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classic methods are very sensitive to these kinds of errors,
which are usually referred to as outliers, or blunder mea-

surements.
RObUSt EStimation TeChniqueS There has been extensive study on methods that would
for G NSS Positioning behave as well as possible when the data is of good qual-

ity, but at the same time would be insensitive against oc-
casional large errors. One approach to handling outliers

Henri Pesonen is to try to detect them, modify the data or the model and
Department of Mathematics subsequently estimate using only good data. Another ap-
Tampere University of Technology proach is to compute a robust estimate using all the data

and afterwards outliers could be detected as having the

henri.pesonen@tut.fi largest residuals. We consider only the second approach.

Methods for computing robust estimates have been
Abstract considered for over 50 years. One of the most impor-
tant contributions to this field is the M-estimation the-

Tracking and navigation problems are often solved (&Y by Huber [2] [3], which is based on minimization
ing estimation methods that are based on least-squte@ther 10ss functions than the sum of quadratic terms.
and Kalman filtering techniques. It is well known thaM'?St'mat'on is discussed brlgﬂy In Section 2. _The M-
these classic methods are sensitive to unexpectedly |aq.ggmat|o_n theory can be uged mg?ea.d of the ordinary least
measurement errors. In this article we discuss some Yg*a"€s I the case of static positioning.

bust static and dynamic estimation methods that are des

ianed to be i i inst outlyi b i P The Kalman filter [4] and its extensions are the most
signedto be insensitive against outlying observations. 7 4 dynamic estimation methods in various problems,
sitioning simulations and results of a field test where r

: . . e Rfcluding GNSS navigation. Because of the popularity
bust techniques are applied to pedestrian positioning Sre is great interest to develop a robust Kalman filter-
ing GPS pseudorange measurements are presented. t§

its indicate that robust techni h tential gdynamic estimation algorithms. Most of the work
results indicate that robust techniques have potentialjii,q i this area is heuristic by nature but can be shown
GNSS positioning.

to work in practice by simulations [9]. In this article we
consider the one-step optimal Bayesian recursive estima-

1 Introduction tor by Masreliez and Martin [7].

We test diferent stationary and dynamic estimators us-
GNSS positioning problems are often solved using estiy simulated positioning scenarios in which we vary the
mation methods that are based on least squares estifignber of available measurements and the amount of
tion and Kalman filtering techniques. These methods cgéhtamination. For simplicity, the provided simulations
be shown to work optimally when the noises in the sygre on two-dimensional plane. We use range measure-

tems are Gaussian with known means and variances. Fhénts to stationary pseudolites. The results are provided
assumption of Gaussianity, even though there might 86d discussed in Section 4.

sound justification for making it, is sometimes made just

because it is convenient that there exists methods that arn Section 5 we provide results of a test where the ro-
in some sense optimal under it. The real measurembust methods were applied to pedestrian positioning using
data often contain unexpectedly large errors that do not@PS pseudorange measurements. In Section 6 we sum-
the assumed noise model. In GNSS measurements thraaeze the results of simulations and tests and provide
kinds of errors could be the results of multipath or noseme thoughts about future research on robust estimation
line-of-sight dfects. It is well known that many of themethods for GNSS positioning.



2 Robust estimation a sequence of weighted LS-problems. This is the itera-
tively reweighted least squares (IRLS) method which is
In the following two sections we consider estimatiogiven by Algorithm 1 [8]. It has to be noted that IRLS
methods for static and dynamic linear estimation pl’Obfgorithm has only first degree convergence and needs
lems. Linear problems are considered as in this artigigharameterization at each iteration, hence it is not com-
we consider positioning with range and pseudorange mgatationally very atractive choice. Despite of this it is a
surements obtained from pseudolites or satellites locatgdch-used algorithm, possibly because of the available
far away from the receiver. It is assumed that this resudisftware for solving LS-problems. Also, with a good ini-
in almost linear estimation problems. tial estimate, the algorithm often converges after only few
Consider the ordinary linear regression problem jterations if the stopping criteria are not too strict.
One of the most used robubt-estimators is the one

y=Hx+v, @) minimizing the original Huber's loss function [2]

(6)

r2

wherey is the vector of observations, is the design ma- Kir| - k; Irl > k
(r) — { 9 =
7’

trix of full rank andv is the observation error with vari- <k -
anceV(v) = R In the case of independent errd®ss a
diagonal matrix with elements;. In LS estimation we Note that Huber’s loss function corresponds to a density
minimize the quadratic cost function function that is Gaussian in the middle and double ex-
ponential in the tails. The Huberig-function in Fig. 1
Zp(r‘(x)) _1 Z (ri(X)/oi)?, (2) shows the influence of a residual to the estimate.
i 24 Another well-known loss function is the Tukey's

bisquare
wherer(X) = y — Hx. The estimate that minimizes the q

guadratic cost function is ké Ir] >k
pe(r) = K2 r\2 3 (7)
%= (HTRH)THTR Yy, 3) B S {1 - [1 - (%) ] } I <k

which is a linear combination of observations and as sughich is not a convex function and as such the conver-
the influence of outlying observations is not bounded gence to a global minimum is not quaranteed. Note that
any way. for residuals in the tails Tukey's loss function gives zero
To introduce robustness into the estimation problemfluence as illustrated by Figure 1. Thiext is same as
Huber [2] suggested to minimize less rapidly increasingaving out particular observations from the system and
functions than (2). In more general form the estimatidtence extra care has to be used when minimizing these

problem can be written as kinds of loss functions. With a bad initial estimate the
R . IRLS algorithm can ignore perfectly good observations
X=arg rr)1<|an(ri(x)/a-i). (4) and converge to a local minimum.
i
Note that wherp(:) = —Inpy, (4) is a maximum likeli-

3 Robust dynamic estimation

hood estimation problem. This is why Huber referred h
framework as M-estimation. Whest-) is a convex func-

. . In order to robustify the Kalman filter, Masreliez and Mar-
tion, we can solve (4) from the equation

tin [7] approached the linear regression problem (1) using

dri(X)/ o the Bayesian framework
S w9y T ©) _
i X y=Hx+v, Xx~®XP), v~F (8)
and the solution is unique. where @ is Gaussian andF, is symmetric and heavy-

Although there does not exist a single best method fmiled. There is a restriction for the form &%, that re-
solving (5), one of the most popular techniques is to solgeires the existence of a transformatidrsuch that the



Algorithm 1: IRLS

Set initial estimateX©
Set error tolerance
k=0
fork=1,2,...,Ndo
(kD =y HxkD

a family of estimator®. Mathematically it is the saddle-
point of the game
minmaxV(F, 8) = V(Fo, o) = maxminV(F,6), (10)
0€® FefF FeF 0€O®
where® is a family of estimators ané the min-max es-
timator. Masreliez and Martin [7] showed thatH{ is of
required form, the error variance for an estimator

WD = y(* Do)
I

— el
WD = diagind D, ..., wi D]
X = (HTW<k—1>H)*1 HTWk-Dy

%=X+ PHTTTY(u), (11)
where [P(u)]i = ¥(u;), is bounded from above as

if [x® — x&D|| < ethen % o T TT dy(u)
IIStOp | E[(R=X)(X-X) ]s(l -PH'T THEFO[ U D P (12)
end They-function as defined in Section 2 is the derivative of
end the loss function corresponding to the ML-estimate of the
least favorable distribution.
6 . Consider the linear filtering problem
al LS Xer1 = P+ Diowie (13)
Yo = Hixe+w (14)
2 " Huber (k=1.2) Xo ~ ®(Xo,Po), (15)
OF======s REGEEEY wherewy ~ ®(0, Qx) andv is heavy-tailed, symmetric
Bisquare (k=4) non-Gaussian for which the transformatidndiscussed
2 previously exists. The Bayesian robust estimator for the
linear model is applied to the filtering problem sequen-
-4t . . o . a
tially at each timestep. This is carried out by heuristi-
g ‘ ‘ ‘ ‘ ‘ cally approximating the posterior density with a Gaussian

e 2 0 2 4 6 distribution. The robust filter is presented by Algorithm

Figure 1:y-functions indicate the influence that a sample hgs'
on an M-estimator.

Algorithm 2: Robust Kalman-type filter

Koo ~ P (X010, Popo)

fork=1,2,...do
Xigk-1 = Fro1Xi-1k-1
Puk-1 = Fk—1Pk—1\k—1F1lI_lr+ Fk—le—ﬂ"I:l
Xk = Xigk-1 + Pik1H TVP(T (Ve — HiXgk-1))
Pik = (1 = Pg-1Hy T TeHEr, [ %42 ) Py
Approximatepg,, ~ ®(X, Pik)

end

transformed innovation variable

u=T(H(X-X)+V) 9)

has a distributior-, which has a density function that is
an even function of all its parameters and all the marginal
distributionsF,, are members of a family of distributions
. A transformation as such exists for example if the
measurements errors are independent and have distribdiwvo possible choices for family of distributiorfs, as
tions from the same family of distributions. given by Masreliez and Martin [7], are tkecontaminated
Let Fo be the least favorable member of the family gamily
distributions# i.e. the distribution that minimizes the
Fisher information for the best possible estimaigrof

Fe={FIF=(1-€®(0,1)+ €H,

H has a symmetric density (16)



and thep-point family the expectation can now computed from

Fo = {F 1 F(-yp) = D(-ypl0,1) = 8, n | WO (24)
F has a symmetric density and is continuous @} , Feo | Tqu
(17) 1 1 X
which is discussed also in Martin and Masreliez [6]. = 5 )2 (1 + tar? (W)) fpo(x)dx
The least favorable density fercontaminated family R P P
IS The above formulation of a robustified Kalman-type fil-
1e 1 ter is just one of many. More general formulations than
e exp[——xz] X <k . . .
foo(X) = I/_Z_ﬂ AR 110 (18) Algorithm 2 can be found for example in Kotevic et al.
L exp|—kix + 3K, X =k, [5] and Schick and Mitter [10].

wherek is a function of the fraction of contaminatian
and can be solved from the equation 4 Simulations

E¢(k|o, 1)-20(-Kk0,1) = (19) We compare the flierent positioning methods using Mat-

1-e lab simulations. Itis not a particularly easy task to choose

whereg is the Gaussian probability density function. Th&e best way to compare the methods [11], as judged by

expectation needed for the upper bound of the variancéli§erent criteria several completelyfidirent filters can be
the best one.

In this work we choose to look at the frequential be-
(20) haviour of the estimation methods. Instead of considering
the performance of the methods in one particular position-
Fore-contaminated family the error bound (12) is only aimg scenario with a specific track and a set of observations,
upper bound as it is not possible that the innovation has generated 200 tracks of 120 epochs and a set of obser-

the least favorable distribution as its distribution. vations for each of the tracks and look at the frequential
The least favorable density for thgpoint family of performance of the methods.
distributions is

Er,, [%} = 1 - 20(-K0, 1).

For simplicity we consider positioning with range mea-
surements from a set of stationary pseudolites located far
away at coordinates, ..., S.

To generate the tracks we used the piecewise constant
The normalization factok can be solved using the propwhite noise acceleration model [1].
erty of all the distributions of the family that the distri-
butions have the mass-1p inside the interva[—yp,yp], X1 = Fixe+ Tiw, (25)

Kco§(¢), IX <Yyp
fpo(x) = 2myp (21)
PO { Kcosz(ﬁ)exp[%K cosz(%n)(yp—\xl)], X > Yp.

where the poiny, is determined byd(-y,|0,1) = p/2. . = %|2><2 26
The parameter valus minimizing the variance can be ko = P (26)
solved from
1 1 with
2m-p|1+ tanz(%)] 2m+ tan(?n)] =0. (22 Wi ~ N (0, 0_22|2X2) (27)
Using they-function of thep-point family of estimators loxo  lox2
F= 0 oo (28)
1 X
Yp(x) =4 ™ tan 2myp X <Yp (23) The statexc contains the position and velocity coordi-
%ﬁp’p) tan(z) .I1X > yp, nates.



Measurements were generated with a model

10°4

4 measurements/epoch

EKF A 90%
REKFp O 67%
o0 33%
X — Sull 10°4 LS A A “
Huber A A A A
Yk = : + Vi, (29) T A 5 o o
1% = sl Mon
: A AN Ay A o ° 4
where the observation noise R 9 9nS 9PSSa 5 oo o
oo s o o o o
Vic ~ (1= €)N(0, 10%114) + eN(0, 50%1x1).  (30) ‘
&= 0 | 0011 005 1 010 | 020 | Q30

We generated several positioning scenarios by varying the

fraction of contaminatiog as well as the number of meaFigure 2: Error bounds containing 33%, 67% and 90% of the

surements.
In our tests we compared three static estimation meth-
ods. The performance of M-estimates with Huber’s and
Tukey’s bisquare loss functions were compared agai
ordinary least squares solution. The tuning parameters
the M-estimators were chosenlas 1.345 for Huber and
k = 4.5 for bisquare.
Also three dynamic estimation methods were teste
Two robust filters using the assumptions of measurem

Error bound

errorsk € ¥, ande ¥, (REKF, and REKF,) were com- ]

pared against the performance of the ordinary EKF. T
parameter values were chosereas0.1 andp = 0.5. ,

10
The results of simulations are given in Figures2-: . _
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where the bounds that contain 33%, 67% and 90% of

the errors are plotted. Simulations show how extremd¥jgure 3: Error bounds containing 33%, 67% and 90% of the
sensitive the classic methods are to even small amosaimbrs when contamination fractionds

of contaminated measurements. Robust filtéferagyood

protection against unmodeled errors with only about four

times more computation time than that of the Kalman fil- ) )

ter. The M-estimation methods can give good results e@l¥etooth GPS Receiver. Now it has to be noted that un-
in very contaminated scenarios but with the lack of prigke in simulations, we do not know the exact true track
information the static robust methods need more obsEP—t instead compute the distance to a reference track that
vations than the dynamic methods to be as robust as fy2ssumed to be very close to the true track. Unfor-
namic estimation methods. The robust filters perform dnately, there is some error also in the reference track

most identically on average as do two M-estimators as Pich in our tests was the postprocessed DGPS solu-
as the estimation error is considered. tion with data collected by two NovAtel's DL-4 GPS re-

ceivers. As bad signal environments would alsteet
the DGPS positioning, we obstruct the line-of-sight of the
GPS receiver by covering it. This should results in noisier
pseudorange measurements.

We tested the methods with real GPS-data. The pseudoFhe state that we are solving now consists of position
range measurements were collected from a 380 secand velocity coordinates in ECEF coordinates and clock
long walk around the campus area of Tampere Univdiias and clock driftin meters. The static estimation meth-
sity of Technology using the Holux GPSIim236 Wirelessds solve only for position and clock bias. The model

5 Tedts



; % of epochs
used for pseudorange measurement is CNo  ave(SV) when# S\ 4

(0, ) 8.7 0

pi=lls —xugll+(b-b)c+1li+Ti+v, (31) [0=) 82 0

[25, ) 6.6 0.6
where we assume that satellite clock bias the de- [(3(’)?;{)8]) g'_g 202
lays I;, T; correponding to ionophere and troposphere [20,40] 6.4 0
can be solved accurately. Also, for simplicity the model [(30?‘;51 53 3’87
assumes independent errofs~ N (0, (1500 \/C/NO)Z), @30 37 %0
whereC/Np is the carrier-to-noise ratio of théh mea- Table 1:0.33 CERP radius [m] when observations with carrier-
surent. to-noise ratios within certain intervals are used.
The filters use the constant velocity and clock drift mo-
tion model
X1 = FiX + W (32)

we used to compute the solutions filerent measurement
IAPQ. 3AQ. O sets were selected based on the carrier-to-noise ratios of
3APQc  AtQc 0 ] (33) the measurements. The results are collected in the Ta-
0 0 Quiock bles 2-5 in the form of the percentages of time when the
whereAt is the length of the time interval between suestimate is within some bound from the reference posi-

cessive epochg). = diag(Q1,0.1,.01) in ENU coordi- tion. The carrier-to-noise intervals and corresponding av

Wi ~ N [0,

nates and erage number of available satellites and the percentage
3 2 2 o of epochs when only less than four measurements were
Qclock = [ 1; giizgg Y itA;ZUC ] E =2 (34) available is collected in Table 1.
Cc Cc

All the static estimation methods give very similar re-
M-estimators with Huber and bisquare loss functio[%llts but robust filters give often little better resultsrtha
use parameteﬁsz 0.5 andk = 25 Corresponding|y_ The the Kalman ﬁlter, but the dlierence is not very Iarge. Itis
robust Ka|man-type filters use parameter Va|p335 and debatable if the accuracy gainEd is worth the extra com-
e=02 putation time. Our Matlab implementations of the robust
filters required about four times more computation time
200 than our implementation of the EKF.

C/No EKF REKF, REKF, LS Huber Bisquare
(0,00) 30.8 287 27.7 244 244 244
[20,0) 31.4 30.2 30.2 259 259 259
[25,0) 30.2 39.3 39.3 235 235 235
[30,0) 8.5 23.2 19.5 13.7 13.7 13.7
(0,40] 28.4 32.3 329 134 134 13.4
[20,40]28.7 32.6 33.2 13.1 131 131
[30,40] 16.8 7.6 171 3.7 3.7 3.7

(0,35] 43 8.2 6.7 12 1.2 1.2

(0,30] 1.2 0.9 1.2 03 03 0.3

2001

# obs

1001

Table 2:How often (%) the estimate is within 5m of the refer-
ence track.

Figure 4:The distribution of measured carrier-to-noises.

6 Conclusions

From the collected pseudorange measurement datalwehis article we reviewed robust methods that can be
selected dferent combinations of measurements whiaksed in positioning applications. Both static and dynamic



cases were considered. In simulations it could be shown
that the robust methods perform clearly better than the

C/Ny EKF REKF, REKF. LS Huber Bisquare classic methods even with small amount of bad observa-
(0,0) 51.8 60.1 63.7 53.0 53.0 53.0 i ici i ifi H _
20.) 485 622 643 352 252 552 t!ons. _Th|s is because the s_lmpllfl_ed nature of the S|mu_la
[25,00) 57.3 70.4 732 527 527 527 tions, i.e. measurement noise in independent and outliers
[30,0) 55.5 61.6 55.2 32.3 32.3 32.3 i ; i i

0.40] 463 515 518 290 200 290 occurmdependentlywnhacertalln propabmty.

[20,40)44.8 49.7 509 311 311 311 We tested the methods also with typical GPS pseudor-
[30,40] 39.6 48.2 546 8.8 8.8 8.8 H H Y H H H
0.35] 207 247 259 49 49 49 ange measurements in pedestrlan positioning application.
(0,30 61 7.3 64 06 06 06 We used a DGPS solution as a reference track and col-

lected the test data with consumer priced GPS receiver

Table 3:How often (%) the estimate is within 10m of the refyhich was covered to obtain noisier measurements. Ro-

erence track.

C/No EKF REKF, REKF,

LS Huber Bisquare

bust Kalman-type filters seem to give almost always bet-
ter results than the Kalman filter but theffdrence be-
tween methods is not as distinctive as in simulations. This
might be because of several reasons. First, all the robust
methods discussed in this article assume zero mean noise
but in reality pseudorange measurements contain interfer-
ence that can not be modeled exactly but instead cause

0=) 796 808 8L7 716 71.6 716 the noise to be biased. Second, the outliers are not in-
[20,0) 74.7 80.8 829 726 726 726 dependent but tend to occur during successive epochs e.g.
[25,0) 835 945 933 70.7 70.7 70.7 : .

[30.c0) 80.8 930 927 46.3 463 463 while we are in an urban canyon and are not spread evenly
(0,40] 75.3 76,5 77.7 47.9 47.9 479 in time.

20,40167.1 75.0 76.2 50.0 50.0 50.0 . .

{3(),40% 613 640 735 137 137 137 For future work tests with extremely noisy data should
(0,35] 865 512 527 152 152 152 be carried out. In that kind of environment, a good refer-
(0,30] 134 186 152 09 09 09

ence track would be very hard to obtain but easiest solu-

Table 4: How often (%) the estimate is within 15m of the reflion would be to evaluate the results graphically. To han-

erence track.

dle patchy outliers, dynamic estimators that are based on
model selection could be applied. Also it would be in-
teresting to apply robust methods to sensor-aided GNSS
positioning and, in general to hybrid positioning.

C/Ng EKF REKF, REKF, LS Huber Bisquare

) 0 0 0 30 18 18

[20,0) O 0O 0 27 27 27 References

[250) O O 0 34 34 34

[30,00) O 0 0 61 61 6.1 . . .
(040 0 0 0 119 101 10.1 [1] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam
[20,40] O 0.6 0 12.2 12.2 12.2 H i i i H H i _
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