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Abstract— In this paper, we deal with the problem of designing
efficient sum-of-sinusoids (SOS) based simulators for frequency
non-selective mobile fading channels under non-isotropic scat-
tering conditions. To cope with this problem, we propose a
new parameter computation method that can be applied on
any given asymmetrical Doppler power spectrum (DPS). With
the aim to reduce the computational costs associated with the
simulation of high-quality channel waveforms, we also present
an efficient simulation approach that combines the proposed
parameter computation method with the principle of set par-
titioning. By considering a reference model for a fading channel
with asymmetrical DPS, it is shown that the resulting SOS-
based channel simulator satisfactorily emulates the channel’s
autocorrelation function (ACF). Owing to its characteristics, the
proposed channel simulation procedure proves to be a helpful
tool for the test and performance analysis of modern wireless
communication systems under non-isotropic scattering scenarios.

I. INTRODUCTION

Mobile fading channel simulators based on the sum-of-
sinusoids (SOS) principle introduced by Rice [1], [2] are
nowadays widely in use for analyzing the performance of
current and future wireless communication systems. For many
years, this kind of channel simulators was one of the most im-
portant approaches for the simulation of narrow- and wideband
wireless channels with specified time and frequency correla-
tion functions [3]–[9]. More recently, the SOS principle has
successfully been extended to enable the design of simulation
models for space-selective wireless channels [10].

Various types of deterministic [3], [4] and stochastic [5]–[7]
SOS-based channel simulation models have been proposed in
the literature. All of them perform in general quite different
and exhibit dissimilar statistical properties, as can be con-
cluded from the research results presented in [4], [11], [12].
However, what almost all existing deterministic and stochastic
SOS-based channel simulators have in common is that they
have been developed mainly under the assumption of isotropic
scattering, e.g., [3]–[9]. This poses a serious restriction, since
modern wireless communication systems face non-isotropic
scattering conditions.

To overcome the aforementioned restriction, we present a
new parameter computation method that allows the design

of SOS-based simulation models for non-isotropic scatter-
ing channels. The proposed method has been conceived to
approximate the asymmetrical shape of the Doppler power
spectrum (DPS) characterizing non-isotropic scattering en-
vironments. The resulting SOS-based channel simulator is
deterministic [3], as all its parameters are constant quantities.
In order to reduce the simulation expenditure associated with
the generation of high-quality channel waveforms, we present
an efficient simulation approach that combines the proposed
parameter computation method with the principle of set parti-
tioning, which was originally proposed in [13] for the case of
isotropic scattering. In this paper, the procedure is extended to
all kinds of non-isotropic scattering scenarios. The resulting
simulation approach is quite advantageous, as it allows to
improve the simulator’s performance simply by averaging over
several simulation trials.

It is important to stress that the simulation method described
in this paper can be applied on any given (band-limited) DPS.
However, to demonstrate the excellent performance of the
proposed simulation technique, we present some exemplary
numerical results obtained by applying our procedure on the
reference model for a flat-fading channel with asymmetrical
DPS derived in [14]. The results indicate that the designed
SOS-based simulation model provides an efficient tool for
simulating mobile fading channels with asymmetrical Doppler
power spectra. We also present a performance comparison
between our method and the Lp-norm method (LPNM) in-
troduced in [15]. To the best of the authors’ knowledge,
the LPNM and the proposed method are the only parameter
computation methods that allow the SOS-based simulation of
non-isotropic scattering channels. The results let us conclude
that the simulation techniques described in this paper are
efficient alternatives to the LPNM.

The rest of the paper is organized as follows. Section II
reviews the statistical properties of the reference and simu-
lation models. Section III presents the proposed parameter
computation method. Section IV explains how to combine this
new method with the principle of set partitioning. Section V is
devoted to the performance comparison between our method
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and the LPNM. Finally, Section VI concludes the paper.

II. THE REFERENCE AND SIMULATION MODELS

A. The Reference Model

Our starting point is the mathematical description of a
frequency non-selective Gaussian channel model for non-
isotropic scattering environments. Such a channel model can
be represented by a complex-valued Gaussian process

µ(t) = µI(t) + jµQ(t), j =
√−1 (1)

with given correlation properties determined by an asymmet-
rical DPS. In (1), the inphase and quadrature components
µI(t) and µQ(t) are real-valued Gaussian processes, each with
zero mean and variance σ2/2. This channel model is fully
characterized by its autocorrelation function (ACF) rµµ(τ) :=
E{µ(t)∗µ(t+ τ)}, or equivalently, by its DPS Sµµ(f), which
is related to the ACF rµµ(τ) by the Fourier transform, i.e.,
Sµµ(f) =

∫ ∞
−∞ rµµ(τ)exp{−j2πfτ}dτ . The notation E{·}

denotes statistical expectation, while (·)∗ indicates complex
conjugation. We assume throughout the paper that µ(t) has a
band-limited DPS, so that Sµµ(f) = 0 for |f | ≥ fmax, where
fmax is the maximum Doppler frequency.

We recall that the inphase and quadrature components of
µ(t) are uncorrelated processes if the scattering is isotropic.
As a consequence, the DPS has a symmetrical shape with
respect to the origin, i.e., Sµµ(f) = Sµµ(−f). On the other
hand, µI(t) and µQ(t) are correlated processes if the scattering
is non-isotropic, which yields an asymmetrical DPS.

As an example, we consider the following asymmetrical
DPS that was proposed in [14] for urban mobile radio channels

Sµµ(f) =
sinh(χ)

πfmax

√
1 − (f/fmax)2

× cosh(χ) − fcos(φ0)/fmax

[cosh(χ)−fcos(φ0)/fmax]2 −[1−(f/fmax)2]sin2(φ0)
(2)

where sinh(·) and cosh(·) are the hyperbolic sine and cosine
functions, respectively, and

χ = ln

{(
1 +

1
γ0d

)
−

[(
1 +

1
γ0d

)2

− 1
]1/2}

. (3)

The angle φ0 determines the direction of the mobile terminal,
γ0 is the density of the buildings located in the propagation
environment, and d is the distance between the base station
and the mobile terminal.

Figure 1 shows the DPS Sµµ(f) in (2) for fmax = 91 Hz,
γ0 ·d = 10, and different values of the direction angle φ0. The
asymmetry of the DPS can clearly be seen in this figure. The
corresponding ACF of each of the graphs presented in Fig. 1
is shown in Fig. 2.

The channel model defined in (1) with the asymmetrical
DPS in (2) constitutes our reference model.
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Fig. 1. DPS Sµµ(f) of the urban mobile fading channel model proposed
in [14] for fmax = 91 Hz, γ0 · d = 10, and different values of the direction
angle φ0.
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Fig. 2. Absolute value of the ACF |rµµ(τ)| of the urban mobile fading
channel model proposed in [14] for fmax = 91 Hz, γ0 ·d = 10, and different
values of the direction angle φ0.

B. Simulation Model and Problem Description

Depending on the shape of Sµµ(f), the reference model is
often an idealization of the physical channel, and therefore
its exact hardware and/or software realization is generally not
possible. Following the idea in [3], we can approximate the
Gaussian process µ(t) in (1) by a deterministic complex SOS
model

µ̃(t) =
σ√
N

N∑
n=1

exp{j(2πfnt + θn)} (4)

which represents our simulation model. In (4), the parameters
N , fn, and θn are constant quantities, which denote the
number of harmonic waves, the nth Doppler frequency, and
the nth Doppler phase, respectively. The performance of the
simulation model strongly depends on the parameters N and
fn, while the Doppler phases θn have no significant influence
on the statistics of µ̃(t).

The statistical properties of the simulation model described
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by µ̃(t), such as its mean value m̃µ, mean power (variance)
σ̃2

µ, and ACF r̃µµ(τ), have to be obtained by means of time
averages1. Bearing this in mind, one can show that m̃µ :=
〈µ̃(t)〉 = 0 if fn �= 0 and σ̃2

µ :=
〈|µ̃(t) − m̃µ|2

〉
= σ2.

In addition, it can be shown that the ACF r̃µµ(τ) can be
expressed as

r̃µµ(τ) := lim
T→∞

1
2T

∫ T

−T

[
µ̃(t)

]∗
µ̃(t + τ)dt

=
σ2

N

N∑
n=1

exp{j2πfnτ}. (5)

The Fourier transform of the ACF r̃µµ(τ) allows us readily to
express the DPS S̃µµ(f) of µ̃(t) in the form

S̃µµ(f) =
σ2

N

N∑
n=1

δ(f − fn). (6)

Further details of the statistical properties of µ̃(t), such as
the probability density function and level-crossing rate, can
be found in [16]. Here it is only important to mention that the
density of ζ̃(t) = |µ̃(t)| is close to the Rayleigh distribution
if N ≥ 10.

From the results presented in this section, we may conclude
that the problem at hand consists in finding the set of Doppler
frequencies {fn}N

n=1 that produce the best possible approxi-
mation to the ACF rµµ(τ) of a given reference model µ(t).

III. THE PROPOSED PARAMETER COMPUTATION METHOD

A. The Modified Method of Equal Areas

The application of the method of equal areas (MEA) [3],
[15] on a given DPS Sµµ(f) allows us to compute the discrete
Doppler frequencies fn of the SOS model in (4) in such a way
that the area under Sµµ(f) equals σ2/N within the frequency
range fn−1 < f ≤ fn. However, our investigations have
shown that the performance of the MEA can be improved
considerably if the relevant frequency range (−fmax, fmax]
is partitioned into 2N instead of N subintervals by points
x0 = −fmax < x1 < x2 < . . . < x2N = fmax, such that∫ xn

xn−1

Sµµ(f)df =
σ2

2N
, n = 1, 2, . . . , 2N. (7)

Then the odd points x2n−1 are selected as Doppler frequencies
fn, i.e., fn = x2n−1 for n = 1, 2, . . . , N . This slight but es-
sential modification establishes the modified MEA (MMEA).

Repeating the calculations in [15, Sect. 5.1.3] for the
MMEA results in the equation∫ fn

−fmax

Sµµ(f)df =
σ2

N

(
n − 1

2

)
, n = 1, 2, . . . , N (8)

from which the discrete Doppler frequencies fn can be
obtained for any given band-limited DPS Sµµ(f) by using
numerical root-finding methods.

1The time average of a function χ(t) is denoted as 〈χ(t)〉 and defined by
〈χ(t)〉 := lim

T→∞
1

2T

∫ T
−T χ(t)dt.

A closed-form solution of (8) can only be obtained if the
inverse function G−1

f of the cumulative power function

Gf (x) :=
∫ x

−∞
Sµµ(f)df (9)

exists. In this case, the MMEA results in

fn = G−1
f

[
σ2

N

(
n − 1

2

)]
, n = 1, 2, . . . , N. (10)

Note that if we replace n − 1/2 by n, then the MMEA
corresponds to the MEA.

B. Simulation Examples

Figure 3 shows a comparison between the ACF rµµ(τ) of
the reference model µ(t) and the ACF r̃µµ(τ) of the simulation
model µ̃(t) obtained by using the MMEA with N = 20 and
σ2 = 1. We drew the graphs of the ACF of the reference model
by employing numerical integration techniques to evaluate the
inverse Fourier transform of the (normalized) DPS Sµµ(f)
shown in (2). We considered four different propagation sce-
narios, which are characterized by the parameters fmax = 91
Hz, γ0 ·d = 10, and φ0 = {π/2, π/3, π/4, π/6}. The Doppler
frequencies fn were computed by solving (8) with the aid
of numerical root-finding techniques. The results presented in
Fig. 3 illustrate the good performance of the MMEA.

IV. EFFICIENT GENERATION OF HIGH-QUALITY CHANNEL

WAVEFORMS

In order to improve the performance of the SOS-based
channel simulator, we could increase the number of complex
harmonic functions, but this would increase the computational
costs. The performance of typical deterministic SOS-based
simulation models can only be improved in this manner [3],
[4], [15]. Fortunately, it was recently shown in [13] that
a simulation approach based on set partitioning allows to
improve the performance simply by averaging over several
simulation runs. Following the idea presented in [13], we
explain here how to combine the MMEA with the principle
of set partitioning to efficiently generate high-quality complex
channel waveforms.

A. The Modified Method of Equal Areas with Set Partitioning

Basically, the idea consists in generating successively K
uncorrelated complex waveforms

µ̃(k)(t) =
σ√
N

N∑
n=1

exp
{
j(2πf (k)

n t + θ(k)
n )

}
, k = 1, . . . , K

(11)
such that the sample mean ACF r̄µµ(τ) [see (12)] equals the
ACF r̃µµ(τ) of a single waveform µ̃(t) designed by using the
MMEA with NK complex harmonic functions. Thereby, in-
stead of simulating a single waveform µ̃(t) consisting of NK
complex harmonic functions, one can alternatively perform K
simulation trials of the waveforms µ̃(k)(t), where each of these
waveforms consists of only N complex harmonic functions.
It is worth noticing that non-ergodic stochastic SOS-based
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Fig. 3. Comparison between the absolute value of the ACF |rµµ(τ)| of
the reference model µ(t) and the absolute value of the ACF |r̃µµ(τ)| of
the simulation model µ̃(t) obtained by using the MMEA with N = 20,
fmax = 91 Hz and σ2 = 1.

simulators, such as Monte Carlo simulators [5]–[7], depend
also on the averaging of several simulation runs in order to
asymptotically converge to the ACF of the reference model.

We define the sample mean ACF r̄µµ(τ) as

r̄µµ(τ) :=
1
K

K∑
k=1

r̃(k)
µµ (τ) (12)

where r̃
(k)
µµ (τ) is the ACF of the kth waveform µ̃(k)(t). The

cross-correlation function (CCF) r̃
(k,l)
µµ (τ) between the kth

waveform µ̃(k)(t) and the lth waveform µ̃(l)(t) is defined as

r̃(k,l)
µµ (τ) := lim

T→∞
1

2T

∫ T

−T

[
µ̃(k)(t)

]∗
µ̃(l)(t + τ)dt. (13)

Notice that the ACF r̃
(k)
µµ (τ) of µ̃(k)(t) follows from the CCF

r̃
(k,l)
µµ (τ) if k = l.

In brief, the aforementioned idea entails the fulfillment of
the following two conditions:

(i) r̄µµ(τ) = r̃µµ(τ), −∞ ≤ τ ≤ ∞ (14)

(ii) r̃(k,l)
µµ (τ) = 0, k �= l (15)

for 1 ≤ k ≤ l ≤ K. In (14), r̃µµ(τ) is the ACF of a waveform
µ̃(t) obtained by using the MMEA with M = NK complex
harmonic functions. It can be demonstrated that the Condition
(ii) is satisfied by computing the Doppler frequencies such
that

{f (k)
n }N

n=1 ∩ {f (l)
m }N

m=1 = {∅}, for k �= l. (16)

In turn, for the equality in (14) to hold, it is necessary that

K⋃
k=1

{f (k)
n }N

n=1 = {fm}M=NK
m=1 (17)

where {fm}M=NK
m=1 is the set of Doppler frequencies obtained

by using the MMEA with M = NK complex harmonic
functions.

In the Appendix, it is shown that the Doppler frequencies
f

(k)
n of the kth waveform µ̃(k)(t) can be obtained by numer-

ically solving
∫ f(k)

n

−fmax

Sµµ(f)df =
σ2

N

(
n − 1

2

)
+ εk, n = 1, . . . , N (18)

where the shifting variable εk is given as

εk =
σ2

KN

(
k − K + 1

2

)
(19)

for k = 1, . . . ,K. The role of the shifting variable εk is
basically to guarantee the fulfillment of the Conditions (i) and
(ii). Again, if the inverse of the cumulative power function
Gf (x) given in (9) exists, then we can compute the Doppler
frequencies f

(n)
n in closed form as

f (k)
n = G−1

f

(
σ2

N

[
n − 1

2

]
+ εk

)
, n = 1, . . . , N (20)

for k = 1, . . . ,K. We call this new parameter computation
method the MMEA with set partitioning (MMEA-SP).

When the reference model is the DPS introduced by Jakes
[17] for isotropic scattering scenarios, then the MMEA-SP
reduces to the parameter computation method proposed in
[13]. This is a very important feature of the MMEA-SP,
since the method proposed in [13] leads to the best-known
approximation of the Jakes DPS.

B. Performance Evaluation of the MMEA-SP

To demonstrate the advantages of the MMEA-SP, we com-
pare in Fig. 4 the sample mean ACF of four (K = 4) uncor-
related waveforms µ̃(k)(t), each with N = 20, and the ACF
of the reference model under the same propagation scenarios
considered in Fig. 3. We used the numerical approach [see
(18)] to compute the Doppler frequencies of the four channel
waveforms. We can observe from Fig. 4 that the sample mean
ACF r̄µµ(τ) of the four waveforms provides an excellent
approximation of the ACF rµµ(τ) of the reference model over
an interval that is K times larger than the one obtained by
using the MMEA (cf. Fig. 3).

V. COMPARISON BETWEEN THE MMEA-SP AND THE

LPNM

As far as the authors are aware, the LPNM [15] was up
to now the only parameter computation method suitable for
the design of SOS-based simulation models for non-isotropic
scattering channels. Actually, the LPNM was successfully em-
ployed in [10] for designing simulation models for multiple-
input multiple-output (MIMO) wireless channels under non-
isotropic scattering conditions.

Here, the LPNM is used to compute the Doppler frequencies
fn by minimizing the Lp-norm error function defined by [15]

E(p)
rµµ

:=
[

1
τmax

∫ τmax

0

∣∣rµµ(τ) − r̃µµ(τ)
∣∣pdτ

]1/p

(21)

where τmax establishes the interval [0, τmax] inside of which
the approximation r̃µµ(τ) ≈ rµµ(τ) is of interest. Given the
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Fig. 4. Comparison between the absolute value of the ACF |rµµ(τ)| of the
reference model and the absolute value of the sample mean ACF |µ̄µµ(τ)|
of the simulation model by using the MMEA-SP with N = 20, K = 4, and
fmax = 91 Hz.

computational burden of the minimization algorithm, it is of
much importance to find out if the MMEA-SP constitutes an
efficient alternative to the LPNM.

In order to find out whether the performance of the MMEA-
SP measures up to that of the LPNM, we applied both methods
to the channel model characterized by the asymmetrical DPS
in (2). For the MMEA-SP, we considered the parameters
N = 20 and K = 4, while we chose p = 2, N = 80, and
τmax = N/(8 · fmax) for the LPNM. The Doppler frequencies
fn obtained by using the MMEA with N = 80 were used
as initial values for minimizing the error function E

(2)
rµµ . The

results can be found in Fig. 5. This figure shows the absolute
value of the simulation model’s ACF, |r̃µµ(τ)|, by using the
MMEA-SP and the LPNM. We can observe from Fig. 5 that
both methods have practically the same performance. This
significant result allows us to conclude that the MMEA-SP
(and also the MMEA) is an efficient alternative to the LPNM.

VI. CONCLUSIONS

In this paper, we presented a new parameter computation
method for the design of complex SOS-based simulation
models for non-isotropic scattering channels. The proposed
method, which we have called MMEA, is quite general and
can be applied to any given band-limited DPS. The simu-
lation results obtained for the MMEA demonstrate its good
performance. In addition, we presented an efficient simulation
approach that combines the MMEA and the principle of set
partitioning with the aim to reduce the computational costs
caused by the generation of high-quality channel waveforms.
The parameter computation method that results from such a
combination has been named MMEA-SP. It has been shown
here that the MMEA-SP improves the performance of the si-
mulation model simply by averaging across several simulation
runs. With regard to the performance comparison between
the MMEA-SP and the LPNM, we found that the MMEA-
SP produces a minimum in the Lp-norm error function when

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

A
bs

ol
ut

e
va

lu
e

of
th

e
A

C
F,

|r̃ µ
µ
(τ

)|

Normalized time lag, τ · fmax

Simulation model: LPNM, τmax = Ni/(8fmax)
Simulation model: MMEA-SP, N = 20, K = 4

γ0 · d = 10
φ0 = π/2

φ0 = π/3

φ0 = π/4

φ0 = π/6

Fig. 5. Performance comparison between the MMEA-SP and the LPNM
with respect to the ACF of the reference model proposed in [14].

the statistical properties of the channel obey the analytical
model proposed in [14] for urban mobile channels. The results
of such a performance comparison let us conclude that the
MMEA-SP (as well as the MMEA) constitutes an efficient
and accurate alternative to the LPNM.

APPENDIX

DERIVATION OF THE EQUATIONS (18) AND (19)

By noticing the requirement stated in (17), it turns out
that the Doppler frequencies {f (k)

n }N
n=1 of the kth waveform

µ̃(k)(t) form a subset of the set composed by the Doppler
frequencies {fm}M=NK

m=1 of a waveform µ̃(t) obtained by us-
ing the MMEA with M = NK complex harmonic functions.
Thus, in order to provide for each waveform µ̃(k)(t) the best
possible approximation to the ACF rµµ(τ) of the reference
model µ(t) given that {f (k)

n }N
n=1 ⊂ {fm}M=NK

m=1 , we define

f (k)
n = fk+(n−1)K , k = 1, . . . , K (22)

for n = 1, . . . , N , where fm is the mth Doppler frequency
obtained by using the MMEA with M = NK complex
harmonic functions. From the conditions stated in (22) and
using (8), we get

∫ f(k)
n

−fmax

Sµµ(f)df =
∫ fk+(n−1)K

−fmax

Sµµ(f)df

=
σ2

NK

(
k + (n − 1)K − 1

2

)
(23)

for n = 1, . . . , N and k = 1, 2, . . . ,K. Finally, we rearrange
the terms in (23) to obtain∫ f(k)

n

−fmax

Sµµ(f)df =
σ2

N

(
n − 1

2

)
+ εk (24)

where

εk =
σ2

NK

(
k − K + 1

2

)
. (25)

Note that if K = 1, then εk = 0, and thus the MMEA-SP
reduces to the MMEA.

250

Authorized licensed use limited to: Hoegskolen i Agder. Downloaded on February 27, 2009 at 06:28 from IEEE Xplore.  Restrictions apply.



REFERENCES

[1] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech.
J., vol. 23, pp. 282-332, July 1944 .

[2] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech.
J., vol. 24, pp. 46-156, Jan. 1945 .

[3] M. Pätzold, U. Killat, and F. Laue, “A deterministic digital simulation
model for Suzuki processes with application to a shadowed Rayleigh
land mobile radio channel,” IEEE Trans. Veh. Tech., vol. 45, no. 2, pp.
318-331, May 1996.

[4] M. Pätzold, U. Killat, F. Laue, and Y. Li, “On the properties of determin-
istic simulation models for mobile fading channels,” IEEE Trans. Veh.
Tech., vol. 47, no. 1, pp. 254-269, Feb. 1998.

[5] Y. R. Zheng, and C. Xiao, “Improved models for the generation of
multiple uncorrelated Rayleigh fading waveforms,” IEEE Commun. Lett.,
vol. 6, no. 6, pp. 256-258, June 2002.

[6] —, “Simulation models with correct statistical properties for Rayleigh
fading channels,” IEEE Trans. Commun., vol. 51, pp. 920928, June 2003.
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