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Many decision making tasks in life involve a categorization process, but the effects of categorization on
subsequent decision making has rarely been studied. This issue was explored in three experiments
(N=721), in which participants were shown a face stimulus on each trial and performed variations of
categorization-decision tasks. On C-D trials, they categorized the stimulus and then made an action
decision; on X-D trials, they were told the category and then made an action decision; on D-alone trials,
they only made an action decision. An interference effect emerged in some of the conditions, such that
the probability of an action on the D-alone trials (i.e., when there was no explicit categorization before
the decision) differed from the total probability of the same action on the C-D or X-D trials (i.e., when
there was explicit categorization before the decision). Interference effects are important because they
indicate a violation of the classical law of total probability, which is assumed by many cognitive models.
Across all three experiments, a complex pattern of interference effects systematically occurred for differ-
ent types of stimuli and for different types of categorization-decision tasks. These interference effects
present a challenge for traditional cognitive models, such as Markov and signal detection models, but
a quantum cognition model, called the belief-action entanglement (BAE) model, predicted that these
results could occur. The BAE model employs the quantum principles of superposition and entanglement
to explain the psychological mechanisms underlying the puzzling interference effects. The model can be

applied to many important and practical categorization-decision situations in life.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The fields of categorization and decision making are empirically
mature and theoretically well developed, but to a large degree,
they have evolved in a parallel and independent manner. Little is
known about the interactions between these two basic cognitive
tasks - that is, how a categorization task changes performance
on a subsequent decision task.! In many situations in life, decision
makers need to make categorizations before deciding on an action.
For example, a doctor needs to categorize a biopsy as cancerous or
not before making treatment decisions; a judge needs to categorize
a defendant as guilty or not before assigning a punishment; a police
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! Maddox and Bohil (1998) examined the effects of decision making variables such
as prior probabilities and payoffs on a categorization task, but here we examine how a
categorization task affects a subsequent decision task. More closely related is the
effect of categorization on subsequent feature inferences, such as has been discussed
by Murphy and Ross (1994), Griffiths, Hayes, and Newell (2012), and Chaigneau,
Barsalou, and Sloman (2004). In the General Discussion section, we relate our
research to these other lines of work.
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officer needs to categorize a driver as intoxicated or not before mak-
ing an arrest; a military operator needs to categorize an agent as an
enemy or not before making an attacking decision. In all these exam-
ples, it seems necessary to infer a category before choosing an action.
Suppose the decision maker has to report this category inference
before making the decision. How does this overt report of the cate-
gory affect the later decision? For example, would the probability
that a police officer shoots a suspect be changed if she or he had
to report seeing a weapon possessed by the suspect first?

In the work described below, participants were presented
with a face and were asked to categorize it first and then decide
on an action. However, the general categorization-decision para-
digm is not limited to these particular details, and as mentioned
above, there are many important and practical examples of
categorization-decision situations in real life. In general, any task
that has the following four characteristics falls into this paradigm:
(1) a stimulus providing information is presented, after which (2) a
categorical inference is made based on the stimulus, followed by
(3) a decision about an action, and (4) the action has consequences
that depend on both the action and the true state of the category.

To explore the relation among these tasks, three experiments
were conducted, and three theoretical explanations - a Markov
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model, a signal detection model, and a quantum cognition model
based on quantum probability rules - are discussed and compared.
Only the quantum cognition model a priori predicted an interfer-
ence effect of categorization on subsequent decision making that
systematically occurred in the experiments.

2. The categorization-decision paradigm
2.1. The categorization-decision interference

Townsend, Silva, Spencer-Smith, and Wenger (2000) initiated
an investigation of the category-decision paradigm. On each trial,
participants were shown one of 34 faces that were assigned to a
“good guy” or “bad guy” category based on some facial features
(e.g., width of faces), and then asked to decide whether to “attack”
the face or “withdraw” from it. Fig. 1 illustrates some examples of
the faces used in our new experiments, which were similar to those
employed by Townsend et al. As shown, it was fairly easy to dis-
criminate the two types of faces, but the task was made difficult
because the assignment of faces to a category was probabilistic:
The narrow faces were assigned to the “bad guy” category on
60% of the trials and to the “good guy” category on the remaining
trials; likewise, the wide faces were assigned to the “good guy” cat-
egory on 60% of the trials and to the “bad guy” category on the
remaining trials.

The category was important because participants were
rewarded on 70% of the trials for attacking faces that were assigned
to the bad guy category and punished on 70% of the trials for
attacking faces that were assigned to the good guy category. Like-
wise, they were rewarded on 70% of the trials for withdrawing
from faces assigned to the good guy category and punished on
70% of the trials for withdrawing from faces assigned to the bad
guy category. Participants were given six blocks of training, during
which they first categorized a face and then decided on an action,
and afterwards feedback was provided on both the category and
the decision. The key manipulation occurred during a transfer test
phase, during which each person received two additional blocks
with three types of trials: (1) categorization and then decision
(C-D) trials exactly like the original training, (2) categorization
(C-alone) trials in which only a categorization was made with feed-
back, and (3) decision (D-alone) trials in which only a decision was
made with feedback. For example, on a D-alone trial, the person
was shown a face, simply decided to attack or withdraw, and
received feedback on the decision. Of course, the categorization
of the face on the D-alone trial remained highly relevant to the
action decision, and it seems some implicit inference about the cat-
egory was necessary before participants made the decision even
though they did not have to explicitly report this inference.

Using this paradigm, one can examine within each participant
how the overt report of the category interferes with the subse-
quent decision by comparing the probability of attacking on the
D-alone trials (denoted as p(A) for a face type) with the total prob-
ability of attacking on the C-D trials (denoted as p;(A) for the same
face type). The latter is simply the probability of attacking on C-D
trials pooled across trials when the categorization response is
ignored. It can also be expressed using the classical law of total
probability, which states that the probability to attack (A) equals
the probability that the person categorizes a face as a good guy
(G) and then attacks plus the probability that the person
categorizes the face as a bad guy (B) and then attacks:
pr(A) = p(GNA) + p(BNA). If these two ways of determining the
probability of attacking on D-alone and C-D trials agree for a par-
ticipant, p(A) = py(A), then we say that the law of total probability
is empirically satisfied. Based on a chi-square test, Townsend et al.
(2000) found that 25% of 138 participants produced statistically

significant violations of this law. Apparently, the seemingly
innocuous overt report of a category changed how a subsequent
decision was made. Specifically, we define an interference effect of
categorization on decision making as the difference between the
probabilities of an event when it is measured alone versus when
it is measured after another event, such as, in our context, the
probability of attacking on the D-alone trials and the total proba-
bility of attacking pooled across the C-D trials.

Busemeyer, Wang, and Lambert-Mogiliansky (2009) further
investigated this paradigm and discovered a more surprising
result. Their study involved 26 participants, and each participant
received both C-D trials and D-alone trials. As shown in the first
two rows of Table 1, when a face was most frequently assigned
to the good guy category (we denote this type of face as type g
faces), there was almost no interference effect. However, when a
face was most frequently assigned to the bad guy category
(we denote this type of face as type b faces), the probability of
attacking was significantly greater for the D-alone condition as
compared to the C-D condition, violating the law of total probabil-
ity (p(A) > pr(A) for type b faces). More surprisingly, the probabil-
ity of attacking in the D-alone condition, which left the good or bad
guy categorization unresolved, was even greater than the probabil-
ity of attacking given that the person had already categorized the
face as a bad guy in the C-D condition (p(A) > p(A|B)) for type b
faces! It is surprising that for some reason, the overt categorization
response interfered with the action decision by reducing the
tendency to attack faces that most likely belonged to the bad guy
category.

2.2. Candidate models for the categorization-decision paradigm

There are several models that can be considered for the applica-
tion to the general categorization-decision paradigm (not just the
particular example used in the current study). Below we briefly
summarize five candidates. The first two, the optimal and probabil-
ity matching models, are oversimplified but provide useful baseli-
nes for considering competing models for the paradigm. They
predict no interference effects. The next two, Markov and signal
detection models, are more general cognitive models, but they fail
to predict any interference effects either in an a priori manner. The
last is a quantum cognition model, which a priori predicts that an
interference effect could occur.

2.2.1. Optimal model

The optimal model describes the optimal behaviors. According
to the optimal model, the decision to attack should depend only
on the face. If a type b face is presented, then it is always optimal
to attack, and if a type g face is presented, then it is always optimal
to withdraw. This follows from the fact that the probability of
reward for attacking equals the probability that the type of face
is assigned to the bad guy category (.60) times the probability that
a reward is given for attacking a bad guy (.70), plus the probability
that the same type of face is assigned to the good guy category
(.40) times the probability that a reward is given for attacking a
good guy (.30). That is, for a type b face, the total probability of
being awarded for attacking equals .60 -.70 + .40 - .30 = .54, and
the probability of reward for withdrawing is 1 — .54 = .46, so the
optimal model predicts that participants should always decide to
attack when a type b face is presented. Likewise, the optimal model
predicts that the participant should always decide to withdraw
when a type g face is presented. These predictions hold regardless
of whether the trial is a C-D trial or a D-alone trial, because the cat-
egorization response provides no new information for making the
action decision. Therefore, the optimal model predicts no interfer-
ence effect for the categorization-decision paradigm.
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Fig. 1. Examples of two narrow faces (left pair) and two wide faces (right pair).

Table 1

Average choice probability results from Busemeyer et al. (2009) and Experiment 1.
Exp Face N P'(G) p(G) P(AIG) p(B) p(AB) Pr(A) p(A) Int
2009 b 26 .23 .19 43 .81 .64 .60 .69 .09
2009 g 26 .79 .83 .36 17 .53 38 39 .01
Exp 1 b 126 .20 21 41 79 .58 .55 .59 .04
Exp 1 g 138 79 78 .39 22 .52 41 42 .01
Q Model b - .20 .20 37 .80 .61 .56 .62 .06
Q Model g - .80 .80 .38 .20 .62 43 43 0

Note: First two rows are from Busemeyer et al. (2009) and the second two rows are from Experiment 1 of the current article. The last two rows are predictions from a
quantum model. The symbols g, b refer to the type of face stimulus, the symbols G, B refer to the two categories, and A refers to the attacking action. p(A) is estimated from the
D-alone condition, and py(A) is the total probability from the C-D condition. p’(G) is the estimate from the C-alone condition, and p(G) is from the C-D condition. The empirical
results shown in this table were obtained by first obtaining estimates for each individual, and then averaging the estimates across all participants. The first two rows differ
slightly from those of Table 1.1 in Busemeyer et al. (2009), who used estimates pooled across all trials and all individuals.

2.2.2. Probability matching model

According to the probability matching model, a person acts
according to the exact probabilities involved at each stage of the
paradigm. For example, if a type b face is presented on a C-D trial,
then the probability that the person categorizes the face as bad
equals .60 and the probability that it is categorized as good equals
.40. If the face is categorized as bad, then the person attacks with a
probability of .70, and if it is categorized as good, then the person
attacks with a probability of .30. Therefore, the probability of
attacking for the C-D condition equals .60 -.70 + .40 - .30 = .54,
and this is also the probability to attack under the D-alone condi-
tion. Therefore, the probability matching model predicts no inter-
ference effect. According to the results from the C-D trials shown
in Table 1, the choice probabilities deviated from probability
matching. The probability of categorization is more extreme than
probability matching, and the probability of taking each action is
less extreme than probability matching.

2.2.3. Markov model

Townsend et al. (2000) initially proposed a simple Markov
model for the category-decision task, which can be viewed as a
generalization of the probability matching model. The central
assumption of the Markov model is that the categorization
depends on the face, but the action decision depends only on the
categorization (and not on the face anymore). When a type of face
(b or g) is presented, the person initially starts in either a good guy
state (G) with probability ¢(A) or in a bad guy state (B) with prob-
ability ¢(B). From state G, the person can transit to the attack state
(A) with probability ¢(A|G); from state B, the person can transit to
the attack state with probability ¢(A|B). Likewise, from state G, the
person can transit to the withdraw state (W) with probability
¢(W|G); from state B, the person can transit to the withdraw state
with probability ¢(W|B). Then, the probability to categorize a face
as a good guy and decide to attack on C-D trials equals the product
of the transition probabilities, ¢(G)- ¢(A|G); the probability to
categorize a face as a bad guy and decide to attack on C-D trials
equals the product of the transition probabilities, ¢(B) - ¢(A|B).
The probability of the attack decision on D-alone trials equals
the probability of reaching a final state A by two different
paths, which equals the sum of the path probabilities:

¢(A) = ¢(G) - p(A|G) + ¢(B) - ¢(A|B). The latter shows that the Mar-
kov model is consistent with the law of total probability, and thus
cannot account for the observed interference effect. Furthermore,
according to the Markov model, ¢(A|B) should be the same for both
types of faces, g and b, which is contrary to the empirical findings
(see Table 1). Later in the paper, we will evaluate a more general
version of the Markov model that allows ¢(A|B) to change across
face types. However, as proved in Appendix A, as long as we
assume that the model parameters do not change across C-D and
D-alone trials, then all Markov models for this task must satisfy
the law of total probability and fail to predict interference effects.

2.2.4. Signal detection model

The multi-dimensional signal detection model (e.g., Ashby &
Townsend, 1986) is a generalization of the optimal model. The cen-
tral idea of the signal detection model is that both the categoriza-
tion and the decision depend only on the face itself. Faces are
represented as points in a multi-dimensional face space Q. For
the categorization task, the face space is divided into two mutually
exclusive and exhaustive category regions, R for the good guy cat-
egory and Ry for the bad guy category (RcNRs = @,Rc URs = Q).
When a particular face f is sampled on a trial, the categorization
is determined by whether it falls into the R¢ or R region. Likewise,
for the decision task, the face space is divided into two mutually
exclusive and exhaustive decision regions, R4 for the attack deci-
sion and Ry for the withdraw decision. When a particular face f
is sampled on a trial, the decision is determined by whether it falls
into the R4 or Ry region. A combination of category and action on a
C-D trial is determined by the intersection of regions. For example,
if f € Rg N R4, then the person categorizes the face as bad and deci-
des to attack. Unlike in the Markov model, in the signal detection
model, the probability of taking an action, conditioned on the cat-
egorization, still depends on the type of face. That is, p(A|B) for type
b faces does not equal p(A|B) for type g faces. However, the total
probability of the action decision does not depend on whether or
not the person made a categorization because p(f € R4) is predicted
to be the same for both the D-alone condition and the C-D condi-
tion: For a given type of face, p(A) =p(f € Ra) =p(f € (RaNR¢)
Uf € (RaNRg)) =p(f €Re) - p(f € Ralf € Re) +p(f € Re) - p(f € Rulf €
Rg) = pr(A). Therefore, this model cannot account for the observed
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interference effect either. Note that this is a general prediction of
all signal detection models: It does not depend on the number of
dimensions of the space (e.g., one or two dimensions), it does not
depend on stimulus distribution assumptions (e.g., multivariate
normal), and it does not depend on assumptions about the form
of the boundaries (e.g., linear vs. quadratic). The above argument
assumes only that the decision region does not change across C-
D and D-alone types of trials. Later in this paper, we will consider
a more relaxed version of the signal detection model that allows
the decision boundaries to change across C-D and D-alone tasks.

2.2.5. Quantum model

Pothos and Busemeyer (2009) developed a quantum decision
model, called the belief-action entanglement (BAE) model, to
account for violations of the law of total probability obtained in a
different task, a prisoner’s dilemma decision task. Based on this
model, Busemeyer et al. (2009) predicted and found an interfer-
ence effect using the categorization-decision task described earlier.
We briefly describe a simple version of the quantum model here,
and later in the article we present the more general version of
the model.”

The simplified quantum model is very similar to the simple
Markov model described above. When a face -type b or type g-
is presented, there is a potential to make either a good guy or a
bad guy category response. The potential to categorize the face
as a good guy is determined by an amplitude ¢(G), and if this
response is obtained, then it would produce a transition to state
G. The potential to categorize the face as a bad guy is determined
by an amplitude v/(B), and if that response is obtained, then it
would produce a transition to state B. If the person is in state G,
there is a potential to make the attack action (A) with amplitude
¥ (A|G); if the person is in state B, there is a potential to make the
attack action with amplitude (A|B). Thus, on C-D trials, the ampli-
tude for categorizing a face as good and then deciding to attack
equals the product of the transition amplitudes, y/(G) - ¥(A|G). The
amplitude for categorizing a face as bad and then deciding to
attack equals the product of the transition amplitudes,
V(B) - y(A|B). On D-alone trials, the potential to make the attack
decision equals the amplitude of reaching a final state A by two dif-
ferent paths, which equals the sum of the path amplitudes:
V(A) = ¥(G) - y(A|G) + ¥(B) - ¥(AB). This all seems very similar to
the Markov model but described by amplitudes instead of proba-
bilities based on quantum theory.

In quantum theory, probabilities are obtained by squaring the
magnitudes of the amplitudes. Thus, on C-D trials, the probability
to categorize a face as good and then attack equals
[¥(G) - y(A|G)|?, and the probability to categorize it as bad and then
attack equals |y(B) - y(A|B)|*; the total probability to attack equals
[¥(G) - w(A|G)|* + |y(B) - w(AB)|>. In comparison, on D-alone trials,
the probability to attack equals |y(G)-y(A|G) + y(B) - y(A|B)[%,
which equals the total probability from C-D trials plus a cross-
product term called the interference term, which can be positive,
negative, or zero. Therefore, the quantum model predicts that
interference effects can occur. However, this simple version does
not explain why the interference effect occurs only with type b
faces but not type g faces. Furthermore, like the Markov model, this
simple version of a quantum model predicts that (A|B) should be
the same for both types of faces. Later, we present a more general
model that allows /(A|B) to change across face types, and this more

2 Here we only provide a brief description of the quantum model. The last two rows
of Table 1 were computed using a more general quantum model. In Section 7, we
describe the difference in psychological assumptions between the quantum and
Markov models.

general model can also account for the interaction of interference
with types of faces.

3. Experiment 1

The Busemeyer et al. (2009) experiment was based on a rela-
tively small number (N = 26) of participants who completed a large
number of training trials (six training blocks plus two transfer
phase blocks, with 34 trials per block). In Experiment 1, we repli-
cated and extended these initial results with variations on the orig-
inal paradigm, which now used briefer training, and examined the
robustness of the results. The large sample size also allowed us to
examine the distribution of interference effects and the correlation
between interference effects obtained with each type of face.

One way to account for the findings based on the signal detec-
tion model is to assume that the decision boundaries are con-
tracted for C-D trials as compared to D-alone trials, which would
produce a positive interference effect. The problem with this
account is that it predicts a positive interference effect for both
types of faces, but we find the effect only for type b faces and
not for type g faces. So, this does not provide a very coherent
account of the effects. Nevertheless, we can also test this hypothe-
sis by examining the correlation between interference effects. If it
is assumed that participants contract the “attack” boundary fol-
lowing a categorization on C-D trials, then we should find a posi-
tive correlation for interference effects between b and g faces
across a large sample of participants.

3.1. Method

3.1.1. Participants

The participants were 169 undergraduate students recruited
from a U.S. Midwest university for course extra credit. Of the
participants, 58.58% were female; 87.57% were Caucasian, 5.33%
were African American, 4.73% were Asian, and the rest identified
themselves as “mixed” or “other.” The average age was 20.56
(SD =1.02).

3.1.2. Face stimuli

The set of face stimuli created by Busemeyer et al. (2009) was
used. It included 34 head-shots of Caucasian men with a neutral
facial expression. The stimuli were digitally altered to manipulate
two salient cues: the shape of the face and the thickness of the lips.
Half of the faces were narrow with thick lips, and the other half
were round with thin lips. As shown by the examples in Fig. 1,
the different types of faces were easy to discriminate. The facial
cues were probabilistically related to the good versus bad guy cat-
egory, which was fully disclosed to participants using the cover
story described below. Specifically, the round faces with thin lips
had a 60% chance to be assigned to the “Adok” (good guy) category
and 40% to the “Lork” (bad guy) category; the narrow faces with
thick lips had a 40% chance and a 60% chance, respectively. Then,
the good guys had a 70% chance to be rewarded for a withdraw
action and 30% for an attack action; the bad guys had a 30% chance
and a 70% chance, respectively. For example, of the 17 round face
stimuli in each block, a randomly selected 60% were assigned to
the Adok (good guy) category, and of those Adok faces in each
block, a randomly selected 70% were assigned to be friendly (i.e.,
to reward for a withdraw response).

3.1.3. Experimental procedure

Experiment 1 was similar to Busemeyer et al. (2009) except that
we shortened the number of training blocks to enable a larger
sample size of participants. (Few learning effects occurred because
the explicit cover story instructions provided sufficient task
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information.) In addition, the experiment consisted of two condi-
tions, and the association between the face features and the types
of faces was manipulated as a between-subjects factor in one of the
conditions. For all blocks, the faces presented within each block
were randomized across trials for each participant.

In the first condition, 61 participants completed three blocks of
trials during a single session. Blocks 1 and 2 each included 34 C-D
trials. Blocks 3 included 34 C-alone trials and 34 D-alone trials. Dif-
ferent from Busemeyer et al. (2009) in which the C-alone and D-
alone trials were mixed together, this condition presented one
block of C-alone trials, and another block of D-alone trials, with
the order of blocks randomized across participants. The second
block of the C-D trials is compared with the transfer phase (Block
3) in the report below.

In the second condition, 108 different participants completed
three blocks of trials during a single session as well. This condition
closely replicated the first condition, but added two changes. First,
the C-alone and D-alone trials during Block 3 were mixed together
and randomized. Second, we counterbalanced the assignment of
face features (narrow, wide) and types (good, bad). Participants
were randomly assigned to one of the associations between face
features and types of faces: (1) the narrow faces with thick lips
were more likely to be bad guys (the type b faces) or (2) they were
more likely to be good guys (the type g faces).

Participants completed the experiment in groups of 2-10 using
individual desktop computers. The task scenario was set up using
the instructions and cover story employed by Townsend et al.
(2000) and Busemeyer et al. (2009). At the beginning of the exper-
iments, for the condition in which the narrow faces were assigned
to be the type b faces, participants were told a story like the follow-
ing: “You have been chosen by NASA to travel to the planet Meboo
to find out more about two colonies, the Adoks and the Lorks. As
you interact with the two colonies, you will be first asked to cate-
gorize each face as either an ‘Adok’ or a ‘Lork.” The Adoks tend to
have round faces and thin lips, and the Lorks tend to have narrow
faces with thick lips. But, this is not absolute! As in any culture,
there is cross-over. A face with the features of an Adok may actu-
ally be a Lork, and a face with the features of a Lork may actually be
an Adok. You have up to 10 s to view each face (you may answer
before the 10s are up). You should press the key ‘1’ (labeled
‘A/F’) for an ‘Adok’ or ‘2’ (labeled ‘L/D’) for a ‘Lork’. Then, you have
a choice to make: you can be friendly or defensive to the face.
Adoks have the tendency to be friendly while Lorks tend to be
hostile. This is not absolute! Since you do not know how the indi-
vidual will act towards you, make your decision carefully. You
should press the key ‘1’ (labeled as ‘A/F’) for Friendly or ‘2’ (labeled
as ‘L/D’) for Defensive. Again, you have up to 10s to make the
decision. You will be given feedback for your categorization and
action decision after each face. Then, click the space bar (labeled
“continue”) to continue to the next face.” For the condition in
which the narrow faces were assigned to be the type g faces, the
above cover story was modified to reflect the manipulation.

After reading the cover story, the participant viewed a series of
faces on the computer. During each C-D trial, after a face stimulus
was presented for 10 s, the participant was asked to categorize the
face as Adok or Lork. Upon the categorization response, the partic-
ipant was asked to select an action decision: to attack or to with-
draw. Then, upon the decision response, feedback on both the
categorization and decision was presented on the same screen
for 3 s. For an Adok categorization response, if the face was pre-
assigned as an Adok, the feedback would be “Yes! It was an Adok.”
If the face was pre-assigned as a Lork, it would be “No! It was not
an Adok, but a Lork.” For a Lork response, the feedback followed the
same logic and format. For a withdraw response, if the Adok was
pre-assigned to be friendly, the feedback would be “Yes! You are
friendly to a friendly Adok. The Adok handed you $20.” If it was

pre-assigned to be hostile, the feedback would say: “No! You were
friendly to a hostile Adok. You were mugged.” In similar ways,
feedback was given to other response combinations. To facilitate
the processing of the feedback information, pictures illustrating
the action decision consequences (i.e., 20 dollars, a person being
mugged) were presented on the feedback screen. For both the cat-
egorization and decision questions, the participant had up to 10 s
to make a response using the assigned keys on the keyboard. If
the participant failed to click either of the assigned keys within
10 s, a window popped up saying that “The time limit for this ques-
tion has passed.” Missing data were recorded. For each trial, after
the feedback was presented at the end, the computer asked, “Are
you ready for the next trial?” To proceed, the participants needed
to click a “continue” key marked on the keyboard. This allowed
the participants to pace themselves through trials to reduce possi-
ble fatigue effects.

The D-alone trials followed similar procedures. The only differ-
ences were that the participant was asked to make the action deci-
sion immediately after viewing the face; accordingly, feedback was
given only on the decision, and the feedback lasted only 2 s. In
Experiment 1, we also included C-alone trials, during which the
participant was asked to make a categorization immediately after
viewing the face; accordingly, feedback was given only on the cat-
egorization, and the feedback lasted only 2 s.

The pairing of narrow faces with the “bad” guy category pro-
duced a slightly larger interference effect; also, randomizing the
C-alone and D-alone trials during the transfer test produced a
slightly larger interference effect than the blocked procedure.
However, these effects were small, and the pattern of interference
effects was the same; therefore, we pooled the data across these
conditions for presentation of the results.

3.2. Results

The estimated choice probabilities (i.e., sample proportions)
were obtained for each participant and each type of face from
the last block of C-D trials and from the transfer tests (D-alone tri-
als, C-alone trials). Each estimate of a marginal probability is based
on 17 choice trials per participant and each type of face: p(G) and
p(B) denote the proportions for categorizing a face as good and bad,
respectively, on C-D trials; p;(A) is the total proportion of attack
choices across all C-D trials (combining the proportions through
the two category selection paths); and p(A) is the proportion of
attack choices on D-alone trials. The difference p(A) — p;(A), com-
puted for each person, defines the observed interference effect.
Using the C-D trials, we also computed estimates of the conditional
probabilities: p(A|G) is the proportion choosing to attack given the
face was categorized as good on C-D trials, and p(A|B) is the propor-
tion choosing to attack given the face was categorized as bad on C-
D tests. We also obtained proportions for categorizing a face as
good on transfer tests under a C-alone condition, which is denoted
as p'(G).

Some participants, whom we call “optimizers,” always chose
the “optimal” category for a particularly type of face on C-D trials:
43 did so for the narrow faces and 31 did so for the wide faces
(approximately 25% and 18%, respectively, of the 169 participants).
These participants obey the law of total probability for either type
of face for trivial reasons, and for these participants, we cannot
estimate the conditional probabilities for non-chosen categories
and thus cannot really estimate the total probability for an action
decision.

The second two rows of Table 1 shows the averages across non-
optimizers for each type of face. As shown in the table, for the type
b faces, a positive interference effect occurred (see the last column,
labeled Int). However, for the type g faces, there was only a very
small positive interference effect. It is also interesting that there
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was no difference in the categorization results for C-D trials as
compared to C-only trials, p(G) ~ p'(G).

A statistical test was performed, separately for each type of face,
using the interference effect obtained from each participant as the
dependent variable. The statistical tests were computed using all
169 participants. The mean interference effect for the type
b faces was statistically significant from zero (t(168) = 2.24,
SE = .015,p = .027), but it was not significant for the g faces
(t(168) = .61,SE = .013,p = .54).

There were strong correlations between p(G) and p'(G)
(r=.52,p <.0001 for type b faces, r = .65,p < .0001 for type g
faces). The correlations between p(A) and p;(A) were not as strong
(r=.46,p < .0001 for type b faces, r=.51,p < .0001 for type g
faces). There was a very small negative correlation between the
interference effects produced by the two different types of faces
(r=—.16,p = .04). In addition, p(A|B) differed between the two
types of faces.

There were large individual differences in the interference
effects. Across all participants, the standard deviation of the inter-
ference effect equaled .19 and .17 for the b and g types of faces,
respectively. We computed the chi-square test statistic for the dif-
ference, p(A) — pr(A), between two sample proportions for each
participant. This allows us to examine the size of the interference
effect, regardless of its sign. If the null hypothesis of “no interfer-
ence effect” is correct for each participant, then these chi-squares
statistics should be distributed according to a central chi-squared
distribution with degrees of freedom equal to one (assuming statis-
tical independence of the observations). However, as can be seen in
Table 2, the frequency of large chi-squares is higher than predicted,
and so the goodness of fit test between the observed and predicted
distributions rejects the null hypothesis for both types of faces
(x%(4) = 15.83,p < .005 for type b faces, y?(4) = 33.85,p < .0005
for type g faces). These results indicate that even though the mean
of interference effects across participants (which would cancel each
other out if the effects were in different directions) is not different
from zero for the type g faces, still the size of the observed interfer-
ence effects among participants is larger than expected under the
null hypothesis.

3.3. Discussion

For Experiment 1, we changed some of the procedures used by
Busemeyer et al. (2009). We reduced the number of training
blocks, counterbalanced the association between face features
and types, and compared blocking versus randomly mixing
C-alone and D-alone trials during the transfer phase. The new
procedures allowed us to test the robustness of the observed inter-
ference effects using a larger sample of participants. The basic find-
ings were sufficiently robust to be replicated with these procedural
variations.

Experiment 1 replicated the positive mean interference effect
found with the type b faces; we also replicated the lack of observed
mean interference effect for the type g faces. However, the interfer-
ence effect observed for the type b faces was smaller in Experiment
1 as compared to the original study. It is possible that the reduced
training used in Experiment 1 weakened the effect. Experiment 1
also replicated the finding that the probability of attacking given
the face was categorized as bad increased for b faces as compared
to g faces. Furthermore, we found a very small but significant
negative correlation between the interference effects between g
and b faces.

We also discovered that for the type g faces, although the mean
interference effect was not statistically different from zero, the
sizes (disregarding sign) of these interference effects were larger

Table 2

Predicted and observed frequencies of chi-square values within each quantile bin.
Quantile Predicted Obs - type b Obs - type g
.25 42.25 25 20
.50 42.25 45 46
.75 42.25 58 54
.90 25.35 20 16
1.0 16.9 21 33

than predicted if one assumed that there were no systematic inter-
ference effects for each person.

Recall that the Markov model predicts that the probability of
taking an action depends only on the category and not on the face.
The results from Experiment 1 are clearly inconsistent with this
property, as p(A|B) differed between the two types of faces. Fur-
thermore, the Markov model satisfies the law of total probability,
which is inconsistent with the positive interference effect obtained
with the type b faces. One could argue that the task of categorizing
a face generates more attention to the categorization task and
changes the probability of categorization between C-D and D-
alone trials. However, this would produce an effect in the wrong
direction - an increase of attention would increase the probability
of a correct categorization for the C-D trials, which would increase
the total probability to attack with respect to the D-alone trials.

The signal detection model also has difficulty accounting for the
interference effects observed in Experiment 1. If the decision
boundaries are the same for C-D and D-alone trials, then no inter-
ference is predicted, which is inconsistent with the results for the
type b faces. If the bounds change so that a category response con-
tracts the attack boundary, then we should have obtained a posi-
tive mean interference effect for both the type b and type g faces,
but we did not observe it for type g faces. Furthermore, there
should be a positive correlation across participants between the
two interference effects, but the data showed a small negative
effect instead.

Like the Markov model, the quantum model predicts that the
probability of taking an action should depend only on the category
and not the type of face, which is inconsistent with the results of
Experiment 1. Unlike the Markov model, the quantum model can
account for the interference effect, but the simple quantum model
as described so far has difficulty accounting for the difference in
interference effects for the two types of faces. When examining
the means across participants, the interference appeared only with
type b faces.

4. Experiment 2

In Experiment 1, on the C-D trials, the category response made
by the person provided no new information regarding the
probability of being rewarded for an action beyond what was
already known from the face stimulus. For example, the probability
of a reward for attacking given that a type b face was present was
.54, and this did not change depending on whether the
person categorized this face as good or bad, that is,
p(reward A|b, B) = p(reward A|b) = .54. Therefore, the person did
not learn anything new from his or her categorization about the
best action to earn a reward. However, if in an experiment, the
participant is actually told the category assignment of a face,
then this would provide new information about the reward pro-
duced by each action. For example, the probability of a reward
for attacking given the face is assigned to be a Lork (the bad guy)
equals .70.

The empirical findings revealed in Experiment 1 suggest that
participants treated their categorization response as new informa-
tion - it was as if they were told the actual category assignment. To
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test this idea, Experiment 2 introduced new transfer test trials,
called X-D trials, in which the participant was not asked to make
any categorization response and instead, the computer program
identified the category of a face before requesting an action deci-
sion. This new type of transfer test trial provides a comparison of
the action probabilities conditioned on the category between C-D
trials and X-D trials. If participants treat their own categorization
responses as if they were told the category assignment, then we
should obtain no differences between the conditional probabilities
from X-D versus C-D trials.

Also importantly, we can compare the interference effect pro-
duced by X-D and C-D types of trials, for which the Markov, signal
detection, and quantum models generate different predictions. The
X-D trials are similar to the D-alone trials with respect to the fact
that participants were required only to make a single action deci-
sion in both cases. No categorization response was required from
the participant on X-D trials. The interference effect for X-D trials
is defined as the difference between the probability to attack on
D-alone trials and the total probability to attack on X-D trials, with
the latter estimated by disregarding the category assignment and
computing the proportion of attack choices pooled across all X-D
trials.

According to the Markov model, the probability of transiting to
an attack action from a category state (e.g., B — A) only depends on
the category state (e.g., B). On C-D trials, the categorization
response identifies the categorization state of a person; on X-D tri-
als, the category assignment determines the categorization state of
a person. Therefore, the probabilities of actions, conditioned on
categories (e.g., p(A|B) and p(A|G)) obtained on X-D trials should
be equal to those obtained on C-D trials.

Although the Markov model does not predict interference
effects for the comparison of C-D with D-alone trials, it does pre-
dict an interference effect for the comparison of X-D with D-
alone trials. This is because the total probability to attack on the
X-D trials is based on the probability that the experimenter assigns
a face to a category, whereas the probability to attack on D-alone
trials is presumably based on the participant’s probability of cate-
gorizing a face.

According to a signal detection model, the probability of an attack
action depends only on whether or not the face is located within the
attack region, that is, f € Ry, of the face space. Define Cy as the event
that a faceis assigned on X-D trials to the bad category, and define C¢
as the event that a face is assigned on X-D trials to the good category.
The probability of an attack decision conditioned on a bad category
assignment equals p(A|Cs) = p(f € Ra|Cs), and likewise, the proba-
bility conditioned on the good category assignment equals
P(A|Cs) = p(f € Ra|Cg). Together, these assumptions imply that
p(A) =p(f € R)=p((Cc N (f € Ra)) U (Ce N (f € Ra)))=p(Cc) - p(f € Ra|Co)
+p(Cp) - p(f € Ra|Cg) = pr(A). Therefore, the signal detection model
predicts no interference when comparing D-alone to X-D trials.

Like the Markov model, the quantum model predicts that the
probabilities of actions, conditioned on the category, obtained on
X-D trials should be equal to those obtained on C-D trials. Also,
for the same reason as the Markov model, the quantum model
predicts interference effects for X-D trials. However, unlike the
Markov model, the quantum model also predicts interference
effects for C-D trials, as described earlier.

4.1. Method

4.1.1. Participants

The participants were 286 undergraduate students recruited
from the same U.S. Midwest university for course extra credit. Of
them, 59.44% were female; 80.07% were Caucasian, 7.34% were Afri-

can American, 6.64% were Asian, and the rest identified themselves
as “mixed” or “other.” The average age was 20.46 (SD = 3.05).

4.1.2. Face stimuli

The face stimuli were the same as those used in Experiment 1
except for the following change. In Experiment 1, the association
between face features and face types was a fixed percentage within
each block. For example, of the 17 round face stimuli in each block,
a randomly selected 60% were assigned to the Adok (the good guy)
category, and of those Adok faces in each block, a randomly
selected 70% were assigned to be friendly. Differently, Experiment
2 assigned the categorization and decision feedback probabilisti-
cally on each trial. For example, each round face stimulus had a
.60 probability to be assigned to the Adok category, and each Adok
face had a. 70 probability to be assigned to be friendly. Therefore,
the correct category for a face stimulus could change across the
blocks because of the probabilistic nature of the assignment.

4.1.3. Experimental procedure

The experimental procedure was the same as that of the second
condition of Experiment 2 except for the following changes. A new
type of transfer test trial, called the X-D trial, was added. On X-D
trials, a face was shown, but no categorization response was
requested. Instead, the computer disclosed the categorization
assignment before the action decision question was prompted.
Each participant completed four blocks of trials. Block 1 presented
34 C-D trials, and Block 2 comprised a mix of 34 X-D trials and 34
D-alone trials. After a 5-min break, Block 3 presented another 34 C-
D trials, and Block 4 tested another mix of 34 X-D trials and 34 D-
alone trials. As in previous studies, faces were randomized across
trials within a block. In addition, to add time pressure, the time
limit for answering categorization and decision questions was
reduced from 10 s in Experiment 1 to 5 s in Experiment 2. For anal-
ysis, data from Blocks 3 and 4 were compared in the report below,
treating Blocks 1 and 2 as training and practice trials. (Similar
results are obtained if we compare Blocks 1 and 3 pooled together
with Blocks 2 and 4 pooled together.)

4.2. Results

The estimated choice probabilities (i.e., sample proportions)
were obtained for each participant and type of face from Blocks 3
and 4. Table 3 contains the results from Experiment 2. The rows
labeled “Obs” present the observed findings, and the other rows
present model predictions discussed later. Approximately 15% of
the 286 participants were optimizers. Note that the probability
to attack conditioned on the bad guy category, p(A|B), increased
on X-D trials compared to C-D trials. Also note that both C-D
and X-D trials produced approximately the same positive interfer-
ence effects for the type b faces, but they produced different

Table 3
Observed proportions and predicted probabilities from the Markov BA model and the
quantum BAE model for Experiment 2.

Cond C-D X-D D Int Int

p(G) p(AlIG) p(AB) p(AIG) p(AB) p@A) CD X-D
Obs 70% b 24 .37 .61 .40 .69 60 .04 .03
M 70%,b .23 .39 .66 39 .66 59 .00 .05
Q 70%,b .21 33 .68 41 71 .63 .03 .04
Obs 70% g .78 33 .53 .28 .58 37 .00 -.03
M 70%,g .77 31 .56 31 .56 37 .00 -.04
Q 70%,¢g .79 .33 .67 32 .68 40 .00 -.06

Note: Obs = observed, M = the Markov BA model, and Q = the quantum BAE model.
The last two columns show the interference effects computed from C-D and X-D
types of trials.
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interference effects for the type g faces: There was no interference
effect on the C-D trials but a negative interference effect on the X-D
trials.

A t-test was performed separately for each face type, using the
interference effect obtained from each participant as the
dependent variable. When examining the mean interference effect
across all participants (including optimizers), the effect for the
type b faces was significant in the positive direction on both the
C-D trials, t(285) =3.32,SE = .011,p = .001, and the X-D trials,
t(285) = 4.33,SE = .010, p < .0005. The effect for the type g faces
was not significant on the C-D trials, but was significant in the
negative direction on the X-D trials, t(285)= —3.36,
SE =.010,p = .001. >

To summarize the interference effects from the C-D versus
D-alone comparison, we computed summary statistics using all
455 participants from Experiments 1 and 2. The mean interference
effect was .035 (SD =.19) for the type b faces, and it was .008
(SD = .17) for the type g faces. The 95% confidence interval of the
mean interference effect ranged from .018 to .053 for the type b
faces and ranged from —.008 to .023 for the type g faces. There
was a moderately strong correlation between the estimates of
p(D|f) and p;(D|f), and it was higher for the g faces than for
the b faces (r =.52,p < .0001 for the b faces; r =.58,p < .0001
for the g faces). The correlation of the interference effects between
b and g faces was slightly negative (r = —.10,p = .0275).

4.3. Discussion

Experiment 2 introduced a new type of categorization-decision
trial, the X-D trial. Unlike the C-D trials that asked the person to
categorize each face, the X-D trials simply informed the participant
about the category assignment of a face. The participant only had
to make a decision, as on the D-alone trial. This provides
comparisons of both C-D and X-D trials with D-alone trials when
presented with type g and type b type of faces.

For the C-D trials, Experiment 2 replicated what was found in
previous experiments: the positive interference effect obtained
with the type b faces and the lack of interference effect for the type
g faces. Also replicating Experiment 1, the probability to attack
after categorizing the face as bad increased for the type b faces
as compared to the type g faces (.61 vs. .53).

For the X-D trials, a new positive interference effect was
obtained for the type b faces, but also a negative interference effect
was found for the type g faces. Another interesting finding
concerns the probability to attack conditioned on a bad guy
categorization: This probability increased for the type b faces as
compared to the type g faces (.69 vs. .58), as in the C-D trials.
However, comparing the C-D and X-D trials, the probability to
attack given that the face was categorized as bad was higher for
X-D as compared to C-D trials. Note that the total probability to
attack remained about the same for C-D and X-D trials.

Both the Markov and quantum models predict that the
probability of an action, conditioned on the category, should be
the same across both types of faces as well as across both C-D
and X-D trials. However, the results indicate that the probability
to attack conditioned on the bad guy category changed across face
types (b vs. g) as well as trial types (C-D vs. X-D), ranging from .53
for type g faces during C-D trials to .69 for type b faces during X-D
trials.

Both the Markov and quantum models predict interference
effects for the X-D trials, which were observed. However, only

3 Robert Nosofsky replicated Experiment 2 using 18 participants from Indiana
University who received six blocks of training and two transfer blocks. For the type b
faces, he found an interference effects equal to .11 and .04 for the C-D and X-D trials,
respectively; for the type g faces, he found zero interference effects.

the quantum model predicts interference effects for the C-D
trials, which were observed for the type b faces (but not the type
g faces).

The signal detection model implies no interference effects on X-
D trials, but contrary to this prediction, positive interference
occurred for type b faces and negative interference occurred for
type g faces. To make the signal detection model account for the
interference effects on X-D trials, we need to assume that the
bound for attacking contracts for the bad category assignment
and it expands for the good category assignment. This arbitrary
change in bounds does not logically follow from signal detection
theory because the category assignment provides restrictions on
the sampling of faces in the multi-dimensional space - for exam-
ple, the category assignment to a bad face should change the prior
probability p(f € R4) to a posterior probability p(f € Ra|Cp) rather
than changing Ry itself. However, as we proved earlier, the latter
assumption leads to the prediction of no interference.

5. Experiment 3

To further differentiate the competing models, in particular to
differentiate them based on quantitative model comparisons,
Experiment 3 included a new manipulation of the probability of
the reward conditioned on the category. In Experiments 1 and 2
as well as earlier experiments by Townsend et al. (2000) and by
Busemeyer et al. (2009), the probability of reward for attacking a
face that was assigned to the bad guy category was .70, and like-
wise the probability of reward for withdrawing from a face that
was assigned to the good guy category was also .70. Experiment
3 included two new conditions that varied the probability of
reward: One condition used a lower .60 probability, and the other
used a higher .80 probability. This manipulation was expected to
change the certainty or uncertainty for action decisions, and
change the action probabilities conditioned on the category. It pro-
vides an examination of the interference effects at different reward
rates (i.e., uncertainty levels involved in the action decision).

5.1. Method

5.1.1. Participants

In total, 266 students from the same university participated in
the experiments for course extra credit. They were similar to those
in the preceding experiments. They were 20.12 years old on
average (SD = 1.12), and 58.65% were female.

5.1.2. Face stimuli

The face stimuli were the same as those used in Experiment 2.
The only difference from Experiment 2 was the reward rate for
action decisions described earlier: Instead of the .70 probability
of reward, .60 and .80 probabilities were used.

5.1.3. Experimental procedure

The experimental procedure was the same as that used in
Experiment 2 except that the reward rate was changed.
Participants were randomly assigned to one of the two reward
probability conditions: 129 were assigned to the .60 condition,
and 137 were assigned to the .80 condition.

5.2. Results

The estimated choice probabilities (i.e., sample proportions)
were obtained for each participant and face type from Blocks 3
and 4, as the first two blocks were training and practice. Table 4
presents the results from all participants. (Only approximately 5%
of the 266 participants were optimizers on the C-D trials for either
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type of face, whose data could not be included in Table 4 because
the marginal probability for the non-chosen category was zero,
which prevents calculating the conditional probabilities and the
total probability.)

The mean interference effects for the C-D versus D-alone com-
parison under the condition of the low reward rate of .60 equaled
.03 for the type b faces and .00 for the type g faces, and both of
these estimates lie within their respective confidence intervals
estimated from the first two experiments; however, the interfer-
ence effect from the high reward rate of .80 for the type b faces
was close to zero, which is outside the confidence interval for this
type of face from the first two experiments. The findings for the X-
D condition for both reward rates are similar to those found in
Experiment 2 - positive interference for the type b face and nega-
tive interference for the type g face.

A t-test was performed, separately for each face type, using the
interference effect obtained from each participant as the
dependent variable. The tests were computed using all partici-
pants. For the type b faces, the interference effect was significant
in the positive direction under the .60 reward rate condition for
both the C-D comparison (t(128) = 2.14,SE = .014, p = .034) and
the X-D comparison (t(128) =5.11,SE = .011, p < .0005); how-
ever, for the .80 reward rate, the effect was significant only for
the X-D condition (£(136) = 3.32,SE = .013,p = .001). For the type
g faces, the interference effect was significant in the negative
direction only for the X-D condition under the .80 reward rate
(t(136) = 4.74,SE = .014,p < .0005).

5.3. Discussion

Experiment 3 changed the reward rate for the appropriate
action from .70 that was used in previous experiments to .60 for
one group of participants and .80 for another. The .60 reward rate
fairly closely replicated the results obtained earlier using the .70
reward rate. Increasing the reward rate to .80 generally increased
the probability to attack for the bad guy category and decreased
the probability to attack for the good guy category. In other words,
participants' behavior became closer to optimal under the higher
reward rate (i.e.,, with less uncertainty involved in action deci-
sions). The increase in reward rate to .80 eliminated the positive
interference effect for the type b faces on the C-D trials, but it also
produced a negative interference effect for the type g faces during
the X-D trials.

The results of Experiment 3 make it increasingly difficult to
apply the signal detection model. If the bounds of the model
remain unchanged across C-D, X-D, and D-alone trials, then no
interference is predicted at all. If the bounds change for all of these
trial types, then they must change in different directions for differ-
ent trial types and for different reward rates. However, a rationale
for all of these changes is lacking, making it difficult to formulate a
coherent signal detection model that can be quantitatively fit to
these data. Perhaps this is possible, but at present we do not have
a clear way to build such a model. For example, although the stim-
uli varied according to face width and lip thickness, these two
dimensions were perfectly correlated, and so the stimuli essen-
tially varied according to one relevant dimension that we can
interpret as face width. The distribution of face widths within each
face type was unimodal and the two distributions were clearly sep-
arated, for example, with the good guy category faces positioned
on one extreme end of the face widths continuum (say, e.g., the
wide end of the face widths). Assume that there is a single cutoff
on the face width dimension for categorizing good versus bad,
and there is another single cutoff on this dimension for choosing
withdrawing versus attacking. If the criterion for attacking on the
face width dimension falls below the criterion for bad guy faces,
then p(A|G) = 0 because these two events are mutually exclusive

Table 4
Observed proportions and predicted probabilities from the Markov BA model and the
quantum BAE model for Experiment 3.

Cond C-D X-D D Int Int

p(G) p(AIG) p(AB) p(AlG) p(AB) pA) CD X-D
Obs 60%b .24 .33 .66 41 .67 62 .03 .06
M 60%, b .23 47 .55 .47 .55 53 .00 .01
Q 60%, b .21 32 .69 43 .68 63 .02 .05
Obs 60% g .77 34 .58 .30 .57 39 .00 -.02
M 60%, g .77 37 .46 37 46 39 .00 -.02
Q 60%,g .79 .32 .68 34 .66 40 .00 -.07
Obs 80% b .25 .26 75 .30 .81 .64 .00 .04
M 80%,b .23 31 77 31 77 .66 .00 .08
Q 80%, b .21 33 .68 .40 74 .63 .02 .03
Obs 80% g .77 .23 .69 .19 72 33 .01 -.07
M 80%, g .77 .26 .68 .26 .68 36 .00 -.07
Q 80%,¢g .79 .33 .67 .29 71 40 .00 -.06

Note: Obs = observed, M = the Markov BA model, and Q = the quantum BAE model.
The last two columns show the interference effects computed from C-D and X-D
types of trials.

under these assumptions; for the same reason, if the criterion for
bad guy faces falls below the criterion for attacking, then
p(W|B) = 0. However, we observed zero choice probabilities from
no individuals except for a small number of optimizers. Therefore,
we would have to assume a higher dimensional space and a more
complex set of boundaries, and then we would need to change
them all in some ad hoc manner across X-D, C-D, and D-alone trial
types and reward rates.

Both the Markov and quantum models predict interference for
the X-D condition, but only the quantum model can predict an
interference effect for the C-D condition. It is difficult to know
how this interference effect changes across the 60% and 80%
reward rates without generating quantitative predictions based
on parameter estimates. Although the Markov model fails to
account for the positive interference effect on C-D trials, the effect
is small and occurs only in one of the four conditions for C-D trials.
It is quite possible that even though the quantum model can pre-
dict the interference for the one C-D condition, it may not be able
at the same time to predict no interference in the other conditions,
and so it remains unclear whether the Markov or the quantum
model provides a better quantitative account of all the empirical
results. Therefore, in the next section, we present a more rigorous
quantitative comparison between generalized versions of the Mar-
kov and quantum models to determine which provides the better
account of these new results.

6. Quantitative model comparisons
6.1. Model assumptions

As noted earlier, the Markov and quantum models are similar in
many ways, but they also differ in some fundamental aspects. This
section presents two generalized versions of the Markov and quan-
tum models, side by side, in a parallel manner to clarify exactly
where these two models differ. Both models are designed to
describe how a person forms beliefs about a state of the world
and decides to take actions under different states of the world. In
other words, they both can be called belief-action (BA) models. A
unique aspect of the quantum model is that it incorporates a con-
cept of entanglement from quantum theory, and thus we call the
quantum model a belief-action entanglement (BAE) model. The
entanglement feature of the quantum model is discussed later.
To begin, both models use a representation that has four basis
states {GA, GW,BA,BW}, where, for example, GW symbolizes the
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combined event of categorizing the face as a good guy and deciding
to withdraw.

6.1.1. State representation

According to the Markov model, at each moment in time, the
cognitive system is located in precisely one basis state (e.g., the
basis state GW), but we (as theorists) cannot directly know another
person’s internal state, and hence assign a probability (e.g., ¢cw)
that the cognitive system is in a state. Therefore, the Markov model
assigns a probability to each basis state to produce a 4 x 1 proba-

bility distribution, ¢ = (¢ca, Pow, Psa, Pw). over the four basis
states, which sums to one. This probability distribution is called
a mixture state — the choice of a category and decision is deter-
mined by the person’s current basis state; choice uncertainty arises
from the theorist’s lack of knowledge about a person’s state.
According to the quantum model, at each moment in time, the
cognitive system has a potential, called an amplitude, assigned to
each basis state. The four belief and action potentials form a

4 x 1 superposition state v = (Yea, Vow Vs, Waw) - The superposi-
tion state has a very different conceptual meaning and interpreta-
tion in quantum theory: At each moment in time, the cognitive
system is not exactly located in any one of the four basis states.
In other words, the person is uncertain about his or her state and
cannot say he or she is precisely in any single basis state. Only at
the moment when a decision is required and the person selects a
basis state does the person become located in this selected basis
state.

Mathematically, the quantum superposition state iy also oper-
ates differently from the Markov mixed state ¢. For the Markov
model, the current basis state is used by the person to determine
an answer. Therefore, the probability that we as theorists assign
to states, ¢, directly determines the predicted probability of an
answer. For the quantum model, the relation is less direct. Based
on quantum theory, the answer that we observe from a person in
a superposition state is indeterminate, and the probability of an
answer equals the squared magnitude of an amplitude assigned
to that basis state. For example, |y, |* represents the probability
that the person categorizes the face as good and decides to with-
draw. The state vector y is assumed to be unit length, ||y|| =1,
so that the squared magnitudes of the four amplitudes sum to one.

6.1.2. Categorization process

Initially, after the presentation of a face but before any
categorization or decision has been made, the information about
the face is represented by an initial state. For the Markov model,
the initial state is denoted as ¢;. For a type b face, we set
$r=dp=3(1—-pc,1- Pe,PesPe)’, where p is the probability that
the person categorizes this type b face as a bad guy. Given this state,
the probability of categorizing the face as a bad guy
equals ¢g, + ¢y = pc- Similarly, for a type g face, we set
¢r = dg =3 (c:Pcs1 —pc,1— pc)’, in which case the probability of
categorizing the face as a good guy equals ¢¢, + dew = De-
Note that according to the Markov model, after a face is
presented, the person either thinks the face is good or thinks it is
bad, but we as theorists do not know exactly which internal
cognitive state of the person is present, and so we assign these
initial probabilities to the cognitive states that the person may be in.

For the quantum model, the initial state is denoted y;. For a

T
type b face, we set i =y, =5 (/T pe.v/T— pe. Ve, vFo) -
where p. is the probability that the person categorizes this type
b face as a bad guy. Given this state, the probability of categorizing

the face as a bad guy equals |yp|* + [Vpwl> = pc. Similarly, for a

type g face, we set y; =y, = 75 (/Pc, vPc, V1 = Pe /1 —Pc)Tv in

which case the probability of categorizing the face as a good guy
equals |ycal® + [Wowl?* = Pc- Note that at this moment, the category
of the face is unresolved, and so the person is not located in either
category, but instead remains superposed between the two, and
both have some potential to be expressed at that moment. On D-
alone trials, when no categorization information or response
occurs, the person remains in this initial state y, which is super-
posed with respect to the two categories. Only when we ask for a
category on a C-D trial or when we tell the category on an X-D trial
does the person resolve the uncertainty about the category. This
idea based on quantum theory captures the fuzzy, uncertain feel-
ings toward the face categories on the D-alone trials when there
is no categorization response required or there is no categorization
information provided.

On a C-D trial, the state is updated after the person categorizes
the face; likewise on an X-D trial, the state is updated after the per-
son is told the category.® If the person categorizes the face as a bad
guy, then the state is updated to be consistent with this categoriza-
tion response. For the Markov model, the mixed state is updated to
¢r — dp=1%(0,0,1, 1)" because we have recorded the person’s
current beliefs and we now know which category the person is
thinking about. For the quantum model, the superposition state is
updated to y; — = % (0,0,1,1)", so that the probability of catego-
rizing the face as a bad guy becomes 1.0 afterwards. Likewise, if the
person categorizes the face as a good guy, then it is updated to be
consistent with this categorization response. For the Markov model,
it is updated to ¢; — ¢ = 1(1,1,0,0)"; for the quantum model, it is
updated to Yy — Y = Mii(l, 1,0,0)". The updates for the X-D trials
are computed in the exact manner as those for the C-D trials.

6.1.3. Action evaluation process

At this point, if a categorization was made first, then the person
is in one of the states, ¢; or ¢, for the Markov model; the person is
in one of the states, y; or y, for the quantum model. If no catego-
rization was made first, then the person remains in the initial state:
¢y for the Markov model and y; for the quantum model. However,
no evaluation of actions has yet occurred, and the two actions are
initially equally likely. During the action evaluation stage, the pre-
viously unbiased state is transformed to favor one or the other
action. This transformation depends on the utilities of the payoffs
for each category and action. If the bad guy category is believed
to be present, then the state is transformed to some extent toward
the attack action; if the good guy category is believed to be present,
then the state is transformed to some extent toward the withdraw
action.

Technically, the transformation for the Markov model is com-
puted by using a 4 x 4 transition matrix T. The element T; in row
i and column j of T represents the probability of transiting to basis
state i from basis state j. The transformation for the quantum
model is computed by using a 4 x 4 unitary matrix, denoted U.
The element Uy in row i and column j of U represents the ampli-
tude for the transition to the basis state i from the basis state j;
the probability of this transition equals the squared magnitude of
the amplitude. (See Appendix B for mathematical details concern-
ing the construction of these matrices from utility parameters
described below.)

It is again helpful to compare the interpretations of the Markov
versus quantum model. According to the Markov model, the
person’s cognitive system moves from exactly one basis state to
another to produce a trajectory of basis states across time, and
the Markov process describes the probability that a person follows

4 This is related to the quantum “collapse” of the wave function that follows a
measurement.
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a particular trajectory. According to the quantum model, there is
not any single, particular trajectory of basis states across time,
and instead the superposed basis states themselves evolve across
time until a decision is made, upon which the person becomes
located in a specific basis state created by the decision.

6.1.4. Action selection process
Finally, for the Markov model, if ¢ is the mixed state before

evaluating the actions, then ¢ =T- ¢ = (dca, bew- Ppa Paw)’ 1S
the transformed state after evaluating the actions. According to
the Markov model, the person is always located in some particular
basis state; if the person is located in either state GA or BA imme-
diately before the time of decision, then at the time of decision the
person chooses to attack. Again, we (as theorists) are uncertain
about the state the person is located in, but we can assign proba-
bilities, ¢, that the person’s cognitive system is in each of the four
basis states at the time of decision. For example, our prediction for
the probability that a person decides to attack equals ¢4 + ¢ga-
For the quantum model, if  is the state before evaluating the

actions, then vy = U -y = (ea, ow, Waa, Waw)' is the transformed
state after evaluating the actions. According to the quantum model,
immediately before the time of decision, the person is in a super-
position state. At the time of decision, the person must resolve this
indeterminacy. If the person becomes resolved on either the GA or
the BA state, then the person chooses to attack. Therefore, using the
final evaluation state, y, the probability of deciding to attack
equals [Wga| + [Wpal-

In sum, if the face was first categorized as a good guy, then the
evaluation state ¢r =T - ¢ is used for the Markov model and
Yr = U -y is used for the quantum model to compute the action
probabilities; if the state was first categorized as a bad guy, then
the evaluation state ¢ =T - ¢ is used for the Markov model and
Yr = U -y is used for the quantum model to compute the action
probabilities; and if no categorization was made, then ¢ =T - ¢
is used for the Markov model and vz = U - y; is used for the quan-
tum model to compute the action probabilities.

6.2. Model parameters

6.2.1. Initial state

For both models, the initial state contains one parameter, p,
representing the probability of “correctly” (i.e., optimally) catego-
rizing a face, that is, categorizing a type b face as a bad guy and cat-
egorizing a type g face as a good guy. We assume that this
parameter is the same across both types of faces (and this assump-
tion is consistent with the average results in our experiments).

6.2.2. Utilities for actions

Recall that the transition and unitary matrices of the Markov
and quantum models, respectively, represent the evaluation of
payoffs for determining the probability of taking each action. First
of all, these evaluations depend on the category, because partici-
pants are more frequently rewarded for attacking faces categorized
as bad and they are more frequently rewarded for withdrawing
from faces categorized as good. Second, these evaluations depend
on the rate of reward, denoted here as R, which was 70% in Exper-
iments 1 and 2, and it varied between 60% and 80% in Experiment
3. Finally, we also need to assume that the utilities of actions
change for the different types of faces. As suggested by behavioral
research on prejudice and stereotyping (e.g., Allport, 1954; Devine,
1989; Dovidio, Hewstone, Glick, & Esses, 2010), humans’ reactions
to others are affected by stereotypes and bias. The association
between face features (e.g., face shapes) and face types (b vs. g)
manipulated in the experiments can be viewed as stereotypes
and bias. Participants may feel “right” and more justified

(i.e., positive utilities) when attacking a bad guy type of face as
compared to a good guy type of face, and they may feel it to be
“wrong” and less justified to withdraw from a bad guy type of face.
Likewise, they may feel “wrong” and less justified (i.e., negative
utilities) when attacking a good guy type of face as compared to
a bad guy type of face, and they may feel it is fairer to withdraw
from a good guy type of face. That is, the utilities of actions differ
between the two types of faces (b vs. g).

6.2.3. Markov transition matrix

The Markov BA model uses a separate 4 x 4 transition matrix T
for each type of face (b vs. g). For a given type of face, each transi-
tion matrix has two transition rates (o, ;) that apply for the good
guy categorization, and another two transition rates (o, fz) that
apply for the bad guy categorization. The transition rate o determi-
nes transitions from attack states to withdraw states, and g deter-
mines transitions from withdraw states to attack states. The
probability to choose attack is an increasing function of the ratio,
k=p/o

The reward rate R is the probability to reward withdraw actions
towards good guys. For good guys, it is included by multiplying o
by the probability of being rewarded for withdrawing (R) and by
multiplying 8 by the probability of being rewarded for attacking
(1—R). For the good guy category, this produces transition rates
(R-0g, (1 —R) - Bc), so that the probability to attack is an increasing

function of (1) - (“—G) = (L28) - k¢. Following the same idea, for the

%G
bad guy category, including the reward produces transition rates
((1 —=R) - ag,R- Bg), and in this case the probability to attack is an

increasing function of (&) - (%) :ﬁ-kg. Therefore, two rate

parameters — kg for the good guy category and kg for the bad guy
category - need to be estimated for each type of face.

In sum, the Markov BA model for both types of faces requires
fitting 4 parameters to the two transition matrices: (k¢,ks) for
the transition matrix applied to the type b face, and (kg,kg) for
the transition matrix applied to the type g face. All of these 4
parameters are necessary for the Markov model. Imposing con-
straints would force the model to fail to predict important qualita-
tive aspects of the data. Including the parameter p., there are 5
parameters in total. Appendix B describes the details for construct-
ing the transition matrices from these parameters.

6.2.4. Quantum unitary matrix

The quantum BAE model uses a separate 4 x 4 unitary matrix
for each type of face (b vs. g). For a given type of face, each unitary
matrix has one utility p. representing the (negative) utility for
attacking a face in the good guy category, and another utility p;
representing the (positive) utility for attacking a face in the bad
guy category. When the good guy category applies, the probability
to attack is an increasing function of u.; when the bad guy cate-
gories applies, the probability to attack is an increasing function
of pg. The reward rate is included by multiplying each utility
parameter (li¢, l4z) by the reward rate R to produce R p;,R - pip.

The quantum BAE model also introduces an important concept
in quantum theory, entanglement. The psychological function of
entanglement is to coordinate beliefs and actions. As suggested
by research on cognitive dissonance (e.g., Festinger, 1957) and
social projection (e.g., Busemeyer & Pothos, 2012; Krueger,
DiDonato, & Freestone, 2012), participants feel the need to be con-
sistent with their beliefs and actions. Entangling of beliefs with
actions can occur on either D-alone trials or C-D trials, because
the category remains unknown during the decision and beliefs
about the category can change. Entanglement cannot occur
on X-D trials, because the category is exposed before the decision,
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causing beliefs to remain fixed on the known category during the
decision.

An additional parameter 7 is used in the unitary matrix to coor-
dinate beliefs with actions to form the entangled state. Formally, an
entangled state is a superposition state in which the amplitude
assigned to each basis state for each combination of answers
(e.g., BA) cannot be decomposed into a product of individual ampli-
tudes for each answer (e.g., Y, 75 - 4). In the model, the entan-
glement process produces a state in which amplitudes associated
with consistent beliefs and actions, vy, /s, are enhanced, and
amplitudes associated with inconsistent beliefs and actions,
Ve, Wpw, are attenuated. The entanglement parameter is critical
for producing interference effects: If y = 0, then the BAE model
does not produce any interference effects; only when y is not zero,
can the BAE model produce interference effects.

To be fair, we could include this entanglement concept in the
Markov model. In fact, Busemeyer and Bruza (2012, p. 275), did
implement this idea in the Markov model. However, even when
the entanglement concept is included, the Markov model still pre-
dicts no interference (see Busemeyer and Bruza, p. 276). Moreover,
including a non-zero entanglement parameter only decreases the
fit of the Markov model.

Through an analysis of the BAE model, we found that the inter-
ference pattern differs for g versus b type faces because of the fol-
lowing interaction between the utility and entanglement
parameters. The size of the interference produced by y depends
on the degree of asymmetry in the utility parameters. In particular,
if the utilities are symmetric, that is, p; = —u;, then the interfer-
ence disappears. Interference requires asymmetric utilities,
Ue # — pg. If y >0 and py > —p, then the interference tends to
be positive. If y > 0 and —u. > pg, then the interference tends to
be negative. Changing the sign of y reverses these relations. In
other words, the BAE model generates positive interference when
the utilities are asymmetric and p; + i, has the same sign as the
entanglement ), and it produces negative interference when they
have opposite signs. According to the BAE model, different interfer-
ence effects for each face type are produced by the interaction
between the entanglement parameter and the utility parameters.
We constrained the quantum model to predict the basic pattern
of interference effects by requiring y > 0 and p; > — i for the type
b faces and u; = —pu, for the type g faces. Accordingly, our primary
hypothesis based on the quantum BAE model is that the change in
the interference effects across face types is attributed to changes in
the utilities for attacking and withdrawing from each type of face,
while the entanglement parameter remains the same across types
of faces.

In sum, the quantum BAE model for both types of faces entails 4
parameters for the two unitary matrices: one entanglement
parameter ), one utility parameter (i, t; = —i¢) for the type g
faces, and two utility parameters (i, ;) for the type b faces.
Including the parameter p., there are 5 parameters altogether.
Appendix B describes the details for constructing the unitary
matrices from these parameters.

6.3. Model predictions

6.3.1. Model predictions for Experiment 1

The Busemeyer et al. (2009) experiment as well as
Experiment 1 provide only 8 data points: 4 per face type,
[p(G), P(AIG), p(AB), p(A)]; note that p(B) = 1 — p(G) and p;(A) are
derived from the other probabilities. However, they still provide
a challenge for the competing models. Using 5 parameters, the
Markov model can accurately predict the 6 data points from
the C-D trials; nevertheless, it predicts no interference effect for
the type b face, which was observed in these experiments. Using

5 parameters, the quantum model also can produce accurate
predictions for these experiments. The last two rows of Table 1
present an example of the predictions computed from the
quantum BAE model using the constraints from our primary
hypothesis about the model parameters. In particular, we set
pc=.80, y=0.9120 for both types of faces; we used pu;
=-0.0864, p; =0.4205 for the type b face, and we used
Ue = —0.26, u; = 0.26 for the type g face. For both types of faces,
the utility parameter for the good guy category is negative (i.e.,
lowering the probability of attacking), and the utility parameter
for the bad guy category is positive (i.e., raising the probability of
attacking). The utility parameters are asymmetric for the b type
but symmetric for the g type. As can be seen in Table 1, the quan-
tum model reproduces the pattern of the observed average find-
ings for both types of faces in the experiments.

6.3.2. Model predictions for Experiment 2

Experiments 2 and 3 provide larger experimental designs and
more data points to quantitatively compare the Markov and quan-
tum models. Here using these experiments, we present the first
strong quantitative test of these models by using a generalization
criterion method (Busemeyer & Wang, 2000). A main advantage
of the generalization criterion method of model comparision is
its reliance on accurate a priori predictions of the models to new
conditions, or theoretical extrapoliations of the models to new con-
ditions (Busemeyer & Wang, 2000). More specifically in our case,
first we fit the parameters to the 12 data points from Experiment
2 (reward rate R = 70%), and then we used these same exact param-
eters in a generalization test to predict the 24 data points for two
new experimental conditions in Experiment 3 (reward rate
R =60%, 80%).

First, we evaluated the Markov and quantum models’ fits to the
results from Experiment 2. The first six columns of Table 3 contain
3 independent data points [p(G), p(A|G), p(A|B)] from the C-D trials,
2 independent data points [p(A|G), p(A|B)] from the X-D trials, and 1
independent data point [p(A)] from the D-alone trials, and so there
are 2 x 6 = 12 data points to fit for both types of faces. We evalu-
ated (1) the overall badness of fit of each model using a root mean
squared error criterion, RMSE = /SSE/N, where SSE equals the sum
of squared errors for each row and summed across rows, and N
refers to the number of data points; and (2) goodness of fit using
R?* = 1 — SSE/TSS, where TSS = the total sum of squared deviations
around the overall mean proportion.

For the Markov BA model, a total of 5 parameters were fit to the
12 data points in Table 3 using a least squares criterion (see Appen-
dix B for the parameter values). The minimum SSE fit index pro-
duced RMSE = .024 and R? = .99. The overall fit to most of the
data points is good, which is not surprising given the large number
of parameters. Nevertheless, the Markov model cannot produce the
positive interference effect for the type b face during the C-D trials
(see Table 3).

For the quantum BAE model, a total of 5 parameters were fit to
the 12 data points in Table 3 using a least squares criterion (see
Appendix B for the parameter values). The minimum fit index pro-

duced RMSE = .061 and R* = .97. The overall fit to the data points
is not as good as that of the Markov model. However, the quantum
BAE model has the benefit of accounting for the positive interfer-
ence effect for the type b faces and lack of interference for the type
g faces during the C-D trials (see Table 3).

5 If we freely fit all 5 parameters to all 36 data points from all three reward
conditions (60%, 70%, 80%) from Experiments 2 and 3, then both models fit
approximately equally well, producing R? = .98. The Markov model fits the choices
conditioned on each category better, while the quantum model fits the interference
effects better.
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In summary, both models were fit to the 12 data points using
the same number of parameters. Both models fit reasonably well,
but the Markov model produced an overall better fit than the quan-
tum model. Both models can account for the difference in probabil-
ity to attack conditioned on the categorization between the type b
and the g faces. Both models can account for the interference
effects obtained on X-D trials. Only the quantum BAE model
accounts for the positive interference effect for the type b faces
(and also the absence of interference effect for the type g faces)
during C-D trials.

6.3.3. Model predictions for Experiment 3

The data in Table 4 from Experiment 3 contains 24 free data
points to test the predictions of the models: 12 contributed by
the C-D trials, 8 contributed by the X-D trials, and 4 contributed
by the D-alone trials. For both models, we used exactly the same
parameters estimated from Experiment 2 (i.e., from the reward
rate R=.70 condition) to make a priori predictions for the two
new reward rate conditions (i.e., R=.60 and R = .80). Table 4 shows
the results of the predictions. The Markov model produced fairly
accurate predictions, with RMSE = .068 and R* = .97. The quantum
model now produced more accurate predictions, with RMSE =.058
and R? = .98. Both models managed to correctly predict the pattern
of interference effects produced by the X-D trials; however, only
the quantum model predicted the correct pattern of interference
effects for the C-D trials (with one exception being the interference
effect for the R =.80 condition).

Based on the model comparisons, we make the following
conclusions. The two models can fit a large data set of
categorization-decision results reasonably well. The quantum
BAE model has one unique advantage - that is, accounting for
the pattern of interference effects obtained on C-D trials. This
advantage of the quantum BAE model over the Markov BA model
does not entail any disadvantage in terms of overall accuracy of
model predictions.

7. General discussion
7.1. Summary of main empirical findings

This article investigated the relation between categorization
and decision making using a new experimental paradigm. Partici-
pants were first shown a face. Under a C-D condition, they were
asked to categorize it as either a good guy or bad guy and then
decide to attack or withdraw; under an X-D condition, they were
informed about the category first and then decided to attack or
withdraw; under a D-alone condition, they simply decided to
attack or withdraw. This paradigm allows an investigation of a
phenomenon that we call an interference effect based on quantum
theory, which is a type of violation of the important classical law of
total probability. An interference effect is defined as the difference
between (1) the total probability of deciding to take an action
pooled across categories for C-D or X-D trials, as compared to (2)
the probability of deciding to take the same action on D-alone
trials.

Previously, Busemeyer et al. (2009) revealed a surprising
finding regarding the interference of categorization on decision
making. When comparing C-D and D-alone trials, a positive inter-
ference effect occurred with a type of face that was most fre-
quently associated with the bad guy category (the type b faces),
but no interference occurred with a type of face associated with
the good guy category (the type g faces).

This article reports three new experiments that used (1) much
larger samples of participants, (2) new variations in procedures,
and (3) new experimental conditions to further explore this

phenomenon. First, we found that the original interference effect
obtained by comparing C-D with D-alone trials is robust across
wide variations in procedures and across a large sample of partic-
ipants (although we also found large individual differences in the
effect). Second, we discovered a new type of interference effect
produced by comparing X-D and D-alone trials: A positive interfer-
ence effect occurred with the type b faces, and a negative interfer-
ence effect occurred with the type g faces. Third, we discovered
that increasing the probability of rewarding the appropriate action
for a category decreases the positive interference effect obtained
with C-D trials, but at the same time it increases the negative inter-
ference effects obtained on X-D trials.®

7.2. Theoretical implications

The observed interference effects interacted with the types of
faces (b vs. g) and with the types of categorization-decision trials
(C-D vs. X-D). This pattern of results presents challenges to tradi-
tional cognitive models. The multi-dimensional signal detection
model (e.g., Ashby & Townsend, 1986) does not predict any inter-
ference effects at all for either C-D or X-D types of trials. Of course,
it may be possible to come up with alternative explanations after
these interference effects are known. In particular, to account for
the interference effects using the signal detection model, one could
make post hoc assumptions regarding changes in the decision
boundaries. However, these assumptions would have to differ
across types of faces and across types of categorization-decision
trials, which makes this theory intractable for developing a cogent
model to fit to these results. A Markov model, which was originally
proposed for this categorization-decision paradigm (Townsend
et al., 2000), cannot explain the pattern of the observed interfer-
ence effects either. Although the Markov model can account for
interference effects obtained on the X-D trials, it does not predict
any interference effects for the C-D trials. Recently, Busemeyer
et al. (2009) pointed out that a quantum model predicted a priori
that interference effects could occur using the categorization-
decision paradigm.

One could argue that although a quantum model can predict
interference effects, doing so may come at a cost of making inaccu-
rate predictions for other aspects of the data. Although the Markov
model cannot predict interference effects, it may provide more
accurate predictions for other aspects of the data. Therefore, for
the first time within the categorization-decision paradigm, we con-
ducted a rigorous quantitative comparison of the accuracy of Mar-
kov versus quantum models for fitting large experimental designs
involving factorial manipulations of reward rates, face features and
face types, and types of categorization-decision trials (Experiments
2 and 3) based on a generalization criterion method (Busemeyer &
Wang, 2000). We fit the parameters to the data from Experiment 2
and then used these same exact parameters to a priori predict data
from new experimental conditions in Experiment 3. The results of
the model comparison demonstrated that the advantage of the
quantum model to account for interference effects is not offset
by a loss in accuracy for predicting the other aspects of the data
as compared to the Markov model. Therefore, the quantum model
not only accounts for the interference effects that cannot be pre-
dicted by the Markov model, but also fits other aspects of the data
as well as the Markov model does. The quantum model predicts
better than the Markov model in the generalization test.

The quantum BAE model employs the quantum principles of
superposition and entanglement for explaining the psychological
mechanisms underlying the puzzling violation of the classical

5 Robert Nososfky (2013) independently replicated these results as well; see
Footnote 3.
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law of total probability produced by interference effects. Specifi-
cally, the BAE model includes four psychologically meaningful
parameters: (1) p,, representing the probability of categorizing a
type b face as bad (or a type g face as good); (2) one utility param-
eter (U, lty = —li¢) for the type g faces and two seperate utility
parameters (i, itz) for the type b faces, where for a given type
of face stimulus, u; represents the (negative) utility of attacking
a face that is categorized as good and p; represents the (positive)
utility of attacking a face that is categorized as bad; and (3) y, rep-
resenting an entanglement parameter that coordinates beliefs with
actions in a consistent manner. The parameters of the quantum
model help provide a psychologically meaningful interpretation
for why the interference effect occurs most strongly for the bad
guy type of face and virtually disappears for the good guy type of
face under certain conditions. Our primary hypothesis was that
the change in the interference effects across face types is attributa-
ble to changes in the utilities for attacking and withdrawing from
each type of face, even though the belief-action entanglement
parameter remains the same across both types of faces. Our mod-
eling results support this hypothesis.

7.3. Research on related paradigms

The categorization-decision task paradigm requires inferring a
category and then making an action decision. An important feature
of the categorization-decision task is the inclusion of consequences
that depend on both the correct category and action being selected
during the decision. Although the categorization-decision making
paradigm is a new research topic, there have been three closely
related experimental paradigms that have received investigation:
(1) a categorization-categorization paradigm examining the effect
of an initial categorization on a subsequent categorization, (2) a
category-feature inference paradigm investigating inferences
about features of an object following categorization of the object,
and (3) a feature-feature inference paradigm investigating feature
inferences based on reasoning from causal networks. These three
paradigms, as described in detail below, are different from the
categorization-decision paradigm investigated in the current
article because they do not include a categorization stage that
has effects on subsequent decision making.

Di Nunzio, Bruza, and Sitbon (2014) investigated a
categorization-categorization task. Participants were asked to cat-
egorize documents, which were news articles that appeared in the
Reuters newswire in 1987. The participants were recruited by the
Mechanical Turk system, and they differed according to their
expertise and experience with online experiments (masters vs.
non-masters). A total of 82 documents were selected for the task.
Each document could be categorized in two different ways: as
being about “crude oil” or about “shipping.” One group was given
a two-step Co — Cs categorization task, and these participants first
categorized the document with respect to “crude oil” and then cat-
egorized it with respect to “shipping.” The other group was given a
single step Cs-alone task, and these participants simply categorized
the document with respect to “shipping.” The results of this study
revealed large positive interference effects, similar to our findings
with the type b faces, for participants who were not “masters” of
Mechanical Turk; but surprisingly, a negative interference effect
occurred with the “master” level of expertise on Mechanical Turk.

Murphy and Ross (1994) and later Griffiths et al. (2012) inves-
tigated a categorization-inference task. Participants were shown
several categories of objects; each category contained several dif-
ferent objects, and each object was described by three different
binary valued features. One object was selected out of all the
categories, and the participant was informed about one of the
features of the selected object. Given this feature information,

the participant was asked to infer the value of another unknown
feature of the selected object. The general finding was that partic-
ipants tended to first infer the most likely category of the selected
object based on the known feature, and then infer the unknown
feature solely on the basis of the previously inferred category. This
finding violates the law of total probability, because participants
should infer a feature according to a weighted average across all
categories rather than focusing solely on the most likely category.

Chaigneau et al. (2004) as well as Rehder and Burnette (2005)
investigated feature inferences based on descriptions of causal net-
works. Participants were provided with a description of a causal
network (e.g., a causal chain X — Y — Z). Then they were asked
to predict the occurrence of a feature (e.g., Z is present) under two
conditions: (1) Make the inference conditioned on the presence of
both a direct parent cause and another factor that affects the out-
come by an indirect path only (e.g., infer Z given both Y and X); (2)
make the inference conditioned only on the direct parent cause
(e.g., infer Z given Y). If the inferences are identical across the
two conditions, then “screening off” is said to be satisfied. How-
ever, participants often violated “screening off” because they con-
tinued to be influenced by the indirect factors. Violations of
“screening off” also occurred in our categorization-decision para-
digm: The type of face continued to influence the probability of
taking an action even after the category of the face was selected
by or revealed to the decision maker.

Apparently there are close connections between these three dif-
ferent lines of research and the current categorization-decision
paradigm. Perhaps a common theoretical explanation could under-
lie them all. Recently, Nosofksy (2015) developed an exemplar
model to account for the category - feature inference task. Future
research is needed to examine the applications of Markov and
quantum models to these related experimental paradigms, and to
compare the accuracy of predictions of Markov and quantum mod-
els to that of the exemplar model recently proposed by Nosofksy
(2015).

7.4. Broader perspectives

It is worth pointing out again that the quantum BAE model was
originally developed for a completely different type of decision
making task - a prisoner’s dilemma game (Pothos & Busemeyer,
2009). In the prisoner’s dilemma paradigm, a violation of the law
of total probability occurred when comparing two conditions: (1)
when the move of an opponent player was known ahead of time,
versus (2) when the opponent’s move was unknown. The psycho-
logical intuition used to explain the violations of “rational” deci-
sion making in the prisoner’s dilemma paradigm is exactly like
that in the current categorization-decision paradigm (Busemeyer
& Pothos, 2012). Indeed, a strength of the BAE model is that it is
based on a small set of coherent quantum probability rules and
concepts instead of ad hoc assumptions, and it provides a unifying
theoretical principle for explaining different psychological phe-
nomena. In fact, the same set of quantum probability rules and
concepts have been used to account for a large variety of puzzling
findings, in domains ranging from judgment and decision
(Busemeyer, Wang, & Shiffrin, 2015c; Busemeyer, Wang, &
Townsend, 2006; Khrennikov & Haven, 2009; Yukalov & Sornette,
2011) to language and thinking (Aerts, Gabora, & Sozzo, 2013;
Blutner, Pothos, & Bruza, 2013), and from casual reasoning
(Trueblood & Busemeyer, 2012) to perception and memory
(Atmanspacher & Filk, 2010; Brainerd, Wang, & Reyna, 2013;
Brainerd, Wang, Reyna, & Nakamura, 2015). For example, similar
models have been used to address “irrational” probability judg-
ment errors, such as disjunction and conjunction fallacies
(Busemeyer, Pothos, Franco, & Trueblood, 2011; Busemeyer,
Wang, Pothos, & Trueblood, 2015b) and asymmetric similarity
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judgments (Pothos, Busemeyer, & Trueblood, 2013; Pothos &
Trueblood, 2014), attitude judgments (White, Pothos, &
Busemeyer, 2014), as well as order effects on sequential judgments
and decisions (Wang & Busemeyer, 2013, Wang & Busemeyer,
2016; Wang, Solloway, Shiffrin, & Busemeyer, 2014) and inferences
(Trueblood & Busemeyer, 2011). In particular, the superposition
concept has been a basic idea in many of these quantum cognition
applications, for instance, providing a simple explanation for episo-
dic memory over-distribution phenomena (Brainerd et al., 2013)
and the interference of choice on later confidence (Kvam, Pleskac,
Yu, & Busemeyer, 2015). So has the entanglement concept. The
quantum entanglement-like behavior has been observed in human
semantic networks, mental lexicons, and word associations (Aerts
et al.,, 2013; Bruza, Kitto, Nelson, & McEvoy, 2009; Bruza, Kitto,
Ramm, & Sitbon, 20154, Bruza, Wang, & Busemeyer, 2015b) as well
as ambiguous perception (Atmanspacher & Filk, 2010).

Quantum theory is still unfamiliar to most psychologists, but
the emergence of the new field of quantum cognition is a call to
address accumulating findings in cognition that have resisted
coherent, principled classical explanations for decades (for a
review, see Busemeyer & Bruza, 2012; Busemeyer, Wang, &
Pothos, 2015a; Khrennikov, 2010; for a brief introduction, see
Bruza et al, 2015a, 2015b; Busemeyer & Wang, 2015;
Busemeyer, Wang, Khrennikov, & Basieva, 2014; Pothos &
Busemeyer, 2013; Wang & Busemeyer, 2015; Wang, Busemeyer,
Atmanspacher, & Pothos, 2013). In fact, some of the founding
fathers of quantum theory, most ardently Niels Bohr, argued a cen-
tury ago that quantum theory would prove useful for psychology
and philosophy (Murdoch, 1987; Pais, 1991). It is an interesting
twist of history that some of the key conceptions of quantum the-
ory actually were proposed by psychologists before they proved
essential for quantum physics (Murdoch, 1987; Pais, 1991), but it
is quantum physics that rigorously formalized these concepts
and developed a coherent mathematical foundation for the theory,
which enable precise empirical predictions and testing. The new
field of quantum cognition takes advantage of these abstract,
mathematical principles of quantum theory (i.e., quantum proba-
bility theory) to formalize psychological states and process, which
has proven fruitful for addressing many enduring psychological
questions. In this article, we have shown how the BAE model uti-
lizes the basic quantum concepts of superposition and entangle-
ment, which have been used to account for the prisoner’s
dilemma, to formalize the psychological process leading to the
interference effect of categorization on subsequent decision mak-
ing. The quantum BAE model should be useful for examining a
large range of applications. It can be applied to many categoriza-
tion and decision tasks (e.g., medical diagnosis and treatment deci-
sions, problem categorization and solution) and situations in which
beliefs and actions are interdependent (e.g., White et al., 2014).
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Appendix A

Below, we prove that if the parameters remain the same across
C-D trials and D-alone trials, then a very general class of Markov
models must predict no interference effects (see also Busemeyer

& Bruza, 2012, chap. 8). Suppose N is the dimension of the state

space. For convenience, define L' = [1 1 1]asalxNrow
vector containing all ones, which is used for summation. Define
Mg as a N x N diagonal matrix with ones on the diagonal corre-
sponding to states identified with the good guy category, and zeros
otherwise; define My as a N x N diagonal matrix with ones on the
diagonal corresponding to states identified with the bad guy cate-
gory, and zeros otherwise. These two events are mutually exclusive
and exhaustive, so that we require Mg - Mz =0 and M¢ + Mp =L
Define M, as a N x N diagonal matrix with ones on the diagonal
corresponding to states identified with the attack decision, and
zeros otherwise; define My, as a N x N diagonal matrix with ones
on the diagonal corresponding to states identified with the with-
draw decision, and zeros otherwise. These two events are mutually
exclusive and exhaustive, so that we require My - My =0 and
My + My =1L

The presentation of a face produces an initial state, which in
general is a N x 1 column vector ¢,. On C-D trials, a categorization
response is based on the initial state ¢,. The probability of catego-
rizing as a good guy equals p(G) = L"M¢¢,, and the probability of
categorizing as a bad guy equals p(B) = L"Mj¢,. The revised state,
conditioned on the categorization as a good guy, equals
¢c = Mc¢,/p(G); the revised state, conditioned on the categoriza-
tion as a bad guy equals ¢z = Mp¢,;/p(B). On D-alone trials, no cat-
egorization occurs, and so the state remains at the initial state ¢,;
however, it is useful to rewrite this initial state as a mixture of the
two conditional states: ¢; = p(G)¢¢ + p(B) .

Now suppose that the actions are evaluated on the basis of the
payoffs, and the states are transformed by a general N x N transi-
tion matrix T. On a C-D trial, following a good guy categorization,
the probability to choose the attack decision equals
p(A|G) = L"M,T¢$.; following a bad guy categorization, the
probability to choose “attack” equals p(A|B) = L"MsT¢z. On
D-alone trials, the probability to attack equals p(A) = L'MTé,
= L'MaT(p(G) ¢ + P(B)¢s) = P(G)L'MaTpg + P(B)L'MaT ¢ = p(G)p
(A|G) + p(B)p(A|B), and the latter equals the total probability to
attack on C-D trials. This completes the proof. Note that this proof
requires the same transition matrix T to be applied on both C-D as
well as D-alone trials.

Appendix B

To begin, both models use a representation that has four basis
states {GA,GW,BA,BW}, where, for example, GW symbolizes the
combined event of categorizing the face as a good guy and deciding
to withdraw. Evaluation of the payoffs causes the Markov state ¢ to
be transformed by a transition matrix T into a decision state
¢r =T - ¢ used to make a choice about attacking or withdrawing.
The transition matrix is defined by the following matrix exponen-
tial function (based on Busemeyer et al., 2009):

T =exp(K)
-1 %kc 0 0

K- 1 —1Rk; 0 0 ’
0 0 -1 £:ks
0 0 1 —ks

The upper left corner of K is defined by the utility for attacking
when the face is categorized as good; and the bottom right corner
of K is defined by the utility for attacking when the face is catego-
rized as bad.

Evaluation of the payoffs causes the quantum state y to be
transformed by a unitary matrix U into a decision state y; = U - ¢
used to make a choice about attacking or withdrawing. The unitary
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matrix is defined by the following matrix exponential function
(based on Busemeyer et al., 2009):

U= exp(—ig-(Hl +Hz))

r Rug 1 0 0 h
\/1+(R,u6)2 \/1+(R;4G)2
1 —Rug 0 0
\/H—(Ruc)z \/H—(Ruc)z
H] = Ryig 1 ’
0 0
\/1+(R;48)2 \/l+(RuB)2
0 0 1 —Rug
_ Vi) 1)’
-1 01 0
y |10 10 1
H, —
"V211 01 0
0 1 0 -1

The upper left corner of H; is defined by the utility for attacking
when the face is categorized as good; and the bottom right corner
of H, is defined by the utility for attacking when the face is catego-
rized as bad. The matrix H, aligns beliefs with actions of the
decision-maker by amplifying the potentials for states GW, BA and
attenuating potentials for states GA, BW to produce what is called
an entanglement state (see Busemeyer & Bruza, 2012, chap. 9;
Pothos & Busemeyer, 2009). For example, if H; = 0, then y = 1 pro-
duces [gy|” = 45 = [pal* and [yys* = .05 = [y |, producing an
entangled state containing mainly contributions from GW,BA. The
MATLAB program for computing predictions is available from the
authors.

The following parameters were used to generate predictions
from the models for Experiments 2 and 3.

Five Markov model parameters

Pe kep kgp keg kgg
77 1.2901 .8448 7291 5508

Five Quantum model parameters (*forced, not free).

Pe Hep Mgy Heg Hpg” v
.79 -.1244 3140 -.2729 2729 .8500

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cognition.2016.
01.019.
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