
Tesseract: Interactive Environment for Exploration of Project Relationships 
 

Larry Maccherone, Anita Sarma, Patrick Wagstrom, and Jim Herbsleb 

 Institute for Software Research - Carnegie Mellon University 
{LMaccherone, asarma, pwagstro, herbsleb}@cmu.edu 

 
 

Abstract 
 

Important insights can be gained by exploring the 
connections between project entities as recorded in the 
siloed databases maintained by software projects. We 
have developed Tesseract, a software archive browser 
that utilizes cross-linked displays to enable visual ex-
ploration of relationships between artifacts, develop-
ers, issues, and project communications. 
 
1. Tesseract 
 

Each piece of data in a software project’s archive  is 
gathered for a particular purpose which is largely satis-
fied by being able to recall that textual record at a later 
date. For instance, an issue database is maintained so 
that a list of outstanding issues can be displayed and 
developers who make progress on an issue can record 
those status changes. 

However, more questions can be answered by ex-
ploring the connections between project entities as well 
as understanding the strength and relative timing of 
those connections [3]. For instance, it may be benefi-
cial for a developer embarking on a new task to identi-
fy the artifacts that were modified or created when a 
similar feature request was accomplished. She might 
also want to know who has been editing these files the 
most in the last month or with whom those original 
developers communicated frequently when the original 
feature request was implemented [1].  

Furthermore, functionalities such as cross-linking, 
aggregation and temporal filtering can help achieve 
much more nuanced understanding of a project. For 
example, artifacts that are frequently committed to-
gether signal dependencies among artifacts. Similarly, 
communication records can be used to build a social 
network and this can be compared to the one implied 
by the artifact dependency network [2]. Gaining such 
nuanced understanding is difficult (at best) when using 
the standard interfaces for these project archives. 

Tesseract analyzes different project archives, such 
as change management systems, issue repositories, and  

 
communication records to determine the interrelation-
ships, which are then graphically displayed via four 
juxtaposed panes, enabling users to easily explore the 
data set. Tesseract also uses the analysis technique 
proposed by Cataldo et al. [2] to show the user where 
the set of technical dependencies matches the social 
interactions, and where it does not. The four display 
panes of the Tesseract User Interface (Figure 1) are: 
1. The Project Activity pane displays the overall 

activities (commits on the top, communication on 
the bottom) in a time series display. It allows users 
to select a time period for their investigation, 
which then acts as a filter for all the other panes. 

2. The Files pane links files that are frequently 
changed together, which is a surprisingly good 
heuristic for determining artifact interdependency 
[2] that works even in situations where code anal-
ysis fails (different programming languages, non-
call-graph dependencies, etc.). The number of 
times two files are committed together is 
represented by the thickness of the edges in the 
network. A textual listing of the file names is pro-
vided to allow quick identification of specific files 
by name. 

 Figure 1. Tesseract user interface 



3. The Developers pane displays relationships 
among developers. Two developers are expected 
to communicate if they edit interdependent arti-
facts often enough (thresholded). The edges in this 
network are colored red when developers who are 
expected to have communicated failed to do so. 
For grey (communication without expectation) or 
green edges (communication coinciding with ex-
pectation), the thickness of the edges is derived 
from the number of times developers communi-
cated. Similar to the file network, a textual listing 
of the developer names is provided. 

4. The Issues pane displays defect or feature related 
information as a stacked area chart as well as in a 
detailed listing. 

The critical advantage of Tesseract’s approach is 
that it enables the interactive exploration of the differ-
ent connections among different project entities. Users 
can also change the perspective of their investigation 
by drilling down on specific artifact(s) and develop-
er(s). For instance, a user might drill-down to only the 
developers he personally knows in the ‘Developers’ 
pane to find whether any of his acquaintances have 
expertise which would help with his current task. Other 
user actions to facilitate investigations include: (1) 
clicking on an entity to highlight, in yellow, all related 
entities in the other panes, (2) hovering over a node to 
display additional information about the node and 
highlight any other nodes with an edge to the hovered 
over node, (3) panning zooming, and moving individu-
al nodes and (4) searching to quickly find an entity 
when they have some partial information.  

 
2. Usage scenario 

 
Tesseract can be used in two completely different 

modes: (1) to gain “retrospective” insight into devel-
opment patterns, or (2) to gain “prospective” insight 
for current work and planning. Here, we will discuss 
one “retrospective” insight usage. Additional “retros-
pective” and “prospective” scenarios are scripted for 
live demonstration. 

Usage scenario – Patterns (retrospective): 
Figure 2 provides two snapshots of project history, 
where there were high bursts of activity. We can make 
the following observations from Figure 2(a): (1) Ste-
phen Walther is the primary contributor having 
changed literally every file; (2) Stephen is central and 
in contact with most other developers (green lines be-
tween Stephen and other developers), but very few 
developers are communicating among themselves (red 
lines); (3) the file network is densely connected indi-
cating a high degree of coupling; and (4) this time pe-

riod shows a continuously increasing list of open is-
sues.  

When we investigate the later time period, Figure 
2(b), we see very different patterns in communication, 
artifact dependency, and the trend for open issues un-
der the leadership of Alicia. These contrasting patterns 
do not necessarily imply any causal relationships, but 
certainly provide interesting insights into the project 
that merits further investigation. Readers can try the 
demo available at http://crc.maccherone.com/tesseract 

 
3. Acknowledgements 
 

This effort is partially funded by the NSF grant 
number IIS-0414698, IIS 0534656, and the Software 
Industry Center and its sponsors, particularly the Al-
fred P. Sloan Foundation. Effort also supported by a 
2007 Jazz Faculty Grant. 
 
4. References 
 
[1] Bird, C., et al. 2008. Chapels in the Bazaar? La-

tent Social Structure in OSS. FSE. p. 24-35. 
[2] Cataldo, M. and J. Herbsleb. 2008. Communica-

tion Networks in Geographically Distributed 
Software Development. CSCW. p. 579-588. 

[3] de Souza, C.R.B. and D. Redmiles. 2008. An 
Empirical Study of Software Developers' Man-
agement of Dependencies and Changes.ICSE. p. 
241-250. 

 

 

 Figure 2. Comparing two time periods 


	1. Tesseract
	2. The Files pane links files that are frequently changed together, which is a surprisingly good heuristic for determining artifact interdependency [2] that works even in situations where code analysis fails (different programming languages, non-call-graph dependencies, etc.). The number of times two files are committed together is represented by the thickness of the edges in the network. A textual listing of the file names is provided to allow quick identification of specific files by name.
	The Developers pane displays relationships among developers. Two developers are expected to communicate if they edit interdependent artifacts often enough (thresholded). The edges in this network are colored red when developers who are expected to have communicated failed to do so. For grey (communication without expectation) or green edges (communication coinciding with expectation), the thickness of the edges is derived from the number of times developers communicated. Similar to the file network, a textual listing of the developer names is provided.
	2. Usage scenario
	Usage scenario – Patterns (retrospective):

	3. Acknowledgements
	4. References

