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Abstract

Tracking and navigation problems are often solved us-
ing estimation methods that are based on least-squares
and Kalman filtering techniques. It is well known that
these classic methods are sensitive to unexpectedly large
measurement errors. In this article we discuss some ro-
bust static and dynamic estimation methods that are de-
signed to be insensitive against outlying observations. Po-
sitioning simulations and results of a field test where ro-
bust techniques are applied to pedestrian positioning us-
ing GPS pseudorange measurements are presented. The
results indicate that robust techniques have potential in
GNSS positioning.

1 Introduction

GNSS positioning problems are often solved using esti-
mation methods that are based on least squares estima-
tion and Kalman filtering techniques. These methods can
be shown to work optimally when the noises in the sys-
tems are Gaussian with known means and variances. The
assumption of Gaussianity, even though there might be
sound justification for making it, is sometimes made just
because it is convenient that there exists methods that are
in some sense optimal under it. The real measurement
data often contain unexpectedly large errors that do not fit
the assumed noise model. In GNSS measurements these
kinds of errors could be the results of multipath or non-
line-of-sight effects. It is well known that many of the

classic methods are very sensitive to these kinds of errors,
which are usually referred to as outliers, or blunder mea-
surements.

There has been extensive study on methods that would
behave as well as possible when the data is of good qual-
ity, but at the same time would be insensitive against oc-
casional large errors. One approach to handling outliers
is to try to detect them, modify the data or the model and
subsequently estimate using only good data. Another ap-
proach is to compute a robust estimate using all the data
and afterwards outliers could be detected as having the
largest residuals. We consider only the second approach.

Methods for computing robust estimates have been
considered for over 50 years. One of the most impor-
tant contributions to this field is the M-estimation the-
ory by Huber [2] [3], which is based on minimization
of other loss functions than the sum of quadratic terms.
M-estimation is discussed briefly in Section 2. The M-
estimation theory can be used instead of the ordinary least
squares in the case of static positioning.

The Kalman filter [4] and its extensions are the most
used dynamic estimation methods in various problems,
including GNSS navigation. Because of the popularity
there is great interest to develop a robust Kalman filter-
type dynamic estimation algorithms. Most of the work
done in this area is heuristic by nature but can be shown
to work in practice by simulations [9]. In this article we
consider the one-step optimal Bayesian recursive estima-
tor by Masreliez and Martin [7].

We test different stationary and dynamic estimators us-
ing simulated positioning scenarios in which we vary the
number of available measurements and the amount of
contamination. For simplicity, the provided simulations
are on two-dimensional plane. We use range measure-
ments to stationary pseudolites. The results are provided
and discussed in Section 4.

In Section 5 we provide results of a test where the ro-
bust methods were applied to pedestrian positioning using
GPS pseudorange measurements. In Section 6 we sum-
marize the results of simulations and tests and provide
some thoughts about future research on robust estimation
methods for GNSS positioning.
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2 Robust estimation

In the following two sections we consider estimation
methods for static and dynamic linear estimation prob-
lems. Linear problems are considered as in this article
we consider positioning with range and pseudorange mea-
surements obtained from pseudolites or satellites located
far away from the receiver. It is assumed that this results
in almost linear estimation problems.

Consider the ordinary linear regression problem

y = Hx + v, (1)

wherey is the vector of observations,H is the design ma-
trix of full rank andv is the observation error with vari-
anceV(v) = R. In the case of independent errorsR is a
diagonal matrix with elementsσi. In LS estimation we
minimize the quadratic cost function

∑

i

ρ(ri(x)) =
1
2

∑

i

(ri(x)/σi)2 , (2)

wherer(x) = y − Hx. The estimate that minimizes the
quadratic cost function is

x̂ = (HT R−1H)−1HT R−1y, (3)

which is a linear combination of observations and as such
the influence of outlying observations is not bounded in
any way.

To introduce robustness into the estimation problem,
Huber [2] suggested to minimize less rapidly increasing
functions than (2). In more general form the estimation
problem can be written as

x̂ = arg min
x

∑

i

ρ(ri(x)/σi). (4)

Note that whenρ(·) = − ln pv, (4) is a maximum likeli-
hood estimation problem. This is why Huber referred his
framework as M-estimation. Whenρ(·) is a convex func-
tion, we can solve (4) from the equation

∑

i

ψ(ri(x)/σi)
dri(x)/σi

dx
= 0. (5)

and the solution is unique.
Although there does not exist a single best method for

solving (5), one of the most popular techniques is to solve

a sequence of weighted LS-problems. This is the itera-
tively reweighted least squares (IRLS) method which is
given by Algorithm 1 [8]. It has to be noted that IRLS
algorithm has only first degree convergence and needs
reparameterization at each iteration, hence it is not com-
putationally very atractive choice. Despite of this it is a
much-used algorithm, possibly because of the available
software for solving LS-problems. Also, with a good ini-
tial estimate, the algorithm often converges after only few
iterations if the stopping criteria are not too strict.

One of the most used robustM-estimators is the one
minimizing the original Huber’s loss function [2]

ρH(r) =

{

k|r| − k2

2 , |r| ≥ k
r2

2 , |r| < k
. (6)

Note that Huber’s loss function corresponds to a density
function that is Gaussian in the middle and double ex-
ponential in the tails. The Huber’sψ-function in Fig. 1
shows the influence of a residual to the estimate.

Another well-known loss function is the Tukey’s
bisquare

ρB(r) =























k2

6 , |r| ≥ k

k2

6

{

1−
[

1−
(

r
k

)2
]3
}

, |r| < k
(7)

which is not a convex function and as such the conver-
gence to a global minimum is not quaranteed. Note that
for residuals in the tails Tukey’s loss function gives zero
influence as illustrated by Figure 1. The effect is same as
leaving out particular observations from the system and
hence extra care has to be used when minimizing these
kinds of loss functions. With a bad initial estimate the
IRLS algorithm can ignore perfectly good observations
and converge to a local minimum.

3 Robust dynamic estimation

In order to robustify the Kalman filter, Masreliez and Mar-
tin [7] approached the linear regression problem (1) using
the Bayesian framework

y = Hx + v, x ∼ Φ(x̄, P), v ∼ F, (8)

whereΦ is Gaussian andFv is symmetric and heavy-
tailed. There is a restriction for the form ofFv that re-
quires the existence of a transformationT such that the
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Algorithm 1: IRLS

Set initial estimatex(0)

Set error toleranceǫ
k = 0
for k = 1, 2, . . ., N do

r(k−1)
= y − Hx(k−1)

w(k−1)
i =

ψ(r(k−1)
i /σ)

|r(k−1)
i /σ|

W (k−1)
= diag[w(k−1)

1 , . . . ,w(k−1)
n ]

x(k)
=

(

HT W (k−1)H
)−1

HT W (k−1)y

if ||x(k) − x(k−1)|| < ǫ then
Stop

end
end
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Figure 1:ψ-functions indicate the influence that a sample has
on an M-estimator.

transformed innovation variable

u = T (H(x − x̄) + v) (9)

has a distributionFu which has a density function that is
an even function of all its parameters and all the marginal
distributionsFui are members of a family of distributions
F . A transformation as such exists for example if the
measurements errors are independent and have distribu-
tions from the same family of distributions.

Let F0 be the least favorable member of the family of
distributionsF i.e. the distribution that minimizes the
Fisher information for the best possible estimatorθ0 of

a family of estimatorsΘ. Mathematically it is the saddle-
point of the game

min
θ∈Θ

max
F∈F

V(F, θ) = V(F0, θ0) = max
F∈F

min
θ∈Θ

V(F, θ), (10)

whereΘ is a family of estimators andθ0 the min-max es-
timator. Masreliez and Martin [7] showed that ifFv is of
required form, the error variance for an estimator

x̂ = x̄ + PHT T T
Ψ(u), (11)

where [Ψ(u)] i = ψ(ui), is bounded from above as

E

[

(x̂ − x)(x̂ − x)T
]

≤
(

I − PHT T T T HEF0

[

dψ(u)
du

])

P. (12)

Theψ-function as defined in Section 2 is the derivative of
the loss function corresponding to the ML-estimate of the
least favorable distribution.

Consider the linear filtering problem

xk+1 = Fk xk + Γkwk (13)

yk = Hk xk + vk (14)

x0 ∼ Φ(x̄0, P0), (15)

wherewk ∼ Φ(0,Qk) andvk is heavy-tailed, symmetric
non-Gaussian for which the transformationT discussed
previously exists. The Bayesian robust estimator for the
linear model is applied to the filtering problem sequen-
tially at each timestepk. This is carried out by heuristi-
cally approximating the posterior density with a Gaussian
distribution. The robust filter is presented by Algorithm
2.

Algorithm 2: Robust Kalman-type filter
x̂0|0 ∼ Φ(x̄0|0, P0|0)
for k = 1, 2, . . . do

x̄k|k−1 = Fk−1x̄k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Γk−1Qk−1Γ

T
k−1

x̄k|k = x̄k|k−1 + Pk|k−1HT
k T T
Ψ(T (yk − Hk x̄k|k−1))

Pk|k =
(

I − Pk|k−1HT
k T T

k TkHkEF0

[

dψ(u)
du

])

Pk|k−1

Approximatepx̂k|k ≈ Φ(x̄k|k, Pk|k)
end

Two possible choices for family of distributionsF , as
given by Masreliez and Martin [7], are theǫ-contaminated
family

Fǫ = {F | F = (1− ǫ)Φ(·|0,1)+ ǫH,
H has a symmetric density

}

,
(16)
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and thep-point family

Fp =

{

F | F(−yp) = Φ(−yp|0, 1) = p
2 ,

F has a symmetric density and is continuous in± p
2

}

,

(17)
which is discussed also in Martin and Masreliez [6].

The least favorable density forǫ-contaminated family
is

fǫ,0(x) =















1−ǫ√
2π

exp
[

− 1
2 x2

]

, |x| < k
1−ǫ√

2π
exp

[

−k|x| + 1
2k2

]

, |x| ≥ k,
(18)

wherek is a function of the fraction of contaminationǫ
and can be solved from the equation

2
k
φ(k|0, 1)− 2Φ(−k|0, 1)=

ǫ

1− ǫ , (19)

whereφ is the Gaussian probability density function. The
expectation needed for the upper bound of the variance is

EFǫ,0

[

dψ(u)
du

]

= 1− 2Φ(−k|0, 1). (20)

Forǫ-contaminated family the error bound (12) is only an
upper bound as it is not possible that the innovation has
the least favorable distribution as its distribution.

The least favorable density for thep-point family of
distributions is

fp,0(x) =



















K cos2
(

x
2myp

)

, |x| ≤ yp

K cos2( 1
2m ) exp

[

2K
p cos2

(

1
2m

)

(yp − |x|)
]

, |x| > yp.
(21)

The normalization factorK can be solved using the prop-
erty of all the distributions of the family that the distri-
butions have the mass 1− p inside the interval

[

−yp, yp

]

,
where the pointyp is determined byΦ(−yp|0, 1) = p/2.
The parameter valuem minimizing the variance can be
solved from

2m − p

[

1+ tan2

(

1
2m

)] [

2m + tan

(

1
2m

)]

= 0. (22)

Using theψ-function of thep-point family of estimators

ψp(x) =



















1
myp

tan
(

x
2myp

)

, |x| ≤ yp

sign(yp)
myp

tan
(

1
2m

)

, |x| > yp,
(23)

the expectation can now computed from

EFp,0

[

dψ(u)
du

]

(24)

=
1
2

∫ yp

−yp

1
(myp)2

(

1+ tan2

(

x
2myp

))

fp,0(x)dx

The above formulation of a robustified Kalman-type fil-
ter is just one of many. More general formulations than
Algorithm 2 can be found for example in Kovačevíc et al.
[5] and Schick and Mitter [10].

4 Simulations

We compare the different positioning methods using Mat-
lab simulations. It is not a particularly easy task to choose
the best way to compare the methods [11], as judged by
different criteria several completely different filters can be
the best one.

In this work we choose to look at the frequential be-
haviour of the estimation methods. Instead of considering
the performance of the methods in one particular position-
ing scenario with a specific track and a set of observations,
we generated 200 tracks of 120 epochs and a set of obser-
vations for each of the tracks and look at the frequential
performance of the methods.

For simplicity we consider positioning with range mea-
surements from a set of stationary pseudolites located far
away at coordinatess1, . . . , sl.

To generate the tracks we used the piecewise constant
white noise acceleration model [1].

xk+1 = Fk xk + Γkwk, (25)

Γk =

[

1
2 I2×2

I2×2

]

, (26)

with

wk ∼ N
(

0, 0.22I2×2

)

(27)

F =

[

I2×2 I2×2

0 I2×2

]

. (28)

The statexk contains the position and velocity coordi-
nates.

4



Measurements were generated with a model

yk =

























||xk − s1||
...

||xk − sl||

























+ vk, (29)

where the observation noise

vk ∼ (1− ε)N(0, 102Il×l) + εN(0, 502Il×l). (30)

We generated several positioning scenarios by varying the
fraction of contaminationε as well as the number of mea-
surements.

In our tests we compared three static estimation meth-
ods. The performance of M-estimates with Huber’s and
Tukey’s bisquare loss functions were compared against
ordinary least squares solution. The tuning parameters for
the M-estimators were chosen ask = 1.345 for Huber and
k = 4.5 for bisquare.

Also three dynamic estimation methods were tested.
Two robust filters using the assumptions of measurement
errorsF ∈ Fǫ and∈ Fp (REKFǫ and REKFp) were com-
pared against the performance of the ordinary EKF. The
parameter values were chosen asǫ = 0.1 andp = 0.5.

The results of simulations are given in Figures 2 - 3,
where the bounds that contain 33%, 67% and 90% of
the errors are plotted. Simulations show how extremely
sensitive the classic methods are to even small amount
of contaminated measurements. Robust filters offer good
protection against unmodeled errors with only about four
times more computation time than that of the Kalman fil-
ter. The M-estimation methods can give good results even
in very contaminated scenarios but with the lack of prior
information the static robust methods need more obser-
vations than the dynamic methods to be as robust as dy-
namic estimation methods. The robust filters perform al-
most identically on average as do two M-estimators as far
as the estimation error is considered.

5 Tests

We tested the methods with real GPS-data. The pseudo-
range measurements were collected from a 380 second
long walk around the campus area of Tampere Univer-
sity of Technology using the Holux GPSlim236 Wireless
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Figure 2:Error bounds containing 33%, 67% and 90% of the
errors when contamination fraction isε.
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Figure 3:Error bounds containing 33%, 67% and 90% of the
errors when contamination fraction isε.

Bluetooth GPS Receiver. Now it has to be noted that un-
like in simulations, we do not know the exact true track
but instead compute the distance to a reference track that
is assumed to be very close to the true track. Unfor-
tunately, there is some error also in the reference track
which in our tests was the postprocessed DGPS solu-
tion with data collected by two NovAtel’s DL-4 GPS re-
ceivers. As bad signal environments would also affect
the DGPS positioning, we obstruct the line-of-sight of the
GPS receiver by covering it. This should results in noisier
pseudorange measurements.

The state that we are solving now consists of position
and velocity coordinates in ECEF coordinates and clock
bias and clock drift in meters. The static estimation meth-
ods solve only for position and clock bias. The model

5



used for pseudorange measurement is

ρi = ||si − x1:3|| + (b − bi)c + Ii + Ti + vi, (31)

where we assume that satellite clock biasbi, the de-
lays Ii, Ti correponding to ionophere and troposphere
can be solved accurately. Also, for simplicity the model

assumes independent errorsvi ∼ N
(

0,
(

1500/
√

C/N0

)2
)

,

whereC/N0 is the carrier-to-noise ratio of theith mea-
surent.

The filters use the constant velocity and clock drift mo-
tion model

xk+1 = Fk xk + wk (32)

wk ∼ N





















0,





















1
3∆t3Qc

1
2∆t2Qc 0

1
2∆t2Qc ∆tQc 0

0 0 Qclock









































(33)

where∆t is the length of the time interval between suc-
cessive epochs,Qc = diag(0.1, 0.1, .01) in ENU coordi-
nates and

Qclock =

[

1/3∆t3σ2
c 1/2∆t2σ2

c
1/2∆t2σ2

c ∆tσ2
c

]

, σ2
c = 2. (34)

M-estimators with Huber and bisquare loss functions
use parametersk = 0.5 andk = 2.5 correspondingly. The
robust Kalman-type filters use parameter valuesp = 5 and
ǫ = 0.2

0 10 20 30 40 50
0

100

200

300

C/N
0

# obs

Figure 4:The distribution of measured carrier-to-noises.

From the collected pseudorange measurement data we
selected different combinations of measurements which

% of epochs
C/N0 ave(SV) when # SV< 4
(0,∞) 8.7 0
[20,∞) 8.2 0
[25,∞) 6.6 0.6
[30,∞) 4.8 22
(0, 40] 6.9 0
[20,40] 6.4 0
[30,40] 2.9 58
(0, 35] 5.2 0.7
(0, 30] 3.7 50

Table 1:0.33 CERP radius [m] when observations with carrier-
to-noise ratios within certain intervals are used.

we used to compute the solutions. Different measurement
sets were selected based on the carrier-to-noise ratios of
the measurements. The results are collected in the Ta-
bles 2-5 in the form of the percentages of time when the
estimate is within some bound from the reference posi-
tion. The carrier-to-noise intervals and corresponding av-
erage number of available satellites and the percentage
of epochs when only less than four measurements were
available is collected in Table 1.

All the static estimation methods give very similar re-
sults but robust filters give often little better results than
the Kalman filter, but the difference is not very large. It is
debatable if the accuracy gained is worth the extra com-
putation time. Our Matlab implementations of the robust
filters required about four times more computation time
than our implementation of the EKF.

C/N0 EKF REKFp REKFǫ LS Huber Bisquare
(0,∞) 30.8 28.7 27.7 24.4 24.4 24.4
[20,∞) 31.4 30.2 30.2 25.9 25.9 25.9
[25,∞) 30.2 39.3 39.3 23.5 23.5 23.5
[30,∞) 8.5 23.2 19.5 13.7 13.7 13.7
(0, 40] 28.4 32.3 32.9 13.4 13.4 13.4
[20, 40] 28.7 32.6 33.2 13.1 13.1 13.1
[30, 40] 16.8 7.6 17.1 3.7 3.7 3.7
(0, 35] 4.3 8.2 6.7 1.2 1.2 1.2
(0, 30] 1.2 0.9 1.2 0.3 0.3 0.3

Table 2:How often (%) the estimate is within 5m of the refer-
ence track.

6 Conclusions

In this article we reviewed robust methods that can be
used in positioning applications. Both static and dynamic
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C/N0 EKF REKFp REKFǫ LS Huber Bisquare
(0,∞) 51.8 60.1 63.7 53.0 53.0 53.0
[20,∞) 48.5 62.2 64.3 55.2 55.2 55.2
[25,∞) 57.3 70.4 73.2 52.7 52.7 52.7
[30,∞) 55.5 61.6 55.2 32.3 32.3 32.3
(0, 40] 46.3 51.5 51.8 29.0 29.0 29.0
[20,40] 44.8 49.7 50.9 31.1 31.1 31.1
[30,40] 39.6 48.2 54.6 8.8 8.8 8.8
(0, 35] 20.7 24.7 25.9 4.9 4.9 4.9
(0, 30] 6.1 7.3 6.4 0.6 0.6 0.6

Table 3:How often (%) the estimate is within 10m of the ref-
erence track.

C/N0 EKF REKFp REKFǫ LS Huber Bisquare
(0,∞) 79.6 80.8 81.7 71.6 71.6 71.6
[20,∞) 74.7 80.8 82.9 72.6 72.6 72.6
[25,∞) 83.5 94.5 93.3 70.7 70.7 70.7
[30,∞) 80.8 93.0 92.7 46.3 46.3 46.3
(0, 40] 75.3 76.5 77.7 47.9 47.9 47.9
[20,40] 67.1 75.0 76.2 50.0 50.0 50.0
[30,40] 61.3 64.0 73.5 13.7 13.7 13.7
(0, 35] 55.5 51.2 52.7 15.2 15.2 15.2
(0, 30] 13.4 18.6 15.2 0.9 0.9 0.9

Table 4:How often (%) the estimate is within 15m of the ref-
erence track.

C/N0 EKF REKFp REKFǫ LS Huber Bisquare
(0,∞) 0 0 0 3.0 1.8 1.8
[20,∞) 0 0 0 2.7 2.7 2.7
[25,∞) 0 0 0 3.4 3.4 3.4
[30,∞) 0 0 0 6.1 6.1 6.1
(0, 40] 0 0 0 11.9 10.1 10.1
[20,40] 0 0.6 0 12.2 12.2 12.2
[30,40] 11.9 10.7 11.3 12.5 12.5 12.5
[0, 35] 0 0 0 45.4 45.1 45.1
(0, 30] 0 1.2 0.3 41.5 41.5 41.5

Table 5:How often (%) the estimate isnot within 50m of the
reference track.

cases were considered. In simulations it could be shown
that the robust methods perform clearly better than the
classic methods even with small amount of bad observa-
tions. This is because the simplified nature of the simula-
tions, i.e. measurement noise in independent and outliers
occur independently with a certain probability.

We tested the methods also with typical GPS pseudor-
ange measurements in pedestrian positioning application.
We used a DGPS solution as a reference track and col-
lected the test data with consumer priced GPS receiver
which was covered to obtain noisier measurements. Ro-
bust Kalman-type filters seem to give almost always bet-
ter results than the Kalman filter but the difference be-
tween methods is not as distinctive as in simulations. This
might be because of several reasons. First, all the robust
methods discussed in this article assume zero mean noise
but in reality pseudorange measurements contain interfer-
ence that can not be modeled exactly but instead cause
the noise to be biased. Second, the outliers are not in-
dependent but tend to occur during successive epochs e.g.
while we are in an urban canyon and are not spread evenly
in time.

For future work tests with extremely noisy data should
be carried out. In that kind of environment, a good refer-
ence track would be very hard to obtain but easiest solu-
tion would be to evaluate the results graphically. To han-
dle patchy outliers, dynamic estimators that are based on
model selection could be applied. Also it would be in-
teresting to apply robust methods to sensor-aided GNSS
positioning and, in general to hybrid positioning.

References

[1] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam
Kirubarajan.Estimation with Applications to Track-
ing and Navigation. John Wiley & Sons, Inc., 2001.

[2] Peter J. Huber. Robust estimation of a location pa-
rameter.The Annals of Mathematical Statistics, 35
(1), March 1964.

[3] Peter J. Huber. Robust Statistics. John Wiley &
Sons, Inc., 1981.

7



[4] R. E. Kalman. A new approach to linear filtering
and prediction problems.Transactions of the ASME-
Journal of Basic Engineering, 82, 1960.
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