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Second law and entropy production in a nonextensive system
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A model of superconducting vortices under overdamped motion is currently used for describing type-II
superconductors. Recently, this model has been identified to a nonlinear Fokker-Planck equation and associated
to an entropic form characteristic of nonextensive statistical mechanics, S2(t) ≡ Sq=2(t). In the present work, we
consider a system of superconducting vortices under overdamped motion, following an irreversible process, so that
by using the corresponding nonlinear Fokker-Planck equation, the entropy time rate [dS2(t)/dt] is investigated.
Both entropy production and entropy flux from the system to its surroundings are analyzed. Molecular dynamics
simulations are carried for this process, showing a good agreement between the numerical and analytical results.
It is shown that the second law holds within the present framework, and we exhibit the increase of S2(t) with
time, up to its stationary-state value.
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I. INTRODUCTION

The statistical definition of entropy in terms of probabilities
allows a direct connection between the microscopic (described
by statistical mechanics) and macroscopic (described by
thermodynamics) worlds. One of the most relevant results
that follows from this definition is the H theorem, which may
be proved in several ways, e.g., by making use of a master
equation or a Fokker-Planck equation. In the latter case, the
H theorem is well established by considering the Boltzmann-
Gibbs (BG) entropy and employing the linear Fokker-Planck
equation [1,2]; therefore, one associates BG entropy with the
linear Fokker-Planck equation and, consequently, with the
wide range of physical phenomena described by this equation.

Recently, the proof of the H theorem has been generalized
to take into account entropic forms different from the BG
case [3–10]. In this way, the H theorem was achieved by
associating generalized entropic forms with nonlinear Fokker-
Planck equations (NLFPEs). Since NLFPEs are accepted
nowadays to be related with many complex phenomena, such
as those exhibiting anomalous diffusion [11], this general proof
guarantees that such complex systems should be described by
entropic forms more general than the BG entropy. For this, one
may consider a NLFPE written in a very general form [3,7,8],

η
∂P (x,t)

∂t
= −∂{A(x)�[P (x,t)]}

∂x

+D
∂

∂x

{
�[P (x,t)]

∂P (x,t)

∂x

}
, (1)

where η represents an effective friction coefficient, D is a
constant with dimensions of energy, and the external force
A(x) is associated with a potential φ(x) [A(x) = −dφ(x)/dx].
The functionals �[P (x,t)] and �[P (x,t)] should satisfy
certain mathematical requirements, e.g., positiveness [7,8],
and one notices that the linear Fokker-Planck equation is
recovered from Eq. (1) by choosing these functionals as
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�[P (x,t)] = P (x,t) and �[P (x,t)] = 1. Furthermore, to en-
sure normalizability of P (x,t) for all times, one must impose
the conditions

P (x,t)|x→±∞ = 0,
∂P (x,t)

∂x

∣∣∣∣
x→±∞

= 0,

A(x)�[P (x,t)]|x→±∞ = 0 (∀t). (2)

Due to the presence of an external potential φ(x), the
H theorem corresponds to a well-defined sign for the time
derivative of the free-energy functional,

F = U − θS, U =
∫ ∞

−∞
dx φ(x)P (x,t), (3)

with θ representing a positive parameter with dimensions of
temperature. Moreover, the entropy is considered in the form

S[P ] = k

∫ ∞

−∞
dx g[P (x,t)], g(0) = g(1) = 0,

d2g

dP 2
� 0,

(4)

where k denotes a positive constant with dimensions of
entropy, and the functional g[P (x,t)] should be at least twice
differentiable. Considering the NLFPE of Eq. (1), as well as a
negative sign for the time derivative of the free energy [7–10],
one gets that the functionals of Eq. (1) should be directly
related to the entropic form,

−d2g[P ]

dP 2
= �[P ]

�[P ]
, (5)

and we are assuming that D = kθ .
The second law of thermodynamics, which is directly

related to the H theorem, states that the entropy of an isolated
system always increases for irreversible processes; this leads to
the interesting phenomenon of entropy production [1,12–14].
Within the statistical definition of entropy, the entropy pro-
duction yields a direct dependence on the time derivative of
the corresponding probability; for this purpose, one may use,
e.g., the Boltzmann, or Fokker-Planck equations in the case
of continuous probabilities [1], or the master equation, when
dealing with discrete probabilities [15]. Most investigations in
the literature are concerned with the production of BG entropy

1539-3755/2015/91(1)/012140(8) 012140-1 ©2015 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357313076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.91.012140


RIBEIRO, CASAS, AND NOBRE PHYSICAL REVIEW E 91, 012140 (2015)

(see, e.g., Refs. [1,15–17]), and so one makes use either of the
standard master equation or the linear Fokker-Planck equation.

Within the framework of generalized entropies, the phe-
nomenon of entropy production has been rarely studied in the
previous literature (see, e.g., Refs. [18–22] for exceptions).
Recently, the formalism was extended to general entropic
forms for continuous probabilities [making use of the NLFPE
in Eq. (1)] [21], as well as for discrete probabilities (using
a generalized master equation) [22]. In the former case, it
became convenient to express Eq. (1) as a continuity equation,

∂P (x,t)

∂t
= −∂J (x,t)

∂x
,

J (x,t) = 1

η

{
A(x)�[P ] − D�[P ]

[
∂P (x,t)

∂x

]}
. (6)

Then, one may write the entropy time rate in the form
[1,12–14]

d

dt
S[P ] = � − 	, (7)

where one identifies the entropy production � and entropy
flux 	 contributions. These two concepts were extended for
the general entropic form defined in Eq. (4) [21] by considering
its associated NLFPE in Eq. (1); the flux, representing the ex-
changes of entropy between the system and its neighborhood,
is given by

	 = k

D

∫ +∞

−∞
dxA(x)J (x,t), (8)

whereas the entropy-production contribution is given by

� = kη

D

∫ +∞

−∞
dx

{J (x,t)}2

�[P ]
. (9)

Since k, η, D, and �[P (x,t)] were all defined previously
as positive quantities, one obtains the desirable result � � 0.
Furthermore, when A(x) = 0, one has that 	 = 0, represent-
ing a situation where there is no entropy flux between the
system and its neighborhood; the stationary state, defined by
J (x,t) = 0, yields 	 = � = 0.

The purpose of the present work is to investigate the quanti-
ties defined in Eqs. (8) and (9) for a system of superconducting
vortices following an irreversible process, described by a
NLFPE of the form of Eq. (1). In the next section, we define the
model, its corresponding NLFPE, and the associated entropy
S2(t), characteristic of nonextensive statistical mechanics. In
Sec. III, we present data from molecular dynamics simulations,
exhibiting the good agreement with analytical results, for both
entropy production and entropy flux. Moreover, it is shown that
the second law holds within the present framework, through
an increase of S2(t) with time, up to its stationary-state value.
Finally, in Sec. IV, we present our conclusions.

II. THE PHYSICAL SYSTEM AND ITS
ASSOCIATED ENTROPY

Herein we will investigate the phenomenon of entropy pro-
duction for a system of interacting vortices under overdamped
motion. This system has been currently used in the literature
to model flux lines in disordered type-II superconductors (see,

e.g., Refs. [23–29]); the equation of motion of a flux line
i under overdamped motion [i.e., with (dvi/dt) = 0], in a
medium with an effective friction coefficient η, is given by

ηvi = Fpp
i + Fext

i (i = 1,2, · · · ,N ). (10)

In the equation above, vi represents the velocity, whereas
the terms on the right-hand side depict the forces acting
on flux line i. The particle-particle interactions Fpp

i denote
contributions from other vortices, whereas Fext

i represents an
external force acting on vortex i. The vortex-vortex interac-
tions are repulsive and radially symmetric, being expressed as
[23,28,29]

Fpp
i = f0

2

∑
j �=i

K1(rij /λ) r̂ij , (11)

where rij = |ri − rj | stands for the distance between vortices
i and j , and r̂ij = (ri − rj )/rij is a vector defined along
the axis joining them. Moreover, K1 represents a modified
Bessel function of the second kind of order one and f0 is a
positive constant. These interactions are defined in terms of a
characteristic length scale λ, known as the London penetration
length; other linear measures of this system are expressed in
units of λ. The external forces Fext

i are associated to a confining
type of potential, so that the system can reach a stationary
state after a sufficiently long time. Herein this problem will
be considered in a two-dimensional box of dimensions Lx and
Ly , as carried in previous numerical simulations [30–32].

For an external force in the x direction, Fext = −A(x)x̂, a
coarse-graining procedure in Eq. (10) leads to the following
NLFPE [29–31]:

η
∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x

+ 2D
∂

∂x

{
[λP (x,t)]

∂P (x,t)

∂x

}
, (12)

where D = Nπf0λ
2/Ly . It should be mentioned that this

equation represents a particular case of the NLFPE usually
considered in nonextensive statistical mechanics [33]. The
time-dependent solution of this NLFPE is known for an
initial condition P (x,0) = δ(x) and a harmonic external force
A(x) = −αx (α > 0),

P (x,t) = B(t)[1 − β(t)x2]+, (13)

where [y]+ = y, for y > 0, and zero otherwise, and the time-
dependent coefficients B(t) and β(t) are related to each other
in order to preserve the normalization of P (x,t) for all times t

[34,35]. One should notice that the distribution in Eq. (13)
presents a compact support in the interval [−x̄(t),x̄(t)],
where x̄(t) = β−1/2(t), being identified with a q-Gaussian
distribution of nonextensive statistical mechanics with q = 0
[33,36].

Following Eqs. (3)–(5), in order to satisfy the H theorem,
the entropy associated with the NLFPE of Eq. (12) should be
given by [30–32]

S2(t) = k

{
1 − λ

∫ x̄(t)

−x̄(t)
dx [P (x,t)]2

}
. (14)

Moreover, throughout the proof of the H theorem, one
identifies the parameter θ , introduced in Eq. (3), with the
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diffusion coefficient D of Eq. (12) by means of

kθ ≡ D = Nπf0λ
2

Ly

= nπf0λ
2. (15)

The quantity kθ presents dimension of energy and is directly
related to the density n = N/Ly , as well as to the interactions
among vortices, being always positive. According to recent ad-
vances in experimental techniques, the density of vortices be-
came a controllable quantity [24–27], leading to the desirable
possibility of varying θ . The analysis of Ref. [37] has shown
that values of θ in type-II superconductors are much higher
than typical room temperatures (θ � T ), so that the thermal
noise can be neglected as a good approximation (T/θ � 0). In
this case, certain thermodynamic properties, such as entropy
and specific heat, become negligible within BG statistical
mechanics; however, a curious situation concerning the third
law of thermodynamics was verified in Ref. [30], where
SBG → 0, keeping the generalized entropic form S2 > 0,
as T → 0.

Motivated by this, some stationary-state properties, related
to the entropy S2 and the internal energy in Eq. (3), were
investigated for varying θ [37] by neglecting thermal noise.
Moreover, by defining appropriately physical transformations,
a Carnot cycle was constructed in Ref. [38], leading to an
expression for its efficiency similar to the one of standard
thermodynamics. These investigations have shown that θ plays
a role in the present problem, analogous to the one of absolute
temperature T in standard thermodynamics. Herein, we will
investigate time-dependent properties, namely, the entropy
production and flux associated with the entropic form S2(t), for
different values of the parameter D of Eq. (15) by neglecting
thermal noise.

In order to analyze the production of entropy S2(t), one
needs to define a irreversible process associated with the
above-defined physical system. For comparing analytical and
numerical results, we will consider in the simulations an initial
condition close to the one used for solving Eq. (12), which led
to the solution in Eq. (13). The irreversible process investigated
herein is shown in Fig. 1, and it consists of an expansion of the
vortices across the rectangular box of linear sizes Lx and Ly . At
time t = 0, the particles are packed around x = 0 (no excluded
volume is considered), yielding strong repulsive interactions,
in such a way that the particles move away very rapidly from
the central region of the box. At larger times, the confining
harmonic potential starts acting significantly so that the parti-
cles slow down, and for sufficiently long times, the repulsive
and confining forces equilibrate, leading to an stationary state.
During the expansion, one expects that � > 0 and 	 �= 0,
whereas �,	 → 0 as one approaches the stationary state. In
the next section, we present data from molecular dynamics
simulations, comparing them with results derived from the
analytical solution of the associated NLFPE of Eq. (12).

III. ENTROPY PRODUCTION AND ENTROPY FLUX
FOR VORTICES

By comparing Eqs. (1) and (12), one obtains, for the present
case,

�[P (x,t)] = P (x,t), �[P (x,t)] = 2λP (x,t), (16)
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FIG. 1. The irreversible process investigated herein consists of
an expansion of the vortices across the two-dimensional box; at time
t = 0, the particles are packed around x = 0 (no excluded volume
is considered) and the repulsive interactions dominate, in such a
way that the particles move away very rapidly from the central
region. At larger times, the confining harmonic potential starts acting
significantly, so that the particles slow down, and for sufficiently
long times the repulsive and confining forces equilibrate, leading
to an stationary state. Several snapshots are presented, exhibiting
the particle positions on typical times t , for a single sample of
N = 1000 particles. In each snapshot, the horizontal and vertical
axes (x/λ and y/λ, respectively) show the relevant part of a box of
sizes Lx = 280λ and Ly = 20λ. At t = 5, one has a state very close
to the initial distribution, whereas the stationary state is essentially
reached for t = 1200. The confining potential used was such that
α = 10−3f0/λ. The time is dimensionless, measured in terms of the
molecular dynamics time step δt , as described in the text.

so that the NLFPE of Eq. (12) may be written in the form of
Eq. (6), with the probability current

J (x,t) = 1

η

{
A(x)P (x,t) − 2λDP (x,t)

[
∂P (x,t)

∂x

]}
. (17)

It is important to notice that the solution in Eq. (13)
presents a compact support, being nonzero inside the inter-
val [−x̄(t),x̄(t)], and zero otherwise. Moreover, the time-
dependent parameters x̄(t), B(t), and β(t) are not all indepen-
dent. Indeed, imposing P [x̄(t),t] = 0 yields x̄(t) = β−1/2(t),
and in order to guarantee normalization for all times, the
parameters B(t) and β(t) should be related by [34,35]

β(t)

β(t0)
=

[
B(t)

B(t0)

]2

, (18)

where t0 represents a reference time. For the distribution in
Eq. (13), one obtains [31]

B(t) = B(t0)(K2)1/3[1 + (K2 − 1) exp(−3αt)]−1/3, (19)

β(t) = β(t0)(K2)2/3[1 + (K2 − 1) exp(−3αt)]−2/3, (20)
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K2 = α

4Dλβ(t0)B(t0)
. (21)

Hence, for given values of α, D, B(t0), and β(t0), one may
use Eqs. (19)–(21) to obtain the time-dependent parameters
B(t), β(t), and, consequently, x̄(t).

Considering the results above, the boundary conditions of
Eq. (2) yield

P (x,t)|x=±x = 0,
∂P (x,t)

∂x

∣∣∣∣
x=±x

= ∓2B(t)β(t)x̄(t),

A(x)P (x,t)|x=±x = 0, J (x,t)|x=±x = 0 (∀t). (22)

Therefore, one can calculate all of the relevant quantities above
analytically, which by using that x̄(t) = β−1/2(t), their time
dependence appears through the parameters B(t) and β(t) of
Eqs. (19)–(21). One gets

S2(t)

k
= 1 − 16

15
λB2(t)β−1/2(t), (23)

ηJ (x,t) = B(t)[x − β(t)x3][4λDB(t)β(t) − α], (24)

	(t) = 4

15

kαB(t)

ηDβ3/2(t)
[α − 4λDB(t)β(t)] , (25)

�(t) = 4

15

kB(t)

ηDβ3/2(t)
[α − 4λDB(t)β(t)]2 , (26)

leading to

dS2(t)

dt
= �(t) − 	(t) = 16

15

kλB2(t)

η
√

β(t)
[4λDB(t)β(t) − α] .

(27)

From Eqs. (19)–(21), one verifies that B(t),β(t) � 0
with 4λDB(t)β(t) � α, leading to 	(t) � 0, �(t) � 0, and
[dS2(t)/dt] � 0 in the equations above. Hence, the stationary
state is attained in the limit 4λDB(t)β(t) → α, where the
quantities of Eqs. (24)–(27) all vanish. In these quantities,
one sees clearly a competition between the time-dependent
term multiplied by the diffusion constant D and the constant
α associated with the harmonic confining potential. Along
the whole time evolution, the former contribution is stronger,
approaching a constant value that is precisely α at the
stationary state. Moreover, considering this limit, in addition
to the choice for the initial values [B2(t0)/β(t0)] = (3/4)2, one
obtains the stationary-state entropy [37–39]

S
(stat)

2

k
= 1 − 32/3

5

(
αλ2

kθ

)1/3

. (28)

For numerical purposes, we replace the initial condition,
P (x,0) = δ(x), by a narrow uniform distribution, considering
all particles spread throughout a small region around x = 0 at
t = 0; this avoids numerical difficulties caused by interacting
vortices separated by very small distances. The particular
choice of the parameter α is directly associated with the time
taken by the system to reach its stationary state; as will be
seen next, the qualitative physical behavior of the quantities
above is unaltered by this choice. However, the choice of D is
related to the linear density of particles, n = N/Ly , as defined

in Eq. (15). In the numerical simulations that follow, we have
used two different choices for the confining constant α, namely,
α = 10−3f0/λ (associated with a larger time for reaching the
stationary state) and α = 10−2f0/λ (associated with a shorter
time for reaching the stationary state). Using Eq. (15), the
quantity 2Dλ that appears in the NLFPE of Eq. (12), as well as
in Eq. (17), is given by 2Dλ = n(2πf0λ

3), which, in principle,
may differ from the numerical estimate. In fact, in order to
fit the theoretical results with the numerical ones, we have
used 2Dλ = n[(5.87 ± 0.02)f0λ

3], where the error bars come
from the best least-squares fits of the theoretical curves. Such
a disagreement between analytical and numerical estimates
(leading to a relative discrepancy around 7%) is a direct
consequence of the coarse-graining approximation carried
for obtaining the NLFPE of Eq. (12) [30,31]. We simulated
systems with three different values for the total number of
particles, namely, N = 4000,2000, and 1000. The particles
were confined in a two-dimensional box of sizes Lx = 280λ

and Ly = 20λ, with periodic boundary conditions in the y

direction. These choices lead to three distinct linear density of
vortices, n = (200/λ),(100/λ), and (50/λ), respectively, and,
consequently, three different values of the parameter D.

In Fig. 2, we present the time behavior of the parameters
B(t) [Fig. 2(a)] and β(t) [Fig. 2(b)] of the distribution in
Eq. (13) in a linear-log representation. The symbols are numer-
ical data, whereas the full lines correspond to the analytical
results. In each case, two choices for the confining constant
were employed, namely, α = 10−3f0/λ and α = 10−2f0/λ (in
the respective insets). The number of particles considered was
N = 4000, leading to a linear density of particles n = (200/λ).
One sees that the higher value of α yields a much faster
approach to the stationary state, although the qualitative time
behavior of the parameters does not change.

The probability current J (x,t) of Eq. (17) [or, equivalently,
Eq. (24)] is represented versus the position in Fig. 3. Usually,
this quantity presents dimensions [time]−1, and since herein
time is dimensionless (measured in terms of the molecular
dynamics time step δt), J (x,t) is dimensionless. In Fig. 3(a),
we represent J (x,t) versus x/λ for typical times of the
evolution. One sees that the probability current is zero for
x = 0, since A(x)|x=0 = 0, as well as [∂P (x,t)/∂x]|x=0 = 0;
in addition to this, the boundary conditions of Eq. (22)
also give J (x,t)|x=±x = 0 (∀t). Furthermore, the symmetry
J (−x,t) = −J (x,t) (∀t) is seen clearly in Fig. 3(a). The
absolute value of the probability current, |J (x,t)|, presents
more significant values for shorter times when the probability
distribution is changing more rapidly, becoming smaller as
time increases, in such a way that |J (x,t)| → 0 for sufficiently
large times. Interestingly, there is always a value of |x/λ|
for which |J (x,t)| becomes maximum. The dimensionless
quantities [J (x,t)/J ∗(t)] versus [x/x̄(t)] are presented in
Fig. 3(b), where J ∗(t) is calculated as the maximum value of
J (x,t), for each time t . For the variables used in Fig. 3(b),
data from distinct times collapse into a single universal
curve, such that one has a maximum of |J (x,t)/J ∗(t)|
for |x/x(t)| ≈ 0.6. Therefore, one has a situation where
[∂J (x,t)/∂x]||x/x(t)|≈0.6 = 0 (∀t), for which the distribution of
Eq. (13) becomes P (x,t) ≈ 0.64B(t). It should be mentioned
that this represents a physical situation distinct from the
stationary state, since the probability distribution presents a
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FIG. 2. (Color online) The dimensionless time-dependent parameters (a) λB(t) and (b) λ2β(t) of the distribution in Eq. (13) are represented
vs time. The symbols are numerical data, whereas the full lines correspond to the analytical results. In each case, two choices for the confining
constant were employed, namely, α = 10−3f0/λ (α = 10−2f0/λ in the respective insets). The linear density of particles considered was
n = (200/λ) [i.e., D = 200πf0λ]. The time is dimensionless, measured in terms of the molecular dynamics time step δt .

time dependence. The results of Figs. 2 and 3 give evidence
of the good agreement between data from the numerical
simulations and the analytical results, derived from the NLFPE
of Eq. (12). They strongly support the close relation between
the dynamics of the system of vortices studied herein and such
a NLFPE; this will be reinforced throughout the following
results.

In Fig. 4, we present the entropy production [Fig. 4(a)]
and entropy flux [Fig. 4(b)] as a function of time. Three

different choices of the parameter D were considered by
choosing conveniently the total number of vortices, N = 4000,
N = 2000, and N = 1000, corresponding to D = 200πf0λ,
D = 100πf0λ, and D = 50πf0λ, respectively. From Fig. 4(a),
one notices that �(t) � 0(∀t), as expected, whereas the
stationary state is reached (within our numerical accuracy)
for [�(t)/k] < 10−6. Moreover, for two given values D1 >

D2, one sees that the quantities of Fig. 4 are such that
	1(t) � 	2(t), whereas �1(t) � �2(t) (∀t). In the present
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FIG. 3. (Color online) (a) The dimensionless probability current J (x,t) [cf. Eq. (17) or, equivalently, Eq. (24)] is exhibited vs the position x

(in units of λ) for typical times of the evolution (shown as different symbols). The symbols are numerical data, whereas the full lines correspond
to the analytical results. (b) The same quantity is presented in a conveniently scaled representation, where data from different times (shown as
distinct symbols) collapse into a single universal curve; the full line stands for the analytical result. Both ordinate and abscissa are dimensionless
quantities, and in the former, J ∗(t) represents the maximum value of J (x,t) at time t , whereas in the latter, x̄(t) depicts the compact support
of the distribution, as described in the text. The results presented correspond to a confining constant α = 10−3f0/λ and to a linear density of
particles n = (200/λ), i.e., D = 200πf0λ.
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FIG. 4. (Color online) The entropy production �(t) and entropy flux 	(t), defined in Eqs. (7)–(9) [see also Eqs. (25) and (26)], are
presented vs time. The symbols are numerical data, whereas the full lines correspond to the analytical results. In each case, two choices for the
confining constant were employed, namely, α = 10−3f0/λ (α = 10−2f0/λ in the respective insets). Three different values for the total number
of vortices were chosen conveniently, leading to three distinct values of the parameter D [cf. Eq. (15)], namely, D = 200πf0λ, D = 100πf0λ,
and D = 50πf0λ. The time is dimensionless, measured in terms of the molecular dynamics time step δt .

irreversible process, one has that 	(t) � 0, as discussed above
and illustrated in Fig. 4(b); consequently, in this case, Eq. (7)
may be rewritten as

dS2(t)

dt
= �(t) + |	(t)|, (29)

from which one concludes that the external force A(x) enlarges
the time rate of the entropy, resulting from a flux of entropy

towards the system. As mentioned before, the confining
constant does not qualitatively affect the quantities presented
in Fig. 4; one sees that the higher choice, α = 10−2f0/λ

(see insets), decreases the time for reaching the stationary state
(typically by a factor of 10), but keeps a similar qualitative time
behavior for both �(t) and 	(t).

The entropy time rate and entropy S2(t) are represented
versus time in Figs. 5(a) and 5(b), respectively. Three different
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FIG. 5. (Color online) The time rate of the entropy, as well as the entropy of Eq. (14) [see also Eqs. (23) and (27)], are represented vs
time. The symbols are numerical data, whereas the full lines correspond to the analytical results. In each case, two choices for the confining
constant were employed, namely, α = 10−3f0/λ (α = 10−2f0/λ in the respective insets). Three different values for the total number of vortices
were chosen conveniently, leading to D = 200πf0λ, D = 100πf0λ, and D = 50πf0λ. At the stationary state, these choices correspond to
three distinct values of the effective temperature θ [cf. Eq. (15)]. The increase of the total entropy with time, presented in (b), shows that the
second law of thermodynamics applies also for the entropic form of Eq. (14), within the present irreversible process. The time is dimensionless,
measured in terms of the molecular dynamics time step δt .
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values for the total number of vortices were chosen conve-
niently and, at the stationary state, these choices correspond
to three distinct values of the effective temperature θ [cf.
Eq. (15)]. Comparing Fig. 5(a) with Figs. 4(a) and 4(b), one
notices that dS2(t)/dt presents essentially the same qualitative
behavior exhibited by �(t).

In standard thermodynamics, higher temperatures are asso-
ciated with an increase of disorder, leading to higher values
of entropy; a similar situation is found in the present problem,
as shown in Fig. 5(b), where at the stationary state one
defines an effective temperature according to Eq. (15). In this
figure, one observes an approach to the stationary-state entropy
of Eq. (28), which was obtained from the time-dependent
behavior of Eq. (23) by considering the stationary-state limit
and a particular choice for the relation involving the initial
values B(t0) and β(t0). In order to provide a good visualization
of the time-dependent behavior, we had to choose parameters
in the present process such that in the entropy of Eq. (28),
αλ2  kθ , leading to (S (stat)

2 /k) ≈ 1; the time behavior of
S2(t) for a higher choice of α is shown in the respective inset.

The most important conclusion that emerges from Fig. 5
concerns the second law of thermodynamics, which appears
as (dS2(t)/dt) � 0 [Fig. 5(a)] or, more clearly, with the
increase of S2(t) with time [Fig. 5(b)]. Hence, the second
law of thermodynamics is illustrated herein for an irreversible
process in a physical system described by the entropic form of
Eq. (14), in which thermal effects were neglected. Moreover,
as expected physically, for a fixed time t one sees that systems
with higher values of D and, consequently, higher values of
the effective temperature θ at the stationary state present larger
values of entropy.

IV. CONCLUSIONS

General proofs of the H theorem have been achieved
recently, in order to relate nonlinear Fokker-Planck equations

with generalized entropic forms. Within this framework, a
model of superconducting vortices following an overdamped
motion has been identified to a nonlinear Fokker-Planck equa-
tion and, consequently, to an entropic form S2(t), characteristic
of nonextensive statistical mechanics [30,31]. In this work,
we have considered an irreversible process for this system
and, based on its associated nonlinear Fokker-Planck, we have
studied the phenomenon of entropy production. The system is
studied in a regime where thermal effects can be neglected,
and so contributions from the Boltzmann-Gibbs entropy are
disregarded. Both contributions of the entropy time rate
[dS2(t)/dt] were analyzed, namely, the entropy production and
entropy flux from the system to its surroundings. Moreover, we
have shown that the second law holds also within the present
framework, through an increase of S2(t) with time up to its
stationary-state value, in spite of the absence of thermal noise.
All analytical results have been compared with numerical data
from molecular dynamics simulations carried for this process,
and a good agreement between both has been shown.

The present results yield further evidence that interacting
vortices under overdamped motion, which define a model
currently used for describing type-II superconductors, is
related to nonextensive statistical mechanics. In addition to
the consistent thermodynamical framework developed for its
stationary state in the absence of thermal noise, presented in
Refs. [37–39], we have shown herein that important time-
dependent behavior associated with S2(t), such as entropy
production, entropy flux, as well as a manifestation of the
second law, also hold for this system.
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