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Bending Instability of a General
Cross Section Thin-Wall Tube
for Minimal Radius of Curvature
Passage
This paper describes an analytical tool for the design of thin-wall tubes for passage
through minimal radius of curvature trajectory. The design is based on a model of thin-
wall tube buckling under pure bending. An extended analytical solution for general initial
cross section is found based on Brazier method by energy theory of elastic stability. The
model predicts the critical moment, curvature, flattening, and stress and allows choosing
the most suitable cross section shape for a specific purpose. For example, tubes with ocular
and rounded-ocular cross sections were found suitable for semiflexible applications such
as endoscopy, where they elastically cross a sharp corner. [DOI: 10.1115/1.4028220]

1 Introduction

The motivation for this paper comes from the field of endoscopy.
It is often necessary for an endoscope to cross a steep corner in
order to reach a designated target. The common endoscopic devices
have a fixed joint or “knee” at its edge that enables a constant pre-
defined length of the remaining tool distal to the corner (Fig. 1). In
the design suggested here, the joint is “floating” as the tube pro-
gresses through the corner, resulting in a tunable postcorner
straightened tube. In addition, the endoscopic devices are usually
limited to relatively large bending radius, preventing passage
through narrow curved places. The tube cannot be too flexible, as it
has to maintain some rigidity upon exit from the corner. The non-
linear mechanism we present here allows minimizing the bending
radius of the endoscopic end knee without crossing the elastic
region, on the one hand, while being rigid enough to sustain lateral
load at the straighten part on the other hand. The most suitable
cross section tube shape is found according to the desired specifica-
tions of corner curvature and load bearing, with circumferential
stress minimization for elastic behavior. This mechanism is mod-
eled hereby as pure moment acting on an infinitely long thin-wall
tube.

Generally, there are several types of equilibrium paths in the
buckling behavior of structures. In the case studied here, the pri-
mary equilibrium path of ovalization resembles a snap-through
type (Fig. 2). A secondary equilibrium path of buckling under axial
load, which we do not analyze here, may occur at the compression
side if the compressive stress reaches the critical bifurcation
stress (analytically approximated by rcr b ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ

p
Þ

ðEt=rÞ ffi 0:6Et=rð Þ for � ¼ 0:3 [1]). In such case, there is a bifur-
cation point between the two paths, and the secondary equilibrium
path is followed [2,3]. The primary equilibrium path of thin-wall
tube structural buckling as a result of a pure bending moment
involves a change in the tube’s cross section shape. As the curva-
ture increases, the shape is flattened or ovalized during a nonlinear,
buckling event. This event is characterized in a progressive reduc-
tion in the shell’s bending rigidity. Eventually, a maximum value
of the moment is reached; further bending occurs at a dropping
moment and stress (Fig. 2).

The instability phenomenon for such tubes due to ovalization of
their cross sections induced by bending was first investigated by

Brazier [4] in 1927. He showed analytically that when an initial
infinite straight tube with a circular cross section is bent uni-
formly, the longitudinal tension and compression that resist the
applied bending moment also tend to flatten or ovalize the cross
section of the tube. Brazier found that under steadily increasing
curvature the bending moment, being the product of curvature and
flexural stiffness, has a maximum value that is thus defined as the
instability critical moment.

Following Brazier’s original study, a great deal of work relating
to bending stability analysis of circular cross section tubes has
been done [1,5–11], confirming his results. Brazier analysis pre-
dicts quite well the moment up to its maximal critical value; how-
ever, it does not predict the postbuckling behavior. Modifications
to improve Brazier’s postbuckling analysis were investigated by
Karamanos [1], however with values �20% higher than Brazier’s.

Most of the studies investigating thin-wall tube buckling were
done on circular cross sections. As for oval or general cross sec-
tion tubes, a few studies were done on buckling under axial load
[12–15], and even fewer considering pure bending [2,3,16].
Except for Firer and Sheinman [12] who investigated general
cross section shapes, the analysis was confined to either elliptic,
oval, or square cross sections. None of those studies solved the
equations analytically.

In the present study, we have developed an analytical tool for
the design of thin-wall tubes for buckling applications needed, for
example, to cross a sharp corner and maintain its elastic properties
at the exit side. This tool allows choosing the most suitable cross
section shape for a special purpose design. The analysis is based
on Brazier’s and Karamanos’s instability model of thin-wall tubes
and solved by energy theory of elastic stability. First, we added an
extended Fourier series to Brazier’s assumption of flattening
shape due to bending to further generalization, previously done
numerically only [17]. These added terms to the circumferential
bending strain energy, the longitudinal bending strain energy and
the resulting solution. Second, we broaden the method for initially
general cross section shape, represented by either a simple
radius–angle relations or in the most general case by a truncated
Fourier series. The energy method applied to Brazier method by
Calladine [7], Li [9], and others is used here as well.

1.1 Analytical Model Based on Energy Theory of Elastic
Stability. The instability of tubes under pure bending is analyzed
here using the energy theory of elastic stability. The critical load
of a structure is the load at which the structure loses its stability,
or changes from stable to unstable equilibrium position. In terms
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of potential energy, its second variation will no longer be positive
definite [18]. The total strain energy of a thin-wall tube under pure
bending is comprised of the circumferential bending strain energy
(flattening or ovalization related) and the longitudinal bending
strain energy, and is thus given by

P ¼ Uh þ UL þ UM (1)

where Uh is the circumferential bending strain energy, UL is the
longitudinal bending strain energy, and UM ¼ �MCL is the
potential energy of the applied moment. The condition in which
the potential energy ceases to be positive definite is found based
on the Lagrange–Dirichlet theorem [19] by

dP
dqi
¼ 0 (2)
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¼ 0 (3)

were the parameters qi can be, for example, the longitudinal bend-
ing curvature of the tube C and flattening of the extreme fibers n
q1 ¼ C; q2 ¼ nð Þ. For finding the applied moment M as a function

of curvature C, only Eq. (2) is solved.

1.2 Brazier Method. When a long, originally straight, thin-
wall tube with circular cross section is subjected to pure bending
moment, the tensile and compressive longitudinal stresses on op-
posite sides of the natural plane combined with the curvature along
the tube axis flatten the cross section into an oval shape. Thus, the
deformations of the tube can be characterized by the longitudinal
bending deformation (longitudinal bending curvature) and the
cross section bending deformation (ovalization). To formulate
these deformations, the following assumptions are made [4]:

(1) The ovalization is uniform along the length of the infinite
tube and can be approximated as

w ¼ na0 cos 2hð Þ (4)

where w is the radial component of displacements, a0 is ra-
dius of a circular cross section tube; h is the angular coordi-
nate measured from neutral plane in the original
configuration, and n is the dimensionless parameter charac-
terizing the maximum flattening at the extreme fibers (Fig.
3). n is an unknown coefficient, and is represented in Eq.
(4) as a coefficient of a truncated Fourier series. Note that
the change of location along y as a result of beam bending
is not analyzed here (adds a nonsymmetric term to the dis-
placement [10]).

(2) The cross section deforms inextensionally in its own plane
[7], and is approximated by

eh ¼
1

a0

dv

dh
þ w

� �
¼ 0 (5)

where eh is the circumferential extension strain and v is the
circumferential component of displacements. Note that
w=a0ð Þ represents the radial expansion and dv=a0dhð Þ rep-

resents the relocation.

Fig. 1 (a) A common endoscope with a fixed, low curvature joint (arrow). (b) Our mechanism as a part of an endoscopic de-
vice with high curvature, “floating” joint.

Fig. 2 The process of thin-wall tube buckling as a result of
pure bending moment. The solid line represents the primary
equilibrium path; the dashed line—secondary equilibrium path.
Point 1: initial state with no external moment; point 2: begin-
ning of ovalization as a result of pure moment; point 3: bifurca-
tion point, in which the secondary equilibrium path will be
followed if buckling as a result of compression occurs; point 4:
ovalization critical point, where the tube becomes unstable and
snaps to point 5 (dashed arrow).
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Brazier found the following circumferential bending strain
energy and the longitudinal bending strain energy:

Uh ¼
3pLE

8a0

h3

1� �2
n2 (6)

UL ¼
pL

2
Eha3

0 1� 3

2
n

� �
C2 (7)

1.3 Modified Brazier Method. Karamanos modified Brazier
method by generalizing the second moment of area of the tube
cross section in the deformed configuration, resulting in the fol-
lowing longitudinal bending strain energy [1]:

UL ¼
pL

2
Eha3

0 1� 3

2
nþ 5

8
n2

� �� �
C2 (8)

where the term in the square brackets is the addition to Brazier
solution.

Karamanos method predicts quite well the ovalization extent n
as a function of the curvature, when compared to 2D Finite Ele-
ments results. It also enables prediction of the postbuckling
behavior of the moment as a function of the curvature; however, it
has values higher in �20% than Brazier’s.

2 Methods

2.1 Extended Brazier Method for Circular Cross Section.
In our study, the radial component of displacements in Eq. (4) is
further generalized by extending it with a Fourier series into [17]

w ¼ a0 n1 cos 2hð Þ þ n2 cos 4hð Þ þ � � � þ nn cos 2nhð Þð Þ (9)

where the flattening is given by w at h ¼ p=2. Note that the ovali-
zation is symmetric in relation to x and y axes. The energy equa-
tions (Eqs. (2) and (3)) in this case includes more parameters:
q1 ¼ C; q2 ¼ n1; q3 ¼ n2;…; qnþ1 ¼ nn. For simplicity, the fol-
lowing equations were calculated with a truncated Fourier series
at n ¼ 2. The circumferential curvature change of a circular cross
section is approximated by [19]

vh ¼
1

a2
0

dv

dh
� d2w

dh2

� �
(10)

The circumferential moment is given by

Mh ¼ Dvh (11)

where D is the bending stiffness, defined as D � Eh3=12ð1� �2Þð Þ.
The circumferential bending strain energy for circular cross section

can be expressed as follows by using Eqs. (5), (10), and (11), taking
into account Mxh ¼ Mx ¼ 0:

Uh ¼
L

2

ð2p

0

Mhvha0dh ¼ L

2

Eh3

12 1� �2ð Þ

ð2p

0

1

a2
0

wþ d2w

dh2

� �� �2

a0dh

(12)

where L is the tube’s length, h is the wall thickness, E is the elastic
modulus of the tube in the circumferential direction, and � is Pois-
son’s ratio. Equation (9) is substituted into Eq. (12), yielding for
an initial circular cross section

Uh ¼
3pLE

8a0

h3

1� �2
n2

1 þ 25n2
2

� 	
(13)

The longitudinal bending strain energy is calculated by consider-
ing the pure bending of the tube having a given deformed cross
section, which is

UL ¼
L

2
EI nð ÞC2 (14)

where I nð Þ is the second moment of area of the tube cross section
in the deformed configuration, which can be calculated for circu-
lar cross section by

I nð Þ ¼ h

ð2p

0

y2a0dh (15)

Given y ¼ wþ að Þ sin hþ v cosh (from geometry), calculating the
moment of inertia using Eqs. (5), (9), and (15) and substituting it
into Eq. (14), the longitudinal energy for an initial circular cross
section becomes

UL ¼
pL

2
Eha3

0 1� 3

2
n1 þ c2n2 þ

5

8
n2

1 �
5

16
n1n2 þ

17

32
n2

2

� �� �
C2

(16)

For circular cross section shape the coefficient c2 equals zero,
however, this is not the case for other cross section shapes. The
solution using Eq. (16) is referred to here as Modified & Extended
Brazier method. Similar to Brazier, we neglected the term in the
square brackets, resulting in

UL ¼
pL

2
Eha3

0 1� 3

2
n1 þ c2n2

� �
C2 (17)

The solution using Eq. (17) is referred to here as Extended Brazier
method.

Fig. 3 Longitudinal bending of initially straight tube under pure moment and the resulted cross-sectional de-
formation (dashed line). w and m are the radial and circumferential components of displacement, correspond-
ingly, as shown in the enlarged box.
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Substituting Eqs. (13) and (16) (or Eq. (17)) into Eqs. (1), (2),
and (3), the critical moment, the critical bending curvature, and
the critical ovalization terms n1cr

; n2cr
can be obtained:

Mcr ¼ M0

Ea0h2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p (18)

Ccr ¼ C0

h

a2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p (19)

The maximal critical circumferential stress is given by

rcr ¼
Mcrymax

I nð Þ � r0

Eh

a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p (20)

where ymax is the most extreme location after the deformation in y
direction. M0;C0, and r0 are normalized values of the moment,
curvature, and stress, respectively.

2.2 Generalized Solution Cross Section Shape. A few mod-
ifications to Brazier method are made in order to analyze the
bending stability for general cross section shape. The general
cross section shape radius depends on the angle and denoted as
a ¼ a hð Þ (Fig. 4). Equation (5) is also valid for general cross sec-
tion shape, replacing the constant radius a0 with a hð Þ [20]. Equa-
tion (10) for general cross section shape becomes

vh ¼
1

a

d

dh
v

a
� 1

a

dw

dh

� �
(21)

The line integral of a function along the shape’s path C in
polar coordinates is given by

Ð
C f x; yð Þds ¼

Ð b
a f ða hð ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ da=dhð Þ2

q
dh

where

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ da=dhð Þ2

q
� dh

Equation (12) thus becomes

Uh ¼
L

2

ð2p

0

Mhvh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ da

dh

� �2
s

dh (22)

and Eq. (15) becomes

I nð Þ ¼ h

ð2p

0

y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ da

dh

� �2
s

dh (23)

For example, Eq. (22) for elliptic cross section shape according to
Brazier method (compared to Eq. (6)) is

Uh ¼ 1:1849 � 3pLE

8a0

h3

1� �2
n2 (24)

Note that the integrals by h were calculated numerically due to the
complicated terms in the integrand.

2.2.1 Initial Cross Section Shape Representation. We have
investigated several special shapes in addition to the general cross
section shape, including an ellipse, an oval shape, an ocular shape,
and a rounded-ocular shape. In order to compare between the
different shapes, represented by aðhÞ, their perimeter was normal-
ized by 2pa0, that is the perimeter of a circle with a radius a0.
The perimeter normalization factor Rp, was obtained by

Rp ¼
Ð 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðhÞ2 þ daðhÞ=dhð Þ2

q
dh

� �
=2pa0. Other shape nor-

malization options are demonstrated in Sec. 3.3.
The curvature (1=aðhÞ) of a general cross section shape, such as

a rounded-ocular shape, is fitted by a truncated Fourier series in
the form of [12]

aðhÞ ¼ a0

Rp

1XN

n¼0

bn cosð2nhÞ
(25)

The ellipse shape is represented by

aðhÞ ¼ a0

Rp

b � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � cos2 hð Þ þ k2 � sin2 hð Þ

q (26)

where k and b are the major and minor semi-axes,
f ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � b2Þ

p
is the focus location and e ¼ f=k is the

eccentricity.
The oval shape is represented by

aðhÞ ¼ a0

Rp

1

1� q cosð2hÞ (27)

where q is the eccentricity coefficient. Note that the oval shape ec-
centricity ðqÞ in Eq. (27) resembles �1=3 of the ellipse eccentric-
ity ðeÞ.

An ocular cross section shape, composed of two opposite arcs,
was also investigated. Each of the ocular shape’s arcs is repre-
sented by

aðhÞ ¼ a0

Rp
6b0 sin hð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ b2
0sin2 hð Þ � b2

0

q� �
(28)

where R0 is the arc’s radius and b0 is the arc center shift in y
direction.

3 Results

In this section, the analysis results are presented in two ways:
first, the different solution methods for a circular cross section are
compared; second, analysis of different cross section shapes is
performed by Extended Brazier method for choosing the most
suitable cross section shape for a specific purpose.

3.1 Comparison of Different Solution Methods for Circu-
lar Cross Section. The solution for the critical moment and curva-
ture of a tube with circular cross section was analytically found in
five different methods: Brazier method; Modified Brazier method,
as in Eq. (8); Extended Brazier method, as in Eq. (9); Modified &
Extended Brazier method, as in Eq. (16); and Calladine method
[7]. The bending moment caused the expected ovalization effect
acting on a circular cross section tube, as discussed above. The
critical ovalization factor caused by the bending moment according
to Brazier method [4], namely ncr, equals 2=9ð Þ ffi 0:22, and occurs
at the relative maximum of the bending moment as a function of
the curvature. The critical moment factor in this method, namely

Fig. 4 The general cross section shape, represented by a hð Þ
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M0, equals p2
ffiffiffi
2
p� 	

=9

 �

ffi 0:987, the critical curvature factor is

C0 ¼
ffiffiffi
2
p

=3
� 	

ffi 0:471 and the critical stress factor, taking into

account the shape change when calculating the moment of inertia

(Eq. (20)), is r0 ¼ 7
ffiffiffi
2
p
Þ=27

� 	
ffi 0:367

�
. Brazier originally

calculated it using the initial moment of inertia of a circle and
ymax ¼ a0, resulting in r0 ffi 0:314.

The results of the different methods are all very close to Brazi-
er’s solution nearly up to the critical curvature (Fig. 5). Calladine’s
solution is the closest to Brazier’s solution in the prebuckling
stage. It is also better than the other solutions as it describes the
postbuckling behavior more accurately, as previously verified by
others with finite element analysis [1]. The Modified Brazier
method results in a legitimate moment–curvature trend; however,
the critical moment is �20% higher than expected and occurs at
much higher curvature. Note that Extended Brazier’s solution is
almost identical Brazier’s solution for circular cross section shape,
thus it is not shown in the graph. The results of the methods for
other cross section shape have similar graphs (data not shown).
The Extended Brazier method in noncircular shapes resulted in a
slight change in the results (Table 1). All values in the Extended
Brazier method were smaller than those in the Brazier method.
Equation (17) was used for Extended Brazier method with two
terms, n1; n2, as the effect of more terms was negligible; for exam-
ple, the first three terms of an oval shape ðq ¼ 0:15Þ are
n1 ¼ 0:219; n2 ¼ 5:83� 10�2n1; n3 ¼ 4:81� 10�3n1.

3.2 Analysis Results of Different Cross Section Shapes in
Extended Brazier Method. The solution for the critical moment
and curvature of a tube with different cross section shapes was
analytically found in four different methods: Brazier method;
Modified Brazier method, as in Eq. (8); Extended Brazier method,
as in Eq. (9); and Modified & Extended Brazier method, as in Eq.
(16). For brevity, only the results of Extended Brazier method are
presented hereby. The ovalization effect on different cross section
shapes was found analytically and demonstrated graphically (Fig.
6). All shapes have the same perimeter and the same maximal
height (at y direction).

According to Extended Brazier solution, all shapes have lower
critical moment and higher critical curvature than those of a circu-
lar cross section (Fig. 7). The oval and elliptic shapes resulted in
very similar graphs, as expected. The ocular shape has lower
moment than that of the oval or elliptic shape, and the rounded-

Fig. 5 The moment as a function of curvature (normalized) of
an initially circular cross section shape solved in four different
methods

Table 1 Percent of reduction in critical moment factor, critical
stress factor and critical curvature factor solved by Extended
Brazier method compared to Brazier method for oval, elliptic,
ocular, and rounded-ocular cross section shapes

Oval Elliptic Ocular Rounded-ocular

r0 ð%Þ 3.8 3.0 1.7 6.6
M0 ð%Þ 4.0 3.4 3.1 7.9
C0 ð%Þ 4.0 3.4 3.1 7.9

Fig. 6 Different initial cross section shapes (solid line) and the flattened shapes in the critical state (dashed line). (a) Oval
shape, (b) elliptic shape, (c) ocular shape, and (d) rounded-ocular shape.
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ocular shape resulted in the lowest critical moment and highest
critical curvature.

The critical stress factor of each shape (r0 in Eq. (20)) was also
calculated. The critical stress factor of the oval, elliptic, and ocu-
lar shapes was lower than that of a circular shape; however, the
critical stress factor of the rounded-ocular shape was higher than
that of the circular shape in 2.7%.

In addition, we compared our results to those of Houliara [21],
analyzing a tube with initial ovalization in the form of Eq. (4),
given by aðhÞ ¼ a0 1þ n0 cos 2hð Þð Þ. The results of Extended
Brazier solution for n0 ¼ 0:1, n0 ¼ 0 (circle), and n0 ¼ �0:1 are
displayed together with Houliara’s and Karamanos [21] numerical
results (Fig. 8). Our results for n0 ¼ �0:1 are in good agreement
with the numeric results nearly up to the critical point. For
n0 ¼ 0:1 our results are in good agreement with the numeric
results for lower curvatures (up to �0.2). It shows a similar trend
of decreased critical moment, yet higher than the numeric.

3.3 Examples of Designs. A “semiflexible” tube for endo-
scopic application was designed as an example for utilizing the
design tool developed here which further can be applied for mini-
mally invasive surgeries. The “semiflexible” tube specification
included ability to elastically reach high curvature, on the one
hand; and remain sufficiently rigid under a desired level of lateral
load after exiting the corner, on the other hand. The load F is
defined here as a point force load acting at the edge of a fixed tube
and the deflection is calculated at the edge by FL3=3EIð Þ; in the
following examples the tube length L was 30 (mm) and the load
FL was 0.75 (N mm) and 7.5 (N mm). The critical stress of the
tube must be below material yield stress in order for it to remain
elastic. In addition, wall thickness to radius ratio should be higher
than 0.1 in order to avoid wrinkles as a result of compression
related buckling (bifurcation); in the following examples it was
taken as 0:15 (mm). The critical moment, stress, and curvature of
the different shaped tubes were calculated for an isotropic mate-
rial with Young modulus of 1.5 GPa and Poisson ratio of 0.4.

Tube design by most suitable cross section shape selection is
demonstrated for three different specifications, suitable for differ-
ent applications: limited width for minimally invasive endoscopy
(spec A); limited perimeter for material weight/price minimiza-
tion (spec B); and limited height for higher load bearing capabil-
ities (spec C).

3.3.1 Spec A. The spec for this design is: cross section shape
width of 3 (mm); reach critical curvature of 5 (mm); and sustain
lateral load of 0.75 (N mm) with maximal deflection of 1 (mm).
The cross section shapes that were analyzed for spec A are: a
circle with a0 ¼ 1:5 (mm); an ellipse bounded in 0:98� 3 (mm2);
an ocular shape bounded in 1:07� 3 (mm2); and a rounded-ocular
shape bounded in 1:03� 3 (mm2) (Table 2).

It was found that the circular shape with a0 ¼ 1:5 (mm) has the
lowest deflection under the defined load; however, it is far from
the desired critical curvature of 5 (mm). The elliptic shape reaches
even higher curvature than the desired, yet with higher critical

Fig. 7 The moment as a function of curvature (normalized) for
different initial cross section shapes solved in Extended Brazier
method

Table 2 The critical moment, stress, and curvature according
to Extended Brazier method, found for shapes under the criteria
of spec A: equal width of 3 (mm) and critical curvature of
5 (mm) with maximal deflection of 1 (mm) under lateral load of
0:75 (N mm). The analyzed cross section shapes are: circular
(a0 ¼ 1:5 (mm)), elliptic (height 0:98 (mm)), ocular (height 1:07
(mm)), and rounded-ocular (height 1:03 (mm)).

Circular Elliptic Ocular Rounded-ocular

Mcr MPað Þ 55 33 29 30
rcr Mpað Þ 60 134 122 124
1=Ccr ðmmÞ 29.2 4.4 5 4.8
Deflection under load (mm) 0.1 1 1 1

Table 3 The critical moment, stress, and curvature, according
to Extended Brazier method, found for shapes under the criteria
of spec B: equal perimeter of 3p (mm) and critical curvature of
10 (mm) with maximal deflection of 0:4 (mm) under lateral load
of 0:75 (N mm). The analyzed cross section shapes are: circular
(a0 ¼ 1:5 (mm)), elliptic (bounded in 1:3934:24 (mm2)), ocular
(bounded in 1:5534:35 (mm2)), and rounded-ocular (bounded in
1:4834:3 (mm2)).

Circular Elliptic Ocular Rounded-ocular

Mcr MPað Þ 55 47 42 43
rcr Mpað Þ 60 95 84 87
1=Ccr mmð Þ 29.2 8.9 10.6 9.8
Deflection under load (mm) 0.1 0.36 0.33 0.36

Fig. 8 The moment as a function of curvature (normalized) for
oval initial cross section shape solved in Extended Brazier
method and numerically by Houliara
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moment and stress. This could be problematic if the material yield
stress is lower than this value. The ocular and the rounded-ocular
shapes result in lower stress than the elliptic shape, and reach the
desired critical curvature. These shapes are therefore the most
suitable shapes for spec A.

3.3.2 Spec B. The spec for this design is: cross section shape
perimeter of 3p (mm); reach critical curvature of 10 (mm); and
sustain lateral load of 0.75 (N mm) with maximal deflection of 0.4
(mm). The cross section shapes that were analyzed for spec B are:
a circle with a0 ¼ 1:5 (mm); an ellipse bounded in 1:39� 4:24
(mm2); an ocular shape bounded in 1:55� 4:35 (mm2); and a
rounded-ocular shape bounded in 1:48� 4:3 (mm2) (Table 3).

It was found that the circular shape with a0 ¼ 1:5 (mm) has the
lowest critical stress; however, it does not reach the desired criti-
cal curvature of 10 (mm). The elliptic shape reaches even higher
curvature than the desired, yet with higher critical stress. The ocu-
lar shape results in lower stress than the elliptic shape, however it
did not reach the desired critical curvature. The rounded-ocular
shape fulfilled all the requirements and is thus the most suitable
shape for spec B.

3.3.3 Spec C. The spec for this design is: cross section shape
height of 3 (mm); reach critical curvature of 30 (mm); and sustain
lateral load of 7.5 (N mm) with maximal deflection of 1 (mm).
The cross section shapes that were analyzed for spec C are: a
circle with a0 ¼ 1:5 (mm); an ellipse bounded in 3� 9:15 (mm2);
an ocular shape bounded in 3� 8:42 (mm2); and a rounded-ocular
shape bounded in 3� 8:73 (mm2) (Table 4).

It was found that the elliptic, ocular and rounded-ocular have
the lowest critical stress; however, it does not reach the desired
critical curvature of 30 (mm). The circular shape with a0 ¼ 1:5
(mm) is the only shape that reaches the desired critical curvature
of 30 (mm) and sustain the desired level of lateral load; It is, thus,
the most suitable shape for spec C.

4 Discussion and Conclusions

In this paper we have implemented the energy method to Bra-
zier method for general cross section shapes and further extended
the solution to include more general flattening. We have repre-
sented the general cross section shape in the most general form by
a truncated Fourier series, and also investigated some shapes of
interest.

It was found that Brazier assumption of oval flattening shape is
only valid for initial circular cross section shape; for other shapes
the Extended Brazier method’s truncated Fourier series have more
than one significant term. In these cases, the Extended Brazier
method resulted in reduced stress, moment and curvature relating
to Brazier method.

Brazier found an analytical solution for circular cross sections
only, valid up to the critical point. Modified Brazier method, as
suggested by Karamanos, predicts the postbuckling trend of
moment versus curvature quite well, however with values �20%

higher than Brazier’s. Calladine method is the most suitable for
that purpose for circular cross sections; however it is not straight
forward extendable to general cross sections.

The method described in this paper provides a novel, simple,
and intuitive tool for the selection of the most suitable cross sec-
tion tube’s shape for a specific application. It was found that dif-
ferent cross section shapes are suitable for different specifications,
as previously defined: the ocular and rounded-ocular shapes are
the most suitable for Spec A, representing limited width applica-
tions under low loads and high curvature, such as minimally inva-
sive endoscopy; the rounded-ocular shape is the most suitable for
Spec B, representing limited perimeter applications, when mate-
rial weight/price should be minimized, under low loads and mod-
erate curvature; and the circular shape is the most suitable for
Spec C, representing limited height applications under high loads
and low curvature. When designing a tube for applications such as
a semiflexible endoscopy, it is therefore recommended to consider
noncircular cross section shapes.
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