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Abstract

We show that, for a semilinear parabolic equation on the real line
satisfying a dissipativity condition, global attractors of time-space dis-
cretizations converge (with respect to the Hausdorff semi-distance) to
the attractor of the continuous system as the discretization steps tend
to zero. The attractors considered correspond to pairs of function
spaces (in the sense of Babin-Vishik) with weighted and locally uni-
form norms (taken from Mielke-Schneider) used for both the continu-
ous and the discrete system.
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1 Introduction

Let X be the evolutionary system generated by a semilinear parabolic
equation
*u

w=Au+ f(u), t>0, zeR, Au:@, (1)

so that (¢, up), t > 0, is the solution with initial value uy = ug(x).
Let S = Spq be the dynamical system generated by the implicit space-
time discretization

(u™t —u™)/h = Aumtt + f(unth) (2)

of Eq. (1) with time step h and space step d, where A is the standard three
point difference approximation of the operator A (see the exact definition

below) and (f(u)); = f(u;).

In this paper, we study the convergence of the global attractors A(h,d)
of the systems Sy 4 (for their existence see [3]) to the global attractor A of
the system > as the stepsizes h,d — 0.

For bounded domains the problem of convergence of “approximate” global
attractors to the “exact” attractor has been studied extensively for various
approximations in x and t (see, for example, [5],[10],[11]). The main new
feature for an unbounded domain compared to the bounded domain is that
the evolutionary system lacks compactness properties.

We adopt the approach of Babin and Vishik [1] and consider global at-
tractors corresponding to pairs of function spaces. Our choice of weighted
spaces follows Mielke and Schneider [9)].

Let us first describe the spaces we work with. We fix ¢ > 0 (to be specified
later) and a weight function

p(x) = (1+**)"7, where ~>

N | —

For shifts and finite differences we use the following notation: if u = {uy :
k € Z} is a sequence and v(z),z € R, is a function, then

(Oru)r = (upsr —ug)/d,  (O-u)p = (wp, — up—1)/d,

(0+0)(z) = (v(z + d) —v(z))/d, (0-v)(z) = (v(z) —v(z —d))/d,
(Tyw)k = tpty, and (Tyv)(x) = v(z +y),

where y € Z in the first case and y € R in the second case.



With this notation the operator A in Eq. (2) is defined by the formula
Au = 0,0_u.
We consider two Hilbert spaces of sequences u = {uy, : k € Z}: H, with

the norm defined by
2
lullg, = d ) prui,

keZ
where p;, = p(kd), and Z, with the norm defined by

2 2 2
||u||1,p = ||u||0,p + ||a—u||0,p’

and two Hilbert spaces of functions u = u(z),z € R: H, with the norm
defined by

full, = | ployute)? do
and Z, with the norm defined by
2 2 2
lully, = llullo, + IVullg,

Note that, for any of the spaces above, the norms corresponding to two
different choices of ¢ are equivalent.

Finally, we introduce the space Z, of sequences u = {uy : k € Z} with
the norm defined by

[ully,, = sup [ Tyull,,
YEZ
and the space Z, of functions u = u(x),z € R, with the norm defined by

[ully,, = sup [[Tyull, -
yeR

We assume that the nonlinearity f in Eq. (1) satisfies the following main
conditions:

(AI) fisin C'(R) with globally bounded derivative;

(AII) for some a,b > 0 the function f satisfies the dissipativity condition

uf(u) < —au®+0b, u€R (3)

Condition (3) implies that f(c¢) = 0 for some ¢ € R and therefore, by the
change of variables u := u + ¢, we may assume that f(0) = 0.
Let ® be a general evolutionary system on a Banach space R and let R

contain a Banach space R’ with continuous embedding. Following [1], we say
that I C R is the global (R, R)-attractor of ® if
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(i) I is a compact set in R;
(ii) I is positively invariant with respect to ®, i.e., ®(t,1) = I for t > 0;
(iii) I attracts bounded subsets of R’ with respect to the topology of R.

It is proved in [6] that, under conditions (AI),(AlII), the system X has the
global (Z,, Z,) attractor A. Note that, for a different pair of function spaces,
the existence of a global attractor of the system Y has been established by
Babin and Vishik in a pioneering paper [2]. The proof in [6] uses the choice
of spaces and an abstract result from [9].

The main result of [3] shows that if conditions (Al) and (AIl) are satisfied
and h and d are small enough, then the system S has the global (Z,, Z,)-
attractor A(h,d) and this attractor has a bound in Z, that is uniform in A
and d. In addition, the attractor A(h,d) is invariant under S in the sense

SHA(h, ) = A(h,d) for teZ. (4)

Notice that this property can be shown for all t € Z due to invertibility of
the system S. For noninvertible systems such as ¥ this property is replaced
by the fact that the global attractor consists of complete orbits [10].

We embed the space H, into H, as follows. Define a partition of unity
{wk }rez where the hat functions wg(x),z € R are given by

(x —(k—=1)d)/d, z € [(k—1)d, kd],
wr(z) =< (k+1)d—2x)/d, zx € [kd,(k+ 1)d],
0 otherwise.

Then define the interpolation operator 7 : H, — H, by
T{up} = Zwk(x)uk (5)
keZ

For two sets By, By C Z,, we introduce the Hausdorff semi-distance,
which we call the deviation for short, by

dev(Bj, By) = sup dist(u, By).

u€ By
Here 'dist’ is generated by the norm of the space Z,.

The main result of this paper is the following statement.

Theorem 1 Under the assumptions (Al), (AIl) the attractors converge in
the following sense

dev(T A(h,d), A) — 0 ash,d— 0. (6)



We have stated this theorem for scalar parabolic equations. It is, however,
quite straightforward to extend the result to systems along the lines of [3].

The structure of the paper is as follows. In Sec. 2, we summarize regularity
estimates from [6] for solutions of Eq. (1) on finite time intervals and we state
error estimates for projectors and interpolation operators in weighted norms
that have been derived in [7]. Moreover, we set up the basic technical results
that are used in Sec. 3 to prove the main theorem. Then sections 4 and 5 are
devoted to the proof of the technical results from Sec. 2 — a finite time error
estimate between solutions of Eq. (1) and the corresponding finite difference
solution, a regularity estimate for the discrete solution and an asymptotic
compactness result. In all cases we use the weighted and uniform norms
defined above.

2 Preliminary Estimates

In our reasoning below, we apply the following regularity result for solu-
tions of Eq. (1) on finite time intervals (see [6]). Note that all derivatives of
a solution mentioned in Proposition 2 exist for almost all (¢, x).

Proposition 2 Assume that the nonlinearity f in Eq. (1) is Lipschitz con-
tinuous. Let u(t,z) be a solution of Eq. (1) such that ug € Z,. For any
T > 0, there exists a constant C(T') > 0 such that the following estimates
hold:

lAu(®)2, + llu(0)]12, < OO w2, 0 <t <T: (7
IVut)[2, < OOl 0<t<T; (8

T
S a2t < C(T)jul 2, (

)
)
9)
Jo 1 Au(b)I[3 ,dt < C(T)uoll?; (10)

)

Jo Ellun®)5 dt < C(Djus]l3 . (11

For the discrete system in Eq. (1) we need a certain analog that yields esti-
mates up to second order.

Proposition 3 For h and d sufficiently small Eq. (1) defines a solution
operator S on H, and on Z, with Lipschitz constant 14 Ch for both norms.



For any fized T > 0 there ezists a constant C = C(T') > 0 such that
solutions u"*Y = S(u™) of the discrete system (1) satisfy for 0 < nh < T
the following estimates

[l + 3 o], < O, "
k=1
C
00415, < Gl "

The first part essentially follows from [3] while a detailed proof of (13) will
be given in Section 5.
In the following it will be convenient to use second order spaces and norms

2 2 2
Vp=Au& 2, |lully, = llullg, + Vully, < oo},

2 2 2
Y,={ueZ,: ||u||2,p = Hu”o,p + Ha*qu,p < oo}

with their uniform counterparts denoted by (Yy, [|[|,,,) and (Vu, [|[l;.,)-
Now consider the interpolation operator 7 defined by (6). The following
Lemmas 4 - 7 are proved in [7].

Lemma 4 There exists a constant C > 0 such that

C'_1||u

0, < I1Tully, < Cllully, and Cu

1p <N Tully, < Cllully,

for any uw € H, and u € Z,, respectively.

Comment Here and below, we denote by C various constants that are in-
dependent of A and d but may depend on the parameter ¢ in the weight
function p.

Lemma 5 The operator T is uniformly (in d) bounded from Z, into Z,.

Introduce the subspace Vy = T(H,) C H, of piecewise linear functions.
Lemma 4 implies that V; is a closed subspace of H, and that 7 is a homeo-
morphism between H, and V.

Let P4 be the orthogonal projector onto V; in the space H,.

Lemma 6 Ifu € Z,, then
[Pauly , < Cllully,, (14)

and
(I = Pa)ully, < Cdl|ul|, -



Note that the error estimates above as well as (15) below are classical in
finite element analysis for the case of bounded domains and without weights

(see e.g. [4]).
Lemma 7 Ifu € ),, then
I = Pa)ully, < Cdllull,,,. (15)
and for any K > 0 there ezists a constant C(K) > 0 such that
[PaTra(I = Pa)lly, < CUK)d|[ull2,
for all integers k such that |k| < K.
If, in addition, u € Y, then for all |y| <1
1Ty Tu—Tull;,, < CVyl ully,-
An easy consequence of these Lemmas is the following (see Section 5).

Lemma 8 The attractor A is contained in Y, and
dev(PsA, A) < Cd.

For the following finite time estimate we remind the reader that the op-
erators 7 and S depend on d and on d, h, respectively.

Proposition 9 If we fizx v € Z, and a number T' > 0, then
sup || T 8™(T'Pyv) — PaX(nh, v)Hl ,—0 as hd—Q0.

0<nh<T
Let us note that, for the case of a parabolic equation on a bounded (in z)
domain, explicit (in terms of the steps) estimates of finite-time discretization
errors were obtained, for example, in [8]. Proposition 9 will be proved in
Section 4.
Finally, consider a sequence (h,,,d,,) of discretization steps such that
hpn,d,, — 0 as m — oo and let 7,, denote the interpolation operator corre-
sponding to d = d,,.

Proposition 10 If u,, € A(hy,,dy), then the sequence vy, = T4 Uy, is
precompact i Z,.

The essential tool in the proof of Proposition 10 (cf. Section 5) is the following
compactness result from [6].

Proposition 11 Any bounded set B C Z, that satisfies

sup || Tyu —ul[,, =0 as y—0
ueB ’

is precompact in Z,.



3 Proof of the main theorem

To prove the main theorem, let us assume that relation (6) does not hold.
In this case, there exists a positive number ¢ and a sequence (h,,, d,,) — (0,0)
such that
dev(T  A(hp, dn), A) > 2c.

Find points u,, € A(hm,d,,) such that
dist(7 pul,, A) > c. (16)

Since 7, is uniformly (in d) bounded from Z, into Z, (see Lemma 4)
and the Z,-size of the attractors A(hy,, d,,) is uniformly bounded for large
m [3], there exists a closed bounded ball B of the space Z, such that

T A, dn) C B.
Find a number 7" > 1 such that
dist(3(t, B), A) < ¢/C for t>T—1,

where C'is from (14) in Lemma 6.
If h,, < 1, we can find integers 7(m) such that T'—1 < 7(m)h,, < T. Let

= ST () € Alhdy) and v 1= T,

where S,, is the solution operator for d = d,,, h = h,,.

Since u,, € A(hp,dy,), it follows from Proposition 10 that the sequence
v, contains a subsequence convergent in Z,; we assume that v,, — v as
m — oo. It is easy to show that v € B C Z,,.

Thus, there exist points w,, € A such that

|2(7(m)hp, v) — meLp <c/C. (17)

Note that 7, ST™ (uy,) = Tptdl,,.
Let us estimate

_|_
Lp

AT it A) < | T ST () = TS (TP 0)

+H7m3;§m> (T1Py, v) — P, S(r(m)hm, v)‘ +

1,p

+||Pdm2(7-(m)hm7 /U) - PdmmeLp + diSt(Pd'rerm? A)
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By Proposition 3 the mapping §,, has a Lipschitz constant of the form
1+ Ch,, with C' independent of m. Hence, the mappings Szrfm) have uniform
Lipschitz constants for small h,, and d,,. Since u,, = T;Llpdmvm and the
operators 7 ,,, 7! and P, are uniformly bounded, the first term on the
right in the above inequality tends to 0 as m — oc.

By Proposition 9, the second term on the right tends to 0 as m — co. It
follows from inequality (17) that [Py, 3(7(m)hm, v) — Pa,wnll; , < c.

By Lemma 8 we have dist(P,, wy,, A) — 0 as m — oo. Thus

dist(7 ul,, A) < ¢

for large m, and we obtain a contradiction with inequalities (16). This com-
pletes the proof.

4 An error estimate with weighted norms

This section is devoted to the proof of Proposition 10. Let £ be a Lipschitz

constant of f. Denote
Ay =T(0,0)T "

and note that Ay = d,0_ holds on V;. We further define

fa(uw) = T{f((T  u)p)} for u € V.

and use the notation f(u)(x) = f(u(z)) for v € H,.

Fix a function wy € Z, (this function will play the role of v). Take
u® = T 'Puy and consider the corresponding trajectory {u™ : n > 0} of the
discretized equation (2). Denote v" = Tu" € V; C H,. Applying 7 to (2),
we see that the functions v™ satisfy the following equation:

(Un+1 o Un)/h _ T(a+a_)un+1 + T?(UTH_I) — Advn-i-l + fd(Un+1).
Let us write this equation as follows:
(,Un-H _ Un)/h — Advn—i-l + Pdf(Un+1) + U?—H, (18)

where
o1t = fa(v™h) = Paf (")
Let u(t,z) be the solution of Eq. (1) with inital value uy(z) at ¢t = 0.
Denote u'™ (z) = Pyu(nh,z). Applying P, to (1) at t = (n+1)h, we see that

(D (2)—u™ (2)) /b = Agu™D (2)+Paf (u((n+1)h, x))—aé‘“(x)—a?“((lg)),



where

JZH(x) = Adu(”+1)(x) — PsAu((n+ 1)h, z)

and

o3t (2) = Pau((n + 1)h, ) — (" (@) — ul™(2))/h.
Let O™ = ™ — (™. Subtracting (19) from (18), we see that

O+ — M) /h =

= A©U ) + Py(f (") — f(u((n+ 1)h,2))) + o7 + o5t + oyt (20)

and ©©) = 40 — Pyuy. Below we take into account that O = 0 due to our
choice of uY.

Now we fix T" > 0 and estimate H@(")H
with preliminary estimates.

1p for 0 < nh < T. Let us begin

Estimation of 0”“.

Fix 2 = (k + 6)d, where 6 € [0,1]. Since Pafs = fu,
o7 (@) = [Palfaw") = f(0"))(@)].
Let us estimate
)0+ flup ™) (1 = 0) = fuh0 +up ™ (1= 0))] <

< | f(upinf +up ™ (1= 0)) — fupdy)]0+
H (g0 +up (1= 0) — flup™)|(1-0) <
< 2L0(1 = O)ufy — wp ™| < Lhupfy — up™ /2 = Ld] (010 )l /2.

Since P, is an orthogonal projector, ||P4|| = 1, and we get the following
estimate:

o 1]l5,, < Jep@I(fae™) = F@) (@) Pda <
(recall that p(z + 6d) < Cp(x) for |6] <1, [8])

< CL2 Y pil (@)l < C|l0 a7,

keZ

Finally, we arrive at the estimate

oI5, < Cdllosur g, (21)
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Estimation of o4

Let us transform
oyt (x) = Agu™tY — PyAu((n + 1)h,z) =
= 0;0_Pau((n+ 1)h,x) — PgAu((n + 1)h,x) =
= 0;0_Pau((n+ 1)h,x) — Pyo+0_u((n + 1)h, )+
+Py(010-u((n+ 1)h,x) — Au((n+ 1)h, x)).
We denote

o5t = 0,0_Paqu((n+ 1)h, 2) — Pad+0_u((n + 1)h, x),

oh st = Pa(0:0_u((n + 1)h,z) — Au((n + 1)h, z)). (22)

Let us estimate the term J”+1 The following equalities hold:

o34 = Padsd(I = PoJul(n+ 1)h,z) =

- E7>d(Td =20 + T_g)(I = Pa)u((n + 1)h,z) =

= —=Pu(Tyu+T_4)(I —Py)u((n+ 1)h,z) — ﬁpd(l Pau((n+ 1)h,x) =

d2Pd(Td +T_ )([ — Pd)u((n + 1)h, .T)
The second estimate in Lemma 7 implies that if u(z) = u((n + 1)h, z)
satisfies the inequality

lell3, = lhully,, + I7ul}, <
then
o5, < 5 (IPTal = Pajuly, +
Pl = Pauly,,) < 2Cd]ull,,. (23)

Now let us estimate the term 02 51, Since
1040_u((n + 1)h,z)| = | [ O_Vu((n + 1)h,z + d)df| =

= |f01f01Au((n + 1h,xz+ (04 601)d — d)dbdb,| =

11



(introduce Oy = 6 + 6, — 1)
= o Jy s Aul(n + )b, + 6d)d0db), (24)
we obtain the following equalities:
0:0-u((n + 1)h,z) — Au((n + 1)h, z)| =
=[] (Au((n + 1)h, 2 + 6,d) — Au((n + 1)h, z))dfad6]| =
—1/° f1+92 .. d0d0y + [ [, ... d0doy| =
= d|f f " Dh,z + 05d)(1 — |02])dOsdbs| =

02
:d‘_ff1f92"’+f0 0

d|f0 1 W ((n+ 1)h, z + O3d)(1 — |92|)d92d93+f81f,6?

= d| [iu" (... )(1—|63)2/2d603 — [°u" (.. ) (1 — |05])%/2d05].
It follows that

los3' ., = [040-u((n+ Dh,2) = Au((n+ Dh, )5, = feol . [de <

< deffdmu"’((n + 1h,z + 04) P dOsdz <
(we differentiate Eq. (1))

<2d [, [* p|Vu((n + 1)h, 2 + 0,)[dfsdz+

+2d [y [PV F(u((n+ Db, 2 + 00))Pdbsda <
(apply Proposition 2)

< Cd((n+ Dh)2|uoll}, + 2L2d [ [* | Vul(n + 1)k, @ + 04)*dbadz.

Finally, by applying Proposition 2 once more we have
n - 2
o555, < CA(1+ ((n+ 1)h) ) fuo - (25)

Estimation of o4

The following estimates hold:

HU +1H0p = pr| (tl) (n))/h — Paui((n + 1)h, x)|2d;1: =

12



= [oplPafy (w((n + 0)h, x) — w((n + 1), x)dfPda <
S h2pr’f01f91Utt((n + el)h, x>d6d91|2d1’ =
= B2 op i e (n + 1), 2)01d6,dar <
< B[} fuplua((n + 00)h, x)*02dadb;.

Hence,
[ 3“Ho < B2 [ fuplun((n + 61)h, z)*dzxd;. (26)

Estimation of 6
Multiplying Eq. (20) by @™+ we get the following estimate:
(O D2 — [O[2)/(2h) < (|92 — B+ 160)/h =

— Ad@(n+1)@(n+l) . Pd(f( (n+1)) . f( ((n_|_ l)h,x)))@(n+l)+

RN IS (27)

(n+1) + o

+(0
Now we multiply (27) by p and integrate over R:

(e 15, = lle™ Il

Ho,p)/(%) < [opA@r DO gy
— JePPa(f( FO™DY = fu((n + )b, 2))0m D da+
+pr oM+ + Ugn+1) + Ognﬂ))@(nﬂ)dx <
< Jop0 0-0C DO dy—
_prPd(folf,(U((” + Dh,z)(1—x) + U(”+1)X)><
x (V) — u((n + 1)k, z))dx)O" V) dr+

+|et+ Ho /2+(H (n+1) H +H (n+1) | ) 2 /2. (28)

HO,p
Let us estimate the terms separately:

pr3+8 @(n-i-l)@(n—i-l)dx — _f]R p@ (n+1) )a @ (n+1) d{L’ .
— _pr|8—@(”H)|2dx _ fR(a_p)(T_d@(n+1))a_@(nJrl)dx <
< — JrPlO- " r+ Cel,p n x4+ Ce [,p|0_ n r <
2p|0-00 T Pdy + Ce [ p|©0 V|2 dz + Ce [, p|0_0" TV |*d
< —lo-en [} 2+ Celle 0

by a proper choice of €.

13



Further,
[ JeoPal fy £/ (u((n + 1, 2)(1 = x) + 0" x) %

x (v —u((n 4+ 1)h, 2))dy)O" N dz| <

< JepPa(fy £ (u((n+1)h, 2)(1=x) +0" ) () —u((n+1)h, 2))dx *da+
1) 112
+|er ], <

< L [oplo"™ ) — Pau((n + 1)h, )| *dz+

(recall that vV — Pyu((n + 1)h,z)) = O+D)
+L [opPau((n+ Dh, 7)) = u((n + 1)k, x)Pdz + |00+D]|F <
2
< Cd|luo|, + CllO[] . (30)
In the last step we applied Lemma 6 to the second term and used that
lu(kh, ), < Clluolly,,

holds for 0 < kh < T with a constant C' depending on 7.
It follows from inequalities (28)—(30) and equality (22) that

(eIl = e[, )/7 + [[o-0+;, <

< 0l|ew Vg, + Cdluoll}, +2]|07 g, + 2[5 1[5, + 20",
where
e e

Summing the latter inequalities, we see that

n+1
o0l < 601, + On S [0, + CTuol

n+1
+2h 3 (0% +lotg,, + [l ], <
(we apply estimates (21) and (23))

n+1
<1001, +on 3 [19%5, + CTa ol +

k=1

14



n+1 n+1 n+1
+Chd® " |[u(kh, 2)|3, + Chd® > [|0,u®|; +20> o™ (31)

k=1 k=1 k=1

Note that Proposition 3 gives the estimate

n+1

WYy fovut|l;, < Cllullls,,. (32)

k=1

Next we estimate the term hd? 33 |Ju(kh, z)|[3 ,:

n+1 n+1 n+1

hd® Yy llulkh, @), = hd® Y foplAu(kh,2)]* + hd® Yy [Ju(kh,2)]1, <

k=1 k=1 k=1

n+1
< hd® > ([uplAukh, x)Pdz — [; [oplAu((k + 0)h, z)[*dzd0)+
k=1
+d [ [l Ault, @) Pdadt + CTd|luolf}, =

n+1

=hd*> " [opfy (|Au(kh, 2)|* — |Au((k + 0)h, z)[*)dddz+
k=1
F &2 [T [ plAut, ) Pdwdt + CTd|uol;, =

n+1

= —hd® " [opfy o 2nDuy((k + 00)h, 2) Au((k + 01)h, 2)d6ydfdz+

k=1

+d [T [opl Au(t, 2) Pddt + CTd?|uoly , <

n+1
< hd " fup s [ (02 Aug((k + 00)h, )2 + | Au((k + 61)h, 2)*)d6d0dw+
k=1
+d [ [oplAu(t, z) Pdadt + CTd? ol , =
n+1
= hd® > fopfy (W[ Aun((k + 60, 2) | + [Au((k + 61)h, 2) ") (1 — 61)d6r da+
k=1

+d [T [opl Au(t, 2) Pdadt + CTd?|uoll; , <
< [T [ p(h2|Auy(t )2 + | Au(t, ) ) dedt+

+d [ [opl Au(t, 2) Pddt + CTd?|uoy , <

15



< d? 0T+thpt2|Aut(t, x)|Pdwdt+
+2d2 [ [LplAu(t, x)Pdudt + CTd |l , < Cd?|luoll; .

where Proposition 2 was employed in the last step.
Now we fix an arbitrary o > 0 and denote

Y = Z and ¥ = Z

h<kh<a a<kh<(n+1)h

Applying estimates (25) and (26) (and taking into account the expressions
for o5 and o3 considering X'), we see that

n+1
h Z o® = h(2e® £ 2"c®) <
k=1
= hY||PaAu(kh, z) — Poue(kh, ) + (u® — ut=V)/h — PyAqu(kh, x) H§ T
+hd?S" (1 + (kh) ™) |luoll} , + BS" [ [aplue((k + 61 — 1)h,x)[2dbydz) <

< WS ||Paf (ulkh, )|, + hT

Sk =1+ 0)h, x)d&’

2

_|_
0,p
+hY | PyAqu(kh, )5, + CTd*(1+ o72)||uo|] -+

+h2fih wPlun(t, ) Pdtdz. (33)

We estimate the terms separately.
From the Lipschitz continuity of f we obtain:

WY [ Paf (u(kh, 2)|l5, < hS|| f(ulkh, )|, < Calluolly - (34)

Further,
2
|| flug((k =1+ e)h,x)de( -
0,p
= hY fopl [y ue((k — 1+ 0)h, z)d0)*dz <
<Y [ fuplus((k — 14 0)h, z)|*d0dz <
< o llue(t, )G . (35)
Further,

WY || PyAqu(kh, )5, < b [oplAqu(kh, z)]* <
(according to equality (24))

< Y [opl [t Au(kh, = + 0d)(1 — |0])d6|*da <

16



< 2h¥ [op [t | Au(kh, = + 6d) (1 — |6])2ddda <
< 2h3 [1 fopl fo Au((k + 01)h, @ + 0d)do +

+ [ (Au(kh,  + 0d) — Au((k + 1)k, + 0d))d6, [*dzdd <

< 4hY' 1 [op f01|Au k + 01)h, x + 0d)|*dzdf,do+
F4hS [ foplh [ 0 Ay (K + 05)h, @ + 6d)dbd6; *ded <

< any' 1 [ [ plAu((k + 61)h, x + 0d) [*dedd, do+

4RS! 1 [ fap(1 = 02)2h3| Auy (K + 02)h, 2 + 0d)Pdzdfydf <
(we introduce z; = x + 0d)

< 4Ch2'f_11f01pr(m1)|Au((k + 01)h, 21)|*dx,dO, dO+

FACRY 1 1 [ p(x0) (1 — 02)2R% | Auy((k + 02)h, 1) |2dz,d61dO <
<40/! fa+thp|Au(t, 1) [*dy dtdfh+
FAC [ [ [ ph? Ay (8, 1) [Pday dtdd <

<8C [ (| Aut, s, + 2 Ault, )5 ) dt. (36)

We estimate the remaining term in (33) as follows:

h2
hzfaT_h Rp|utt(t,x)|2d:vdt < mfg_tht2p|utt(t7f)|2d$dt <
Ch?
< m“%”?,p- (37)

Now we fix a bounded ball in Z, and take the initial function wu, for
Eq. (1) from this ball. Below, the constants C' depend on 7" and the size of

this ball, i.e., they “accumulate” the terms ||u0H3’p and ||u0Hip.
It follows from (33) and our estimates that

n+1

hZO‘ < Ca+ [ Jult, ||Opdt+
k=1

oAt )2 + 2| Au(t, )2 dt+

C?  Cn?
2
+Cd* + — + P (38)

17



where the constant C' does not depend on «, d, and h. Taking, for example,
o = (d? 4+ h?)'/4, we see that the value

n+1

h Z o)
k=1

tends to 0 as h,d — 0, note that the integrands in (38) are summable due to
Proposition 2.

Thus, it follows from (31) and the Gronwall lemma that if we take u® =
T (Pauo) (so that ©© = 0), then

n+1
([0, + Ca*+ 20> o®)exp(CT) =0 (39)
k=1

let

HOp

as h,d — 0.

Estimation of H@(”)Hlm.

For this term we use arguments similar to those for ||@(”) Ho )

Multiply equality (20) by pA40" ) and integrate over R:
(Jzr(© e+ —em)9,0 00+ dy) /h = pr]Ad@(”“)\zdx—i-
+ Jop(oT T o+ o T+ Py (0" = Flu(n+1)h, 2))))A©HVdz. (40)
Let us “integrate by parts” on the left in (40):
(fep(O©t) — M), 0_00+Vdz)/h =
—([x0-(p(6"+) —0M))d_0" dr) /h =
- J"Rp (0_0"+) — 9_0M)9_0m+)dy) /h—
—(Ja(0-p)(T-a(€" ) — 0))0 0" Vdz) /h <

we change variables in the second integral and take mto account
h iables in th d i 1 and take (20) i
~([lo-e=v]l;,, — l[o-8™1|, )/ (2h)~

_fR a+p Ad@ (n+1) + U;H—l + O_n+1 4 O'gH_l—i—
+Pa(f (0" — f(u(n + 1)h, 2))))) 0.0 da. (41)
It follows from (40) and (41) that

(Ha—@(n+l)H§,p - Ha_@(n>||§,p)/(2h) + HAd@W“)H;p <

18



< =[x (0-p) 40D, 0D dy+
o (07 + o5+ o) (04O — (9,p)0. 0 )dur—
— [ Pa(f @Y — flu(n + 1)h,2)))((049)0: 00+ — pA00 ) d <
(we take 8 = 1/(2Cd) and apply the usual 2ab < Ba® + b*/3 trick)

< CAA| 4OV + Cd(1+1/B)]|0,0C+D|> +
+CO(1+1/8)||o7 " + o5 + a§+1H§p+
+C(1+ 1/3)||Pa(f (0" FD) = fu(n + 1)h, z) ||0
Estimating the squared norm in the latter term by
et 1) 112
c2lee |l + Ol ,,
we arrive at the following estimate:

(Jo-et+112, ~ -6 )2h) + 40| /2 <

< Cdfjo_ 00|+ Cllot™ + o3 oy g, + Cle g, + Cd

By the Gronwall lemma,

lo-e®;

2
0p < C([0-0|; +
Z ”01 + 02 + OlgHo + hz HG)(k Ho + d2 ) exp(CT).
k=1
The first term in parentheses on the rlght vanishes, while the remaining terms
tend to 0 as h,d — 0, see (38) and (39).
Finally, we apply Lemma 4 to show that

n) 12
VeI, =
= ST ST IO — (TR0 fdPdr <
kez
<O p(kd)[(T70M)p — (T7'0M)) /d]? =
keZ
=C|To.T e, = clla-e;, 0

as h,d — 0.
To complete the proof of Proposition 9, it remains to note that if 7' > 0,
then the estimates obtained above hold for any nh € (0,7].
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5 Regularity estimates and compactness

Let us start with the

Proof of Proposition 3

The proof of Lemma 2.3 in [3], with inequality (2.15) replaced by the
inequality (B*Bv,v), > (1 — Ch){(v,v),), shows that the operator S has a
Lipschitz constant 1 + C'h. For the a-priori estimate (12) we use the energy
estimate from Lemma 2.1 in [3]

(Av, pv) < =C|l0_vll; , + Celvly,. v € H,. (42)

Here we used the inner product (u,v) = > 7 ugvg. Multiply (2) by pu"*
and use (AI) and (42) to obtain

g, = J7,) € G =l ) ) 0
— (pu"“,f(u”“)) —I—(pu”H,Au”H)
< Oflu g, = Cllo-ut=]; .
P 0,p

Summing up leads to

[ue2lls, £OonY 0.0 o,y < 1w (O)IloﬁChZHu o

7j=1

from which (12) follows by a discrete Gronwall estimate.

For the proof of (13) consider w,in) = 8+u§€n) which satisfies the following
equation:
n n n+1 n+1
w™ ey SR — FY)
%o h a

n+1 n—l—l n+1 n+1
= 0,0 : /f §<;+1) §<; )(1_9))d0'wl(c g

Therefore, the sequence U,E/," = hn8+uk"), n >0, k € Z, is a solution of
the equation
U(nH) - U(n) 1 / 1 +1 1
Mt a0 — [P0 a0 )b+ 0

0

0@ =0.
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As usual, we multiply the last equation by pk0+6_vk ntl) , sum the expres-
sions obtained for all k£ € Z, and result in the following mequalities:

005, = 120,

2h

|3+U(7hLl = |3+U |
=d <
2 % <

keZ
8+U (n+1) (a n+1) 8+U’(€n))
<d =
2 "
kEZ
iy o)
- —dZ& (pedsv! )Tk _
keZ
oy o)
==Y (0-poof" Y + 0 ) e
kEZ
— Y (8_pk3_vk + pds 0"V ) (a+a_u,§"“>+
kEZ

1
[P0 o) as o 4 0.l =
0

_ —dZPk|3+a—Uan)| Za 9.2 n+1 (0_p 9 v (n+1

kEZ kEZ

+on / PO+ 00 = 0)a0 o) + o) -

>0 ped / P00+ (L= )0 o+ 0, <

keZ

<=y prldp vV + Ced Y prl0n0- vV P+

keZ k€EZ
+C’€*1d2pk(\8+v,(€"+l 2+ o2 + o ul| )
kezZ
+Ca Y pu([0suf VP + oV 4 |0 ).
keZ

Taking ¢ < C~! we can continue for (n +1)h < T

< Cay_ (0o V4 R+ o) =

kEZ

21



= Cay o (100l + h(n + DR + [0,u) <
keZ

<cdy pk(|a+v’gn+1>|2 oI 4 |a+ul<€n>|2>.

keZ
Summarizing, we have shown
2
n+1
L P

2h

(n)[|%
v Ho,p <C (H&r“(nH)H(Q),p + ||8+u(n+1)H§’p + H8+u(n)H§,p> .

(43)
Finally we multiply inequality (43) by 2h, take the sum over all n =
0,...,N—1, Nh < T, and with v(¥) = 0 obtain the following inequality:

N N
05,0 < 240 @3, +Ch Y [|o0 ], + Ch Y o], <

n=1 n=0

< ORI [0+ O,
Applying the discrete Gnr:;nwall inequality, we get the estimate:
0,02, < O,
for all numbers N such that 0 < Nh < T'. This means that
0,02, < VRO,
and Proposition 3 is proved. 0

Proof of Proposition 10

We apply Proposition 11 to the sequence v,, = 7 ,,u,,. Since the attrac-
tors A(hy,, d,,) are uniformly bounded in the space Z,, Lemma 5 shows that
| T mtmll;, is also bounded. Moreover, using the invariance of the attrac-
tor .A(hm77 d,,) under translation and iteration, Proposition 3 implies that
[tmlly, is uniformly bounded as well (use (13) with nh = 1). Therefore, we
can apply Lemma 7 and obtain, uniformly in m,

1Tyom = vmlly, < V1Yl lumlly,, — 0 as y—0.
Then Proposition 11 yields the assertion. 0

Proof of Lemma 8
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We know that the attractor A is bounded with respect to [|-[|, , and there-
fore - similar to the discrete case - the regularity estimate (7) in Proposition
2 together with the translation invariance of the attractor shows that A is
bounded with respect to [|[|,,,. Lemma 8 then implies

sup || Pgu — ul|, , < Cd.

ue
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