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Abstract In mineral resource evaluation a careful analysis and sssa#s of the
geology, assay data and structural data is performed. GQueatquestion is where
to position the exploration boreholes that render it pdesibclassify as much of the
deposit as possible as a measured or indicated resourcthekmmportant question
is what method to use when analyzing the grade in the cotlentgerial. For the de-
posit we consider, a challenge is to assess whether onedstusailyze the collected
core samples with accurate and expensive XRF equipmenedes accurate and
less expensive XMET equipment. A dataset of 1,871 XMET arRIXRF observa-
tions is available, along with relevant explanatory vaeabAt the 103 sites where
XRF data is acquired, 103 XMET measurements are also alaiMle first derive
estimates of the regression and covariance parameters afisstan random field
model for the log XMET and log XRF data. Next, the model is usedredict the
decisive grade parameter on block support. To improve tadigtions, the mining
company has planned to drill and collect 265 core samplasgatew boreholes.
The associated reduction in prediction variance, with XRIXBIET data collec-
tion, is studied. Moreover, we compute the value of the XRRMET information
using the statistical model, the expected developmens ewst revenues. The value
of information is a useful diagnostic here, comparing theagrice of the XRF or
XMET data with its added value.
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1 Introduction

We analyze spatial data from a deposit in Norway. The maimuneral is a par-

ticular oxide, and several exploration boreholes have keidad to understand the
spatial distribution of this mineral. The currently avaiedata consist of about two
thousand observations of the oxide along the boreholesd&pesit is still under

consideration for mining, and the main purpose with thistrodblogical paper is to
evaluate different strategies for collecting more data &so Eidsvik and Ellefmo
(2012).

The oxide has been measured on crushed core samples ubieigeeX-ray fluo-
rescence (XRF) spectrometer in the laboratory or a portéskey meter (XMET).
The XRF data are considered to be exact measurements of ithe, @xoviding
perfect information at the locations where they are made. armalysis procedure
is time consuming. The XMET data are considered to be a ndisgmwation of
the true oxide level, providing imperfect information. Beedata are acquired more
time efficiently and at a lower cost than the XRF data. We ipooate spatial de-
pendence in the oxide by a Gaussian geostatistical modehanel the true oxide
as a Gaussian random field.

In the mining industry resources are classified into meakunglicated or in-
ferred, depending on the level of uncertainty. This is fdirea through the JORC
code. Since every deposit is unique, the assessment irsciodiiple levels of ge-
ological information, assay data, and structural datamFaomore methodological
viewpoint, we discuss several evaluation criteria in ourtegt, computed at a set
of resource blocks. The criteria are the reduction of thegmat variances, the in-
crease in slope and correlation, the decrease in weigheohtfan (Rivoirard, 1987)
and the reduction of entropy. By todays standards the fiaagbkdication is done by
competent persons based on these criteria, and severatageespecific criteria.

We also use the value of information (VOI) to study the pdsf the different
data collection schemes. The VOI relates the probabilisticlel to the decision,
using monetary units explicitly (Bhattacharjya et al., @p1

2 Notation and data description

The depositis about 2.5 km long, and is an intensively folsledilens formed body
surrounded by mafic-felsic rocks. Geologists have definezkbtbategories with in-
creasing degree of mineralization. The classes are tertassl £, class 2 and class
3. Class 3 has the highest average oxide levels. The class@ams 2 categories are
dominating in the central parts of the ore. The degree of ralization is used as
covariates in our analysis. We observe the oxide by XMET oFXfata acquired in
boreholes. The laboratory XRF-data have been obtainedXtbmeter long crushed
sections (halves) of the core. The hand-held XMET data haem lzollected for
every 25 cm of the core before crushing and aggregated intoetér long XMET-
composites in correspondance with the XRF-analyses. Tdrer&03 sites of XRF
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data and 1871 sites of XMET data. The 103 locations with XRt& dee also mea-
sured with XMET data. Therefore, this represents a paytleterotopic sampling
scheme.

Figure 1 (left) displays histograms of the oxide data codldavith XMET (top)
and XRF (bottom), while Figure 1 (right) shows a crossplottlegd 103 (XRF,

Variance of XMET- XRF is 0.35%

Fig. 1 Left: Histogram of XMET (top) and XRF (bottom) observatiofi$ie oxide content ranges
from 0.39 to 7.40 percent for XMET with a mean of25. For XRF the range is from®6 to 514,
with a mean of 30. Right: The XMET data (second axis) plotted against thé&XRta (first axis)
at 103 common sites.

XMET) measurement pairs. The degree of mineralization atnieasurement lo-
cation is also indicated in the figure: class 1 (0), class ar{d class 3 (+). The
highest measurements of the oxide are typically collectédcations with class 3
covariates. For the XRF histogram in Figure 1 (left, botteve)might notice modes
representing the different classes, but there is muchbiéityawithin each class.

We next fit a joint geostatistical model for the XRF and XMETaal he XRF
responsey (s)) and XMET responseyf(s)) at a (north, east, depth) locatisrare
modeled by

yi(9) =X(9), ya(s) =x(8)+N(0,72). (1)

The collection of XRF and XMET data is denotedyoy- (v},Y5), where

y1=(Ya(s11),---.Y1(S1.109)", Y2 = (Yo(S21).---,Y2(S21870))"

Here, the true oxide at the (north, east, depth) locatisndenoted(s). The XRF
data provides perfect information about oxide at the lacativhile the XMET data
is imperfect information of oxide with measurement noisgamce 2. The noise
terms of the XMET observations are assumed to be indepeffidentone loca-
tion to another. We model the oxide as a Gaussian random fiitld expected
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value i (s) = ht(s)B, whereh(s) includes a constant term and the mineraliza-
tion covariate at sites, and 3 = (f1,5,)! is a regression parameter. We choose
a Matern covariance model to describe the spatial covagiatrcicture of oxide:
Cov(x(s),x(s)) = a?(1+ gh)exp(—¢h) for distanceh = ||s— ¢||. Then the vari-
ance iso?, andg indicates the strength of spatial correlation.

Note that both datatypes are used together, in a joint Gaussodel, to predict
the oxide grade at all spatial locations. Not dissimilar toawis typically done in
cokriging, the current dataset and the joint modeling adlas to estimate the pa-
rameters and predict the grade in a unified way. The modehpeteas are assessed
by maximum likelihood using the current XRF and XMET data.

3 Information criteria

The deposit in question can potentially be mined in an op&nppissibly going

underground at a later stage. The decisions about opergngitie and choosing
mining strategies depend on many modifying factors. We $aouquantitative ap-
proaches based on the geostatistical modeling. In paatiewe study the following
criteria with only current data and with additional boreh®RF or XMET data:

Kriging variance

Slope and correlation of grade
Weight of the mean grade
Entropy

Value of information

A resource will be classified into the different categorig@ltompetent person.
She or he is a member of a recognized professional orgamizatid has sufficient
relevant experience. The classification will be done baseal detailed understand-
ing of the mineralization and on uncertainty indicators.atdimdicators to use are
deposit specific and in practice the choice of the competenrsigm, and we will not
try to draw any conclusions here.

We define 3740 resource blocks of sizé & inside a possible pit where we pre-
dictthe oxide grade. The oxide grade in a block is denetedx(sp 1), - . - ,x(soynb))t,
wheren, = 64 is the block discretization in our case. The final gradienegé in a
block is the average of thm, in-block estimates.

The mining company considers acquiring more XRF or XMET déatsout 20
new boreholes have been planned, giving 265 additional inemaents of either
XRF or XMET data. We denote this new databy: (2(s;1),...,2(S;265))"
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3.1 Spatial prediction and prediction variance

The joint distribution of oxidex, planned data, and current datg is Gaussian.
From the joint model we can compute the conditional meanasfdz given current
datay is

Hxjy = HXB + CX,yC;l(y* Hyﬁ)v Hzly = HZB + C;,zcjl(y* HyB)a (2)

where we simply plug in the regression parameter estirﬁaﬂk#loreover,c with
subscripts indicate the fitted covariance or cross-conaedetween, y or z. When
we write out the regression paramefeas a function of the datg we get

gy = (MxySHY+Cay) G Yy, Hay = (MySHY+C,) Gy, )

whereMyy = Hy — CxyCy *Hy and M,y = H, — C,,C; *Hy, andH with subscripts
indicate the matrix of explanatory variables.

Under the Gaussian modeling assumptions, the kriging giedn (3) is optimal,
i.e. the unbiased predictor with minimum variance. We cagilgaccount for the
uncertainty in the regression parametgtsThe resulting conditional covariance
expressions are

Cry =Cx—CxyGy 'Chy + MiySMyy,  Cpy=C,—C, .G, 'Cyz+ MzySM; . (4)

where the last terms withlyy, M,y and the variance qi given byS, compensate
for the increased variability caused by estimatfhg

Let the average block grade kRe='3; X /ny. We denote the Gaussian densityof
giveny by m(xy) = N(tiy, Cxy)- This is computed for every resource block, and we
define Stg as the length 3740 vector of Kriging standard erro\y%), conditional
on the current datg

The procedures can be extended to include both currenydatdz. The condi-
tional mean ok, given both data, is

Hyxjyz = Hxjy + Cx,z\yCZT;(Z* IJz\y)a (5)

whereC, ,y is the covariance ok andz, giveny. Just like in the situation with
only current datg, we define Stg as the Kriging standard errors of average block
grades, now given bothandz data. The reduction in prediction variance depends
on the locations of the new observatianselative to each other, and to the current
datay and the resource blocks Collecting XRF data in the planned boreholes
provides a larger reduction in prediction variance thamMET, but in general
the uncertainty reduction is a complicated function of theaciance parameters.
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3.2 Slope, correlation and weight of the mean

Rivoirard (1987) uses the regression between the predasiddrue block grades,
called the slope, to assess the effects of different Krigieighborhoods. This cri-
terion has also been used to quantify the degree of measunedicated resources
in mining. For each resource block we have

Slopg, = Cov(X; kyy)/Var(kgy) = (WGxyC; 'Cy W) /(W Gy C, 'Gi W), (6)

wherew! = 1'/n, and 1 is a vector of ones. Moreov@yy = MyyS/H, +Cyy is
recognized in (3). The correlation is a normalized versibtie slope;

Corry = Corr(X, tigy) = Slopg, - |/ Var(pgy) /Var(x). (7)

The weight of the mean (Rivoirard, 1987) is another usefalityindicator in
kriging. Given datg, the weight of the mean is interpreted as the relative impact
the regression, compared with that of the simple Krigingjpn@rcx,ycy*ly. From
the prediction formula in (3) we recognize the simple Krigjpredictor as the last
term, and the regression effect in the first part. When theslies more densely
sampled, the second term will dominate over the first termh¥ee

Weight, = (WMyySHIC, 1) /[(W My SHIC, 1) + (WCC, M) (8)

The slope, correlation and weight of the mean are computed&oh resource
block. In total, they can be represented as length 3740 r&atath one value for
each resource block. They can be defined similarly conditgpon both current
datay and the new data When we get more accurate predictions of the grade, the
slope is closer to 1, the correlation is closer to 1, whilewrgght of the mean is
closer to 0. The effect is expected to be clearer with penfidotmation (XRF) than
with imperfect data (XMET).

3.3 Reduction of entropy

We compare the information content using the entropy givemeat datay and
prospective data Now letx* denote the oxide variable at the center of each of the
3740 resource blocks. The entropy (disorder) decreasbswate information. It is
defined as the negative expected value of the log densitya Reaussiam(x*) =
N(u,Z) we have entropy

Entx") = —/‘ (X" ) logm(X")dx = glog(l—i-er) +%Iog|z|. 9)

The entropy reduction when acquiring the new ddtacome®Ent= Ent(x*|y) —
Ent(x*|y,z) = %(Iog |Cx:y| —109|Cx|yzl), WwhereCy.y is the covariance at all resource
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blocks givery, while C,.y, is conditional on botly andz data. The determinant ex-
pressions can be evaluated before the actual data aretedllec

3.4 Value of information

The VOI is the maximum monetary amount a decision maker shpay to collect
data. In our context there are two levels of decisions. Thendtream decision
is whether to open the mine or not. This question is incorfear#o solve for the
second level of decisions; whether one should collect XMEKRBF data in the
planned boreholes, or no further data.

The VOI is defined as the difference between prior and pasteailue:

VOI = PoV—PV. (10)

We decide to purchase the dataither XRF or XMET in planned boreholes, only
if the VOI is larger than the price of data acquisition. ThePX&ata is perfect infor-
mation, and the VOI of XRF is always larger than the VOI of thgerfect XMET
data. However, the XRF data has a higher price than the im@eXMET data.
For the Gaussian model, the prior and posterior value caoigoted analytically
(Eidsvik and Ellefmo, 2012).

4 Results and discussion

We now evaluate the planned boreholes using the differémtrivation criteria .
Table 1 shows the values of different evaluation criteriae KXRF data are of

Table 1 Various evalaution criteria: Distance to nearest borehtiaging std, slope, correlation,
weight of mean and entropy, using current data, and withngldrXRF and XMET borehole data.
The distance, standard error, slope and weight of the meareators for all resource blocks. Here,
we display the averages over all blocks.

distance std slope corr weight of mean entropy
Current data 55.1 0.59 0.62 0.21 0.73 Ent=-2930
XMET data| 48.0 0.57 0.69 0.27 0.63 OENt=43.0
XRF data| 48.0 0.57 0.70 0.29 0.62 OEnt=72.4

course more informative than XMET data, and for some ceteré clearly gain
some by acquiring XRF instead of XMET data. For instance r#ueiction in en-
tropy is almost twice as large when collecting XRF. Of couespure distance cri-
terion does not separate between XRF and XMET in the new bteehFor the
Kriging std the average difference between XRF and XMETemibn is minis-
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cule. There is a slight improvement in the slope, correfetind weight of the mean
criteria, but the added value of XRF, compared with XMET,rizafi considering
the reduction from the current data.

Figure 2 illustrates the variability in the Kriging standarror, slope, correlation
and the weight of mean at the 3740 resource blocks. The hé&stogshow current
values (left), with XMET data (middle) and with XRF data (niy. Clearly, more
data pushes the histogram of the standard errors (top) dsvesmnaller values, the
slope and correlation (middle) to higher values, and thgtef the mean (bottom)
to smaller values. Thus, at many resource blocks thereaslgladded information

Curent data Current + XMET Current + XRF

[
210 Measured [ o} Measured 10 Measured
< [
0w w2 13 w05 0 0 2 0 Moo05 0 (R TR R TR TR TR
0] 150 10
? |
| |

& Infered ] 1m0 Inferred ] 100 Infered
[

82 8

=]

Weight of mean

B

Fig. 2 Histogram of evaluation criteria at all resource blocksgirg standard errors (top), slope
(middle, top), correlation (middle, bottom) and weight bétmean (bottom). The left displays
are based on current data, middle displays on current datX®HET in planned boreholes and
right displays on current data and XRF in planned borehdies. vertical dashed lines are the
criteria-based separation of measured, indicated andédfeesources.

in the planned borehole data. The improvement going from XMEXRF is visible
for resource blocks close to the planned boreholes, buanaifay from these loca-
tions. In fact, the Kriging prediction errors have largeriahility after conditioning
on more information. Of course, the planned data acquisisiguided to the spatial
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domains of most interest, and the reduction of uncertagityghest where we want
to predict the grade accurately.

A resource classification is based on multiple criteria afkdence of the local
geology, usually evaluated by a so-called competent pekdere, we simply com-
pare the presented geostatistical criteria and class#fgdan thresholding. It is not
an attempt to do a resource classification in compliance thithJORC-code. The
categorization limits are obtained from the currently klde data using geometric
considerations as follows: For each resource block we cterthe azimuth angles
and distances to the five nearest borehole measuremerniblmathese are used to
group the resource blocks in four categories: Category &:fifth closest point is
within 30m and the standard deviation of the azimuth anglésta locations within
100 mis between 80 and 130 degrees. Category 2: The fifthstlpsat is between
30m and 60m and the standard deviation of the azimuth angldath locations
within 100 m is between 80 and 130 degrees. Category 3: Thediftsest point
is within 60m and 200m and the standard deviation of the attirangles to data
locations within 100 m is between 80 and 130 degrees. Catdgsrdefined by the
remaining resource blocks. The azimuth variability caodiensures that there are
proximal measurements in more directions, not only onehmles Given this cat-
egorization of resource blocks, the 75 percentiles of @éida are computed from
the Kriging errors, slopes, correlation and weight of theem@ resource blocks
belonging to each category. These values define the thadisgolalues for mea-
sured, indicated and inferred. They are displayed by \artiashed lines in Figure
2. Recall that this is based on the current boreholes. The sarasholds are next
applied for the planned data as well.

The categorization we have done here is used to study themat@on content in
the new data and allows us to compare the methodologiesriicydar, we aim to
study the effects of XMET and XRF data acquisition in the pkghboreholes. The
geometric criteria based on distances and angles is easyd&ratand, but it is not
useful to compare the XRF and XMET data, since they are egirdrmative in
terms of distances and angles.

In Table 2 we show the resulting tonnages in the measureidaited and inferred
categories. Here, the resource blocks falling in the meaumdicated and inferred
categories are converted to tonnes of resource. The bldoknes outside the ore
are not included in the calculation. We use a cut-off valua 586 (based on current
data) to separate waste from ore. With the current datagukaKriging standard
error as criterion, there are about 9 million tonnes of messtesource and 20 mil-
lion tonnes indicated. There are only slight variationsugein the criteria using our
thresholding method. Obviously, with more data, there aveemesource blocks in
the measured category. When we collect XMET data in the gldioreholes, the
measured category in Table 2 has around 14-15 million tonresindicated cat-
egory is around 21 million tonnes. Some blocks have gone fraficated to mea-
sured, while others have gone from inferred to indicate& Juim of measured and
indicated resources is close to 40 million tonnes. CollecKRF data in the planned
boreholes gives only slightly larger numbers in the meabuedegory: 15-17 mil-
lion tonnes. Note that the pure geometric distance critenes the same number as
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Table 2 Resource classification (in million tonnes) based on ctidate, XMET data in planned
boreholes and XRF data in planned boreholes. The measntkdatied and inferred classification
is done from thresholds in different evaluation criteriastBnces, kriging standard deviations,
slope, correlation and weight of mean.

Distance Kriging Std Slope Corr  Weight
Current data

Measureqdl 9.0 8.8 8.8 8.8 8.5

Indicated 20.8 21.3 219 21.2 21.4

Inferred | 10.6 10.4 9.8 105 10.6

Current data and XMET in planned boreholes

Measureg 13.8 14.2 15.1 14.2 15.2
Indicated 21.6 21.5 21.0 21.4 20.0
Inferred 5.1 4.8 45 5.0 5.4

Current data and XRF in planned boreholes
Measuredl 13.8 15.0 16.0 15.0 16.7
Indicated 21.6 21.0 20.4 20.8 18.7
Inferred| 5.1 4.6 42 4.8 5.1

for XMET (13.8 million tonnes measured), since it uses noautainty modeling.

The indicated resource blocks are about 19-21 million tenlresummary, there is
a clear increase in measured tonnages going from currel®TXbut not such an
improvement when collecting XRF data instead of XMET.

Recall that these numbers are based on our subjectiveiaritereal-life re-
source classification would have been based performed bynpetent person in
compliance with the JORC-code or other similar codes.

In order to assess the value of XMET and XRF information, wec#p revenues,
costs, processing parameters and tonnages. This allowscogipute the prior and
posterior value, and the VOI (Eidsvik and Ellefmo, 2012). @¢ethis for XMET
and XRF in the planned boreholes. In Figure 3 we show the ideciegions as
a function of XMET and XRF data acquisition prices. The dietisegions are
computed by selecting the data type that gives the largektcadalue, compared
with the price of data. This entails a selection rule of:

Decision=argmax VOlyrg — Pricexrg, VOIxMET — PricexmeT 0}, (11)

where we decide to purchase XRF if \gb g — Pricexp is the highest element in
the length three vector in (11). If none of the first two ergtidee positive, we decide
to purchase no more data. In our situation, the actual poe&RF and XMET
mean that we are just within the 'Nothing’ region. Given tttz¢ already defined
tonnages were enough to open the mine, we would decide nairthg@se more
data. Recall that the price of XRF is always higher than theepf XMET, and the
relevant price ranges are above the straight line in FigudR¥ data is the most
lucrative data type for very low laboratory prices. For merxpensive laboratory
analysis, XMET data is preferable.
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Fig. 3 Decision regions. Whether to purchase full XMET or XRF datanothing. The first axis
represents the price of XMET data. The second axis is the pfiXRF data.

5 Closing remarks

We have presented a unified geostatistical model for XMET)4RE data used in
mining exploration. Several criteria for uncertainty retion are discussed, and we
apply them for resource evaluation on a case study from Nprwa
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