0) + n2(x, y, z) (8)

where ∗ denotes convolution, x0, y0 and z0 correspond to the lateral, axial and elevational
delays or displacements, r1(x, y, z) and r2(x, y, z) are the received RF signals before and after
compression respectively, p(x, y, z) is the PSF, e(x, y, z) is the scattering function, n1(x, y, z)

and n2(x, y, z) are independent zero-mean white noise sources and a1, a2 and a3 are the scaling
coefficients due to lateral, axial and elevational strains respectively.

The correlation coefficient for one-dimensional motion (axial, lateral or elevational)
estimation, or time delay estimation (TDE), is typically defined by Bendat and Piersol (1986)
as

ρ12(τ ) = R12(τ )√
R11(0)R22(0)

(9)

where τ is the delay (equal to the displacement in elastography) and R12(τ ) is the peak of the
cross-correlation function given by

R12(τ ) = 1

T

∫ T

0
r1(t)r2(t + τ) dt (10)

where r1(t) and r2(t) are the received RF signals before and after compression respectively, T
is the window length and t denotes a time or spatial variable. Meunier (1989) calculated the

† In the axial direction, distance is proportional to time, since the speed of sound in the tissue is assumed constant
and equal to 1540 m s−1. Therefore, spatial variables (such as displacement) are proportional to time variables (such
as time delay) and vice versa.
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theoretical expression for the axial correlation coefficient (assuming infinite window size), ρa ,
and found it to be equal to

ρa = 2

√
αβ

(α2 + 1)(β2 + 1)
exp

[
−1

2

(
(α2 − 1)2f 2

0

2σ 2
y (α

2 + 1)

)]
(11)

where

α = 1

1 − εa
≈ 1 + εa (12)

and where α is the compression factor as a function of the uniformly applied axial strain εa ,
and β is the lateral expansion factor. In a similar fashion, Kallel and Ophir (1997) derived the
expressions for the lateral and elevational correlation coefficients given respectively by

ρ1 ≈ exp

(
−k (−νεax0)

2

σ 2
x

)
(13)

and

ρe ≈ exp

(
−k (−νεaz0)

2

σ 2
z

)
(14)

where k is a constant (equal to 1.2), ν is Poisson’s ratio and x0 and z0 are the lateral and
elevational tissue displacements from the axes of symmetry in the respective directions.
Kallel and Ophir (1997) also derived the expression for the effective correlation coefficient ρ
associated with 3D motion to be

ρ = ρaρlρe (15)

under the assumption that the three psf components (equations (4)–(6)) are separable. The
effective correlation coefficient ρ determines the amount of decorrelation noise in each
elastogram and depends on all (i.e. axial, lateral and elevational) motion components (Kallel
and Ophir 1997): the higher the correlation coefficient, the higher the signal-to-noise ratio in
the axial, lateral and elevational motion estimation. According to equations (11), (13), (14)
and (15), the highest correlation coefficient is achieved when the compression factor is closest
to 1 and the lateral and elevational displacements are zero, or, in a 3D setting, are estimated and
corrected for. The recorrelation method achieves an increase of each correlation coefficient
through successive use of axial global stretching, lateral tracking and correction and elevational
tracking and correction.

3. Methods

The axial psf component had a 50% bandwidth and a 5 MHz centre frequency while the lateral
and elevational psf components had full widths at half-maximum (FWHM ≈ 2.35

√
2σx =

2.35
√

2σz), or beamwidths, of 2 mm. The number of A-lines in the lateral direction was always
60, while in the elevational direction, 4 and 60 beams were respectively used in the cases of
the 1.5D and 2D arrays. Both the lateral and elevational pitches were equal to 0.67 mm. A
3D incompressible phantom of 40 × 40 × 20 mm3 containing a 10 mm diameter cylindrical
inclusion (of length equal to the girth of the phantom, i.e. 20 mm) was built with the finite-
element analysis (FEA) software ALGOR† (figures 1 and 3). The inclusion was three times
stiffer than the background (stiffness of 21 kPa) and both inclusion and background were
incompressible, i.e. with a Poisson’s ratio of 0.5. The 3D phantom was compressed from

† ALGOR is a registered trademark of Algor, Inc.
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Figure 3. 3D representation of finite-element calculated (a) axial, (b) lateral and (c) elevational
displacement images of the 3D ALGOR phantom.

the top (along the y- or axial direction, figure 1), fixed at the bottom, with slip and non-
slip conditions in the x- (lateral) and z- (elevational) directions respectively. The non-slip
conditions in at least one dimension were imperative in the 3D case, otherwise the phantom
would have unstable conditions under compression. All lateral sides were free. The 3D
RF sonograms were obtained in MATLAB‡ through convolution of the psf of equation (3)
with a tissue scattering function as shown in Konofagou and Ophir (1998). The scatterers
moved according to the FEA displacement solution. Monte Carlo simulations in MATLAB
were used to generate pre- and postcompression RF signals. The scattering function consisted
of uniformly distributed point scatterers with a density of 40 scatterers/pulsewidth, whose
amplitudes followed Gaussian statistics. We assume that the uniformly distributed scatterers
were of a sufficient number to generate an echo signal with Gaussian statistics (Insana et al
1986, 1990). The PSF was convolved with the scattering function to obtain the precompression
RF signal following equation (7). The postcompression signals were generated after applying
a uniform compression to the point scatterers (Céspedes 1993), and convolving the compressed
point scatterers with the original PSF following equation (8).

In order to highlight the importance of the correction, we considered an example with high
decorrelation noise. The method, due to its precision, can correct for smaller decorrelation as
well (Konofagou and Ophir 1998). We considered the case of 6% applied strain (equivalent to
2.4 mm applied displacement) and scanned in a plane at the elevational edge of the phantom,
i.e. away from the elevational plane of symmetry, where the motion in the elevational direction
was the largest, and therefore decorrelation noise was maximized. In order to estimate motion
in all three directions, a 3D recorrelation method was applied.

First, the strain components were estimated without correction producing the first axial,
lateral and elevational elastograms. Axial strain was determined using the seven-point least-
squares estimator (Kallel and Ophir 1997) on axial displacement estimates, which were
determined using the standard method of cross-correlation of pre- and postcompressed RF
segments (Ophir et al 1991). The window size was 3 mm and the window overlap 80%.
The lateral (or elevational) displacement was computed by interpolating between original
postcompressed A-lines and cross-correlating pre- and postcompressed RF segments in the
lateral (or elevational) direction (Konofagou et al 1998). The lateral (or elevational) strain
was then estimated using the least-squares estimator with a kernel of 10 points. At each
subsequent step of the recorrelation method (figure 2(i)) a new postcompression RF sonogram

‡ MATLAB (Version 5.2) is a registered trademark of Mathworks, Inc, Natick, MA, USA.
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Figure 4. True (a) axial (uy ), (b) lateral (ux ) and (c) elevational (uz) and estimated (d) axial,
(e) lateral and (f ) elevational displacement images (in mm), all estimated in the same plane at the
elevational edge of the phantom (figure 3).

was produced that had been corrected for the motion estimated at that step and was to be
used in the following step. The second axial and lateral elastograms were corrected for axial
decorrelation through the use of global stretching (Varghese et al 1996) and the same method of
cross-correlation estimation, as described above, was applied. The second lateral elastograms
were generated by applying the gradient operator to the lateral displacements, estimated using
linear interpolation and tracking of axial single RF segments (Konofagou and Ophir 1998).
The second elevational elastogram was calculated using the stretched and laterally shifted RF
segments (Konofagou and Ophir 1998). The lateral displacement used to generate the second
lateral elastogram was used for laterally shifting the RF segments prior to estimation of the
second elevational elastogram. Finally, the third axial and lateral elastograms were calculated
following elevational correction by shifting the RF segments in the elevational direction by
the amount of estimated elevational displacement. The linear interpolation scheme in both
lateral and elevational estimation was 50:1. The recorrelation method was applied in two
simulated cases, using (a) a 1.5D array (60 × 4 A-lines) where all axial, lateral and elevational
motions were estimated with respect to the same axial plane (at the elevational edge of the
target), and (b) a 2D array (60 × 60 A-lines), where elevational motion was estimated in a
plane perpendicular to the axial plane and along the axis of the cylindrical inclusion.

4. Results

4.1. 1.5D array example

All first axial, first lateral and first elevational elastograms are estimated at 6% axial
compression. The outcomes (figures 2(ii)(a), (b) and (c)) are severely corrupted by
decorrelation noise, as expected. The correction starts with global stretching (Varghese et al
1996) that removes the decorrelation noise due to axial motion. This step yields the second axial
and second lateral elastograms (figures 2(ii)(d) and (e)). The lateral displacement measured
in the second lateral step is used for lateral correction by using the same correction method as
described in the previous section. The second elevational displacement image (figure 4(f )) and
elastogram (figures 2(ii)(f ) and 5(f )) are generated using the postcompression data corrected
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Figure 5. Elastograms of εy , εx and εz normal strain components corresponding to the displacement
images of figure 4. Positive and negative strain values denote compressive and tensile strains
respectively.

for axial and lateral motion. The elevational displacement image describes motion in the
elevational direction in and out of the 2D outer plane that is the front face of figure 3(c).
Motion in the elevational direction is only positive because all motion in that particular plane
has occurred in the positive elevational direction (figure 4(f )).

The third lateral displacement image (figure 4(e)) and elastogram (figures 2(ii)(g) and
5(e)) are generated after correction for elevational motion and the third axial displacement
(figure 4(d)) and strain (figures 2(ii)(h) and 5(d)) images, which have been corrected for
elevational and lateral motion. Throughout this recorrelation method, the signal-to-noise ratio
(SNRe) of all three elastograms rises steadily, since the effective correlation coefficient ρ
(equation (15)) increases with each correction step. In addition, as figure 4 clearly shows, both
small and large displacements are estimated with equal SNRe due to the inherent precision of
the tracking method.

Once decoupling has occurred, the second elevational and third axial and lateral
displacements are used to estimate the three shear strain components (equation (2), figure 6).
Therefore, mapping of the full strain tensor (equation (1)) in that plane is achieved. The shear
strain elastograms are noisier than the normal strain elastograms (figure 5) for two reasons.
First, the shear strain calculation involves two gradient operations and, therefore, double the
noise of estimation, and second, the true shear strain (e.g. figure 6(a)) is smaller than the
corresponding true normal strain (e.g. figure 5(a)) and, therefore, tests the precision of the
estimator to a higher degree. In order to smooth the shear strain elastograms, we used a
median filtering with a 5 × 5 mask.

4.2. 2D array example

A 2D array (60 × 60 A-lines) was used to estimate elevational motion in an elevational plane
(figure 1), in the middle and along the axis of the cylindrical inclusion. So, unlike the 1.5D
array example that only estimates the in-plane elevational strain, in this case we can also
estimate the out-of-plane elevational strain, i.e. in a plane perpendicular to the axial plane (or,
the plane of the 1.5D array). The same recorrelation method and parameters as in the previous
example were used and the elevational tracking results are shown in figure 7. The true and
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Figure 6. (a) True and (b) estimated shear elastogram (image of shear strain component εxy );
(c) true and (d) estimated shear elastogram (image of shear strain component εxz); (e) true and
(f ) estimated shear elastogram (image of shear strain component εxz). Positive and negative strain
values denote compressive and tensile strains respectively.

estimated elevational displacements are shown in figures 7(a) and 7(c) respectively. The true
elevational displacement can also be observed on the left lateral side of its 3D equivalent in
figure 3(c). Note that despite the skewed profile due to the non-slip conditions in that direction,
the algorithm was able to estimate this complex linear motion (figure 7(c)). The cylindrical
shape of the inclusion in the elevational direction is clearly shown in the elevational elastogram
of figure 7(d), estimated using the least-squares estimator.

5. Discussion and conclusion

Using 3D FEA simulations we have shown that all three displacement vectors, and thereby
principal normal as well as shear strain tensor components, can be estimated and imaged
using a precision recorrelation method, using 1.5D or 2D arrays. Therefore, mapping and
characterization of the full strain tensor (equation (1)) in a given plane was shown to be
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Figure 7. True elevational (a) displacement (in mm) and (b) strain, and estimated elevational
(c) displacement (in mm) and (d) elastogram using a 2D array. Note the asymmetry of the
displacement compared with figures 4(a) and 4(d) due to the imposed non-slip conditions in the
elevational direction. Positive and negative strain values denote compressive and tensile strains
respectively.

feasible. In the case of 2D arrays, precision estimations of elevational displacement and strain
can be made at any plane perpendicular to the axial compression/scanning plane. These arrays
are not currently available in our experimental setting and, therefore, these results have not
been experimentally corroborated.

The wealth of information achieved with the 3D displacement field and strain tensor
estimation may provide important insight into the fundamental mechanical properties of tissues,
such as anisotropy, incompressibility, poroelasticity, viscoelasticity, lesion mobility and/or
thermoelasticity. By measuring the Poisson’s ratio through its definition as a ratio between
orthogonal strains in all three dimensions, we can assess the anisotropy and incompressibility
of the target (Konofagou and Ophir 1998). By definition, an incompressible material has
a Poisson’s ratio equal to 0.5. Also, if this parameter is measured versus time, e.g. during
a stress relaxation experiment, the poroelastic properties of the tissue, i.e. the content of a
fluid within the solid matrix, can be indicated, and the permeability as well as stiffness of
the solid matrix can be quantified. In addition, the shear strain can be used to investigate the
mobility of lesions within the target and thereby assess its type, i.e. malignant or benign (Chen
1995, Konofagou 1999). Finally, the undesired effect of changes in the speed of sound on
thermal strain measurements in the axial direction can be compared with the measurement in
the transverse directions, where the same effect is non-existent; this should allow the removal
of this effect from the measurement of the thermal expansion coefficient in tissues.
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Garra B S, Céspedes E I, Ophir J, Spratt R S, Zuurbier R A, Magnant C M and Pennanen M F 1997 Elastography of

breast lesions: Initial clinical results Radiology 202 79–86
Insana M, Chaturvedi P, Hall T and Bilgen M 1997 3D companding using 1.5D arrays for improved strain imaging

IEEE Ultrasonics Symp. pp 1427–30
Insana M F, Wagner R F, Brown D G and Hall T J 1990 Describing small-scale structure in random media using

pulse-echo ultrasound J. Acoust. Soc. Am. 87 179–92
Insana M F, Wagner R F, Garra B S, Brown D G and Shawker T H 1986 Analysis of ultrasound image texture via

generalized Rician statistics Opt. Eng. 25 743–8
Kallel F and Ophir J 1997 Three dimensional tissue motion and its effects on image noise in elastography IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 44 1286–96
Konofagou E E 1999 Estimation and imaging of three-dimensional motion and Poisson’s ratio in elastography PhD

Dissertation University of Houston, TX
Konofagou E E, Harrigan T, Ophir J and Krouskop T 1999 Poroelastography: estimating and imaging the poroelastic

properties of tissues IEEE Ultrasonics Symp. at press
Konofagou E E and Ophir J 1998 A new method for estimation and imaging of lateral strains and Poisson’s ratios in

tissues Ultrasound Med. Biol. 24 1183–99
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