
Int. J. Security and Networks, Vol. 8, No. 2, 2013 61

Copyright © 2013 Inderscience Enterprises Ltd.

A rough set-based effective rule generation method
for classification with an application in intrusion
detection

Prasanta Gogoi and Dhruba K. Bhattacharyya*
Department of Computer Science and Engineering,
Tezpur University,
Napaam, Tezpur 784028, Assam, India
Email: prasantagogoi24@gmail.com
Email: dkb@tezu.ernet.in
*Corresponding author

Jugal K. Kalita
Department of Computer Science,
College of Engineering and Applied Science,
University of Colorado,
Colorado Springs, CO 80918, USA
Email: kalita@eas.uccs.edu

Abstract: In this paper, we use Rough Set Theory (RST) to address the important problem of
generating decision rules for data mining. In particular, we propose a rough set-based approach to
mine rules from inconsistent data. It computes the lower and upper approximations for each
concept, and then builds concise classification rules for each concept satisfying required
classification accuracy. Estimating lower and upper approximations substantially reduces the
computational complexity of the algorithm. We use UCI ML Repository data sets to test and
validate the approach. We also use our approach on network intrusion data sets captured using
our local network from network flows. The results show that our approach produces effective and
minimal rules and provides satisfactory accuracy.

Keywords: rough set; LEM2; inconsistency; minimal; redundant; PCS; intrusion detection;
network flow data.

Reference to this paper should be made as follows: Gogoi, P., Bhattacharyya, D.K. and
Kalita, J.K. (2013) ‘A rough set-based effective rule generation method for classification with an
application in intrusion detection’, Int. J. Security and Networks, Vol. 8, No. 2, pp.61–71.

Biographical notes: Prasanta Gogoi received his Bachelor’s degree from Jorhat Engineering
College, Assam, and Master’s degree in Information Technology in 2000 from Tezpur
University, Assam, India. He is currently working toward a PhD degree at Tezpur University in
the Department of Computer Science and Engineering. His current research interests include
network intrusion detection system.

Dhruba K. Bhattacharyya is currently working as a Professor in the Computer Science &
Engineering Department at Tezpur University. He received his PhD in Computer Science from
Tezpur University in 1999. His research areas include data mining, network security and content-
based image retrieval. He has published more than 150 research papers in the leading
international journals and conference proceedings. He has also written/edited four books. He is a
Programme Committee/Advisory Body member of several International conferences/workshops.

Jugal K. Kalita is a Professor of Computer Science at the University of Colorado, Colorado
Springs. He received his PhD degree from the University of Pennsylvania. His research interests
are in natural language processing, machine learning, artificial intelligence and bioinformatics.
He has published more than 120 papers in international journals and referred conference
proceedings and has written two books.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357312720?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62 P. Gogoi, D.K. Bhattacharyya and J.K. Kalita

1 Introduction

Rules can be thought of as prescribed standards on the basis
of which decisions are made for specific purposes. A rule is
a statement that establishes a principle or a standard, and
serves as a norm for guiding or mandating action or
conduct. A rule can be a conditional statement that tells the
system how to react in a particular situation. In data mining,
rule generation, in the form of association rules, was first
introduced as market-basket analysis (Agrawal et al., 1993).
In the case of association rules, rule generation is based on
the concept of frequent pattern mining for the discovery of
interesting associations and correlations among itemsets.
Later, methods were developed for classification rule
mining (Han and Kamber, 2001). It usually, rules are
represented in terms of a set of IF-THEN patterns. The IF
part (or the left hand side) of a pattern is known as rule
antecedent or precondition. The THEN part is the
consequent. In the rule antecedent, the condition consists of
one or more attribute tests which are logically connected by
AND operations. The consequent contains the class
prediction. A rough set-based approach to mining concise rules
from inconsistent data is presented in the work of (Sai et al.,
2006). In this approach, a heuristic algorithm is used to build
concise classification rules. Rule-based methods have been
applied successfully in many applications in decision making
and prediction such as in medical research (Paetz and Brause,
2002) in economics and finance (Grosan and Abraham, 2006)
and network security (Vollmer et al., 2011)).

Three types of rule generation techniques are prevalent:
frequent association rule mining, rare association rule
mining, and multi-objective rule mining. In Frequent
Association Rule Mining (FARM) (Agrawal et al., 1993),
an association rule is called frequent if its support is not less
than a given minimum support. A frequent association rule
is valid if it has a minimum confidence as well, above a user
defined threshold.

In Rare Association Rule Mining (RARM) (Kiran and
Reddy, 2010) an association rule r is called rare or
infrequent if its support is not more than a given maximum
support. It means that a rule r is rare if its support is less
than a given minimum support. A rare association rule is
valid if it is confident.

In Multi-Objective Rule Mining (MORM) (Ghosh and
Nath, 2004), the rule mining problem is considered a multi-
objective problem rather than a single objective one. In
evaluating a rule, measures such as support count,
comprehensibility and interestingness are considered to be
different objectives; the rule mining problem has to satisfy.
Support count is the number of records, which satisfy all the
conditions present in the rule. Comprehensibility, which
tries to quantify the understandability of the rule that can be
measured by the number of attributes involved in the rule.
Interestingness can be measured by how surprising a rule is.

The rules generated by the above three approaches often
are incapable of

x handling inconsistency in the database,

x generating minimal rule sets, and

x generating non-redundant rule sets as discussed in the
work of Slowinski (1992).

In many real life or synthetic data sets, inconsistency is a
common problem. Inconsistency is caused by the existence
of an indiscernbility relation in the decision table. A data set
is represented in Table 1, where each row represents an
object or record. Every column represents an attribute that
can be measured for each object. This table is a decision
table. Attributes are of two categories: condition and
decision. The indiscernbility relation occurs in a decision
table if in objects of equivalent condition attributes, decision
attributes are different. Consider the decision table with
objects p1, p2, p3 in Table 1. Condition attributes are A and
C, and the decision attribute is D. The attributes of objects
p1 and p3 are equivalent whereas their decision attributes are
different. Here, objects p1 and p3 are indiscernible and the
decision table has inconsistency.

Table 1 Inconsistent data set

Condition Attributes Decision Attribute
Objects

A C D
p1 low high yes
p2 low low no
p3 low high no

A decision table which contains an indiscernible relation is
called inconsistent. In the conventional method, one
preprocesses the data set to eliminate the inconsistency,
before it is used for classification rule generation (Han and
Kamber, 2001). The preprocessing sometimes may alter, or
eliminate some data and consequently may lead to the loss
of information.

One important aspect in the analysis of rule generation
is the presence of overlaps among the classification results
performed by the rules. If a rule overlaps another rule, the
rule is called a redundant rule. The presence of a redundant
rule can increase the number of rules and consequently
cause misclassification in a data set if more than one rule is
used to classify a single data object. Usually, when one uses
an existing method for rule generation, the creation of non-
redundant rules is rare.

None of the previously mentioned techniques can
generate classification rules that are minimal. To address
this limitation, Rough Set Theory (RST) was introduced for
classification rule generation on inconsistent data sets. RST
was first introduced by Pawlak (1982) in the year 1982, and
is especially well suited to deal with inconsistencies
(Slowinski, 1992). One of the major advantages of RST is
that it does not require any additional information about the
data such as probability distributions or grade memberships.
It is also capable of handling inconsistency.

1.1 Motivation
The cost of developing and maintaining rule sets is an
important issue for rule-based systems. Rule generation

 A rough set-based effective rule generation method for classification 63

methods have been used for numerous applications in
various domains. Many of these methods have been
developed to solve focused problems in particular
application domains, while others have been developed in a
more generic fashion. Rule generation approaches found in
the literature (e.g., Agrawal et al., 1993; Kiran and Reddy,
2010; Ghosh and Nath, 2004) have varying scopes and
abilities. A new heuristic approach based on RST is found
in the work of Liu and Li (2008) for generation of shorter
rules and comparison of rules’ abilities. The selection of an
approach for rule generation depends on the domain of
application, data type and availability of labelled data. So,
an adequate knowledge of existing approaches is highly
essential to select an appropriate method for a specific
domain. Based on our study, we observe that most existing
methods for rule generation attempt to address the issue of
inconsistency handling by eliminating the inconsistent data
prior to rule generation. However, such elimination of
inconsistent data may lead to loss of information, which is
evident from the work of Sai et al. (2006). In this paper, we
aim to provide a method of rule generation based on the
work of Grzymala-Busse (1997) and Liu and Li (2008), for
handling inconsistency in the database as well as generation
of minimal and non-redundant rule sets for classification.
We also want to establish the effectiveness of the proposed
method in the context of classification problems on high-
dimensional data, e.g. network intrusion detection used in
the work of Gogoi et al. (2010, 2011, 2012) and Bhuyan
et al. (2011)

1.2 Our contributions
Our contributions in this paper are following:

x We develop a method to find indiscernibility relations
in a data set to find inconsistencies.

x We present a method to determine lower and upper
approximations for inconsistent data.

x We generate minimised and non-redundant rule sets by
using lower and upper approximations for classification.

x We establish the effectiveness of the proposed rule
generation method using several real-life high-
dimensional data sets, including network flow data we
generate ourselves.

1.3 Organisation of the paper
The remainder of this paper is organised as follows. In the
next section, we present related work on rule generation. In
Section 3, we describe the proposed method of rule
generation. Experimental results are presented in Section 4.
In Section 5, we outline conclusions and future work.

2 Related work

Rough sets were introduced to classify in the presence of
imprecise and incomplete information. Reduct and core are

two important concepts in RST. A reduct is a subset of
attributes that is sufficient to describe the decision
attributes. Finding all the reduct sets for a data set is an NP-
hard problem (Agrawal et al., 1993). Approximation
algorithms are used to obtain a reduct set (Kiran and Reddy,
2010). All reducts contain the core. The core represents the
most important information in the original data set. The
intersection of all possible reducts is the core.

There have been attempts at applying RST to rule
discovery. Rules and decisions generated from the reducts are
representative of the knowledge that can be acquired from a
data set. In the work of Li and Cercone (2005), two modules
were used in the association rule mining procedure for
supporting organisational knowledge management and
decision making. Self-organising maps were used to cluster
sale actions based on the similarities in the characteristics of a
given set of customer records. RST was used on each cluster
to determine rules to explain associations. Adetunmbi et al.
(2008) used rough sets to all reducts of the data that contain a
minimal subset of attributes associated with a class label for
classification. RST that can help determine whether there is
redundant information in the data so that one can gather the
essential data needed for applications. The RST-based rule
generation approach is able to generate minimal and non-
redundant rule sets in inconsistent data.

2.1 Rough set

x RST is an approach to computing in the presence of
vagueness. It is an extension of classical set theory, for
use when representing vagueness or imprecision. A
rough set is concerned with working on the boundary
regions of a set (Pawlak et al., 1995). The basic concept
of RST is the notion of approximation space, which is
an ordered pair = (,)I U R , where

x I is an information system,

x U is a nonempty set of objects, called the universe, and

x R is an equivalence relation on U, called the
indiscernibility relation. If ,x y U� and xRy, x and y
are indistinguishable in I.

Each equivalence class induced by R, is called an
elementary set in A, a set of finite attributes is represented as
U/R. A definable set in I is any finite union of elementary
sets in I. For x U� , let [X]R denote the equivalence class of
R containing x. For each X U� , X is characterised in I by
a pair of sets, its lower and upper approximations in I is
defined respectively as:

^ `
^ `

= | [] ,

= | [] .
R

R

RX x U X X

RX x U X X I

� �

� � z
 (1)

A rough set in I consists of all subsets of U with the same
lower and upper approximations.

Definition 1: A decision table (Pawlak et al., 1995) is a
quadruple

^ ` ^ `= , , | , |t a aD U A V a A F a A� � (2)

64 P. Gogoi, D.K. Bhattacharyya and J.K. Kalita

where U is a universe of finite non-empty objects, A is a set
of finite attributes, Va is the domain of the attribute a A� ,
and :a aF U Vo is a function, which assigns a value from
the domain of attribute a to each object in U. In a decision
table, there is an outcome of classification. This posteriori
knowledge is expressed by one distinguished attribute called
the decision attribute {d}, where d A� . The elements of A
are called conditional attributes or conditions.

Definition 2: An indiscernibilty relation (Pawlak et al.,
1995) in a decision table with any R A� is associated with
an equivalence relation ER:

� �^ `= , : , () = () .R a aE x y U U a R F x F y� u � � (3)

The equivalence relation ER partitions the set of objects U
into disjoint subsets, i.e., equivalence classes. Such a
partition of the set U is denoted by U/R. If two elements x
and y in U belong to the same equivalence class, x and y are
indiscernible from each other by attributes from R.

Definition 3: A reduct (Pawlak et al., 1995) is a set of
attributes that preserve partition. In other words, a reduct is
the minimal subset of attributes that enable the same
classification of elements of the universe as the whole set of
attributes. In order to express the idea of a reduct, let
B A� and a B� in an information system I = (U, A)
where U is the universe of objects, A is the set of attributes,
and R(B) is a binary relation.

Attributes other than the reduct are redundant attributes.
The removal of redundant attributes cannot deteriorate the
classification. Usually, there are several reducts in a data set.

Definition 4: The core (Pawlak et al., 1995) is the set of all
indispensable attributes, i.e. it is the intersection of all
reducts. The core is included in every reduct, i.e, each
element of the core belongs to some reduct.

Thus, the core is the most important subset of attributes,
for none of its elements can be removed without affecting
the classification. If Red(B) is the set of all reducts of B in
an information system I = (U, A) where B A� , the core of
B is defined as:

() = ().core B Red B� (4)

2.2 HCRI algorithm
It is a heuristic algorithm for mining concise rules from
inconsistent data (Sai et al., 2006). This method is based on
the variable precision rough set model. It deals with
inconsistent data to mine concise rules. It first computes the
reduct for each concept, and then computes the reduct for
each object. It adopts a heuristic method to build concise
classification rules for each concept. To compute the
equivalence classes, it uses two hash functions, which
substantially reduce the complexity to O(n), =n U . The
hash functions compute the cardinality of the lower
approximation. The input to the method is a set of
inconsistent objects U and the output is a set of concise
rules satisfying a given classification accuracy.

2.3 LEM2
LEM2, Learning by Example Module, Version 2 is a
machine learning algorithm based on RST (Grzymala-
Busse, 1988). LEM2 learns a discriminant rule set, i.e.
learns the smallest set of minimal rules describing a
concept. This algorithm can generate both certain and
possible rules from a decision table with attributes being
numerical as well categorical. LEM2 needs discretisation
for numerical attributes.

For inconsistent data, LEM2 induces two sets of rules:
the certain rule set and the possible rule set. The first set is
computed from lower approximations of concepts and the
second one from upper approximations. It is assumed that
the rule set is used automatically by a classification
component. Nevertheless, induced rules are available and
comprehensible by the user. Thus, it is possible to use rules
manually, like in other systems.

Next, the LEM2 algorithm is discussed with an example.

Example: Consider a data set with records 1 2 8, , ,p p p! .
The conditional attributes are A and C. The decision
attribute is D. The values of A and D are y and n while the
values of C are n, h and v as shown in Table 2.

Table 2 Example data set

Attributes Decision
Records

A C D
p1 y n n
p2 y h y
p3 y v y
p4 n n n
P5 n h n
p6 n v y
p7 n h Y
p8 n v n

The two concepts are ^ `1 4 5 8, , ,p p p p and ^ `2 3 6 7, , ,p p p p .
The elementary sets of the indiscernibility relation defined
by the set of attributes {A, C} are {p1}, {p2}, {p3}, {p4},
{p5, p7} and {p6, p8}. Clearly, it is a case of inconsistency
because, neither {p5, p7} nor {p6, p8} are subsets of any of
the above concepts.

Let X be a concept. The greatest definable set contained
in X and the least definable set containing X are computed.
The former is called a lower approximation and the latter is
called an upper approximation of X.

The concept ^ `2 3 6 7, , ,p p p p has the lower
approximation {p2, p3} and the upper approximation
^ `2 3 5 6 7 8, , , , ,p p p p p p , because the elementary sets {p2} and

{p3} are completely present in ^ `2 3 6 7, , ,p p p p . Similarly, the

concept ^ `1 4 5 8, , ,p p p p has the lower approximation {p1, p4}

and the upper approximation ^ `1 4 5 6 7 8, , , , ,p p p p p p .
The elements of the upper approximation, which do not

belong to the lower approximation of a concept, form the

 A rough set-based effective rule generation method for classification 65

boundary region. Elements present in the boundary region
are not considered members of the concept. Here, the set
^ `5 6 7 8, , ,p p p p is the boundary region for both concepts.

For any concept, the rules induced from a lower
approximation are certainly valid. These are known as certain
rules. The rules induced from an upper approximation are
possibly valid, and are known as possible rules.

Certain rule from ^ `1 4,p p : � � � �, ,C n D no .

Certain rules from ^ `2 3,p p :

� � � � � �, , ,A y C h D y� o , and � � � � � �, , ,A y C v D y� o .

Possible rules from ^ `1 4 5 6 7 8, , , , ,p p p p p p :

 � � � �, ,A n D no , and � � � �, ,B n D no .

Possible rules from � �2 3 5 6 7 8, , , , ,p p p p p p :

� � � �, ,C h D yo , and � � � �, ,C v D yo .

The LEM2 algorithm is a single local covering approach. It
yields a single minimal discriminant description (Grzymala-
Busse, 1997), which means, it learns the smallest set of
minimal rules for every concept. The local coverings are
constructed from a minimal complex. Formal definitions of
minimal complex and local covering are given in the work
of Pawlak et al. (1995).

Definition 5: Minimal complex and local covering – Let B be
a non-empty lower or upper approximation of a concept
represented by a decision-value pair (d, w). The set T is a
minimal complex of B if and only if B depends on T and no
proper subset T c of T exists such that B depends on T c . Let
� be a non-empty set of attribute-value pairs for equivalence
class [T] of T. Then � is the local covering of B iff [(i)]

1 Each member T of � is a minimal complex of B,

2 > @ =
T

T B
��* , and

3 � is minimal, i.e. � has the smallest possible number
of members.

LEM2 is suitable for rule generation for inconsistent data. In
the next section, we introduce an enhanced version of the
LEM2 algorithm to handle, especially for the high-
dimensional classification problems. The proposed method
is superior to LEM2, because of the following features.

x Fast identification of the presence of inconsistency
and accordingly computation of lower and upper
approximations;

x Incorporation of attribute priority assignment of lower
approximation.

3 Proposed work

We have developed an effective rule generation technique
using RST based on the LEM2 algorithm. The method

works well especially for data sets with inconsistencies.
Notations used in describing the proposed method are given
in Table 3.

Our method starts with inconsistency checking for each
concept in the data set. If it finds inconsistency, it computes
an upper approximation and a lower approximation. To
compute inconsistency and to find the upper and lower
approximations, it uses the following method to support the
LEM2-based rule generation technique.

Table 3 Notation of approximation method

Symbol Meaning of symbol
* Set of concepts

Ci, Cj ,i jC C Concepts

{Cij} Indiscernible objects of concept Ci

,c cc Objects of Concepts

Uapprx Upper approximation
Lapprx Lower approximation

E Set of concepts with Lapprx and Uapprx

� A single local covering for the set E, i.e., it yields the
smallest set of minimum rules for the entire set E

pC The members of E; it is either upper or lower
approximation of a concept or a concept itself,
depending upon the existence of inconsistency

M The members of Cp
B A selected concept
G Temporary storage of B
T Set of attribute value pairs
t Member of T, i.e. t T�

[t] Equivalence class of t, i.e. the set of all objects
which have the attribute-value pair t

T(G) Set of attribute-value pairs which are present in
objects of G, i.e. ^ `() := | [] T G t t G NULL� z

[T–{t}] Set of objects which have attribute-value pairs other
than t

S Member of � other than T, i.e. ^ `S T���

3.1 Generation of upper and lower approximations
The computation of upper and lower approximations for
each concept in the data set is given in Algorithm 1. Let *
be the set of concepts in a data set. The upper and lower
approximations of each concept in * are created as follows.
The attribute-value pairs for each object of a concept are
compared with attribute-value pairs for an object of another
concept. If attribute-value pairs of both objects match, both
objects are indiscernible and the set containing these two
objects becomes an elementary set. Let object c of concept
Ci and object cc of concept Cj be indiscernible and objects c
and cc make an elementary set. Finding indiscernibility and
elementary sets takes place in lines 9–12 in Algorithm 1.
The upper approximation of concept Ci is the union of all
the objects of the elementary sets with respect to concept Ci

66 P. Gogoi, D.K. Bhattacharyya and J.K. Kalita

and object list of the concept itself. The lower
approximation of concept Ci is the subtraction of all the
objects of the elementary sets with respect to concept Ci
from the object list of concept Ci. Determination of
upper and lower approximations of concepts is given in
lines 19–21 in Algorithm 1.

Algorithm 1 CLU
Input: set of concepts * ;
Output: set of concepts E ;
 1: while NULL* z do
 2: ifor each concept C �*
 3: while NULL* z do
 4 jfor each concept C �*
 5 if i jC Cz then
 6: while iC NULLz do
 7: ifor each object c C� ;
 8: while jC NULLz do
 9: jfor each object c Cc�
 10: if all attribute value pairs of�
 c all attribute value pairs of cc{ �
 then
 11 iC is inconsistent
 (,) and c c inconsistent pairc ;
 12: { }ijindiscernible objects C of
 (,)iconcept C is updated with c cc ;
 13: end if
 14: end while
 15: end while
 16: end if
 17: end if
 18: if iC is inconsistent then
 19: { } { },apprx i ijU is union of C and C
 . ., = { } { }apprx i iji e U C C� ;
 20: { } { },apprx ij iL is subtraction of C from C
 . ., = { } { }apprx i iji e L C C� ;
 21: approx apprxupdate withU and LE ;
 22: else
 23: iupdate with CE ;
 24: end if
 25: end while

3.2 Rule generation
The rule generation method is based on the LEM2 algorithm.
LEM2 is a single local covering approach and it yields a single
minimal discriminant description. In LEM2, the user may or
may not consider any attribute priority. In contrast to LEM2,
the proposed rule generation method extracts the output of
Algorithm 1 to compute upper and lower approximations and it
considers the attribute priority for the lower approximation.
The method is given in Algorithm 2.

Attribute priority assignment: The lower approximation,
approxL , of a concept is given as a higher priority input to the

rule generation algorithm than the higher approximation,
approxU , of a concept. This is shown in lines 10 and 44 in

Algorithm 2.

Algorithm 2 Rule-gen
Input: a set of concepts E ;
Output: a set rules � ;
 1: while NULLE z do
 2: for each concept in E
 3: if found inconsistency then
 4: approx approxL and U will be the member of Cp
 5: else
 6: = ;approx pL concept will be the member of C
 7: end if
 8: while pC NULLz do
 9: pfor each member M C�
 10: = ;approxB L
 11: := ;G B
 12: := ;NULL�
 13: while G NULLz do
 14: := ;T NULL
 15: > @^ `() := | ;T G t t G NULL� z

 16: while > @= T NULL or T B� do
 17: () Select an attribute value pair t T G� �
 ;with the highest attribute priority
 18: if a tie occurs then
 19: ()Select a t T G�
 ;such that t G is maximum�
 20 if another tie occurs then
 21: ()select a t T G�
 > @ ;with the smallest cardinality of t
 22: if further tie occurs then
 23: ;select the first pair
 24: end if
 25: end if
 26: end if
 27: ^ `:= ;T T t�

 28: > @:= ;G t G�

 29: > @^ `() := | ;T G t t G NULL� z

 30 () := () ;T G T G T�
 31: end while
 32: for each t in T

 33: if ^ `T t B� �ª º¬ ¼ then

 34: ^ `:= ;T T t�
 35: end if
 36: ^ `:= ;T� �*

 A rough set-based effective rule generation method for classification 67

 37: > @:= ;
T

G B T
��

�*
 38: end while
 39: ;for each T in �
 40: if

^ `> @ =
S T

S B
���* then

 41: ^ `:= ;T� ��
 42: end if
 43: if M is inconsistent then
 44: = ;approxB U
 45: end if
 46: end while
 47: end while.

Attribute-value pair selection: A list of all the attribute-
value pairs T(G) for a concept G is created. For each
attribute-value pair t where ()t T G� , a list {t} of objects is
selected where t exists. Then the algorithm finds a list of
intersections between each {t} of t(G) and objects list {G}of
concept G. It selects t from the list of intersections with the
highest cardinality. If a tie occurs in the highest cardinality,
it selects t from among those tied such that the selected one
has the smallest cardinality of {t}. If another tie occurs in
the smallest cardinality, it selects t which appears first in the
list of tie occurred. The selection of attribute-value pairs is
shown in lines 16–22 in Algorithm 2.

Rule generation: Let t be a selected attribute-value pair
for concept G. t is the antecedent of a rule, ()t Go , if
{ } { }t G� for the list of objects { }t and the list of objects
{G} of concept G. If { } { }t G� , the list of objects { }t is
reduced from the list of objects {G} of concept G, i.e.
{ } = { } { }G G tc � and Gc is a reduced concept. For the
reduced concept, another attribute-value pair tc is selected
from set of attribute-value pairs ()T Gc of the reduced
concept Gc to build a rule as () () { }t t Gc� o . The object
list { }Gc may be further reduced with the object list { }tc if
intersection of {t} and { }tc is not a subset of object list
{ }G , i.e. { } { } { }t t Gc� � . Additional attribute-value pairs
are selected till the intersection of the object lists
{ },{ },{ },t t tc cc etc., of all the selected attribute-value pairs
becomes a subset of the object list of concept G, i.e.
{ } { }t t Gc� � �! . The rule generation steps are given in
lines 26, 29 and 31–35 in Algorithm 2.

Minimal rule set generation: Let � be the set of
generated rules for all the concepts. To create a minimal
rule set from � , rules which are covered by another rule are
removed. Let a rule S c classify a list of objects { }S c and a
rule S classify a list of objects {S}. If { }S c is a subset of
{ }S , rule S c is covered by rule S, and S c is removed from
rule set to make rule set � minimal. The creation of
minimal rule set is shown in lines 39–40 in Algorithm 2.

3.3 Complexity analysis
Let n be the total number of objects in our sample data set.
In order to verify that our algorithm handles inconsistency

property, we have to compare each individual object with
other objects present in our data set. So, the complexity of
the computation of upper and lower approximations is
O(n2). LEM2 has the complexity of O(nm) where n is the
number of objects and m is the number of attributes. The
complexity of our proposed method, comprising of
Algorithms 1 and 2, is 2() ()O n O nm� .

Our algorithm expects the sample data set to have
inconsistency. The inconsistencies may arise in only some
of the concepts but not all. So, our algorithm initially
computes approxU and approxL for those concepts only. The
concepts which do not have inconsistency are fed to the
program without finding upper and lower approximations.
The upper and lower approximations are computed before
execution of the main algorithm.

4 Experimental results

4.1 Environment used
All necessary experiments were carried out on an Intel
workstation with Intel core 2 Quad @2.4 GHz, 2 GB RAM,
160 GB HDD. The programs were developed in C in a
Linux environment.

4.2 Data sets used

4.2.1 UCI data set
The proposed method was tested on several commonly used
data sets from the UCI Machine Learning Repository data
set (Blake and Merz, 2001) and a data set mentioned in the
work of (Slowinski, 1992). The descriptions of data sets we
experimented with are given in Table 4.

Table 4 UCI ML repository (Blake and Merz, 2001) and other
(Slowinski, 1992) data set description

 Data sets Data Types Instance
Sizes

Attributes
Sizes

1 Demo (Slowinski, 1992) Categorical 9 6
2 Breast cancer Categorical 286 10
3 Congressional Voting Categorical 435 17
4 Mushroom Categorical 8124 23
5 Glass Numeric 214 10
6 Iris Numeric 150 4
7 New-Thyroid Numeric 215 6
8 Balloon Categorical 20 5
9 Hayes-roth Categorical 160 6
10 Soyabean-Small Categorical 307 35
11 Balance-scale Categorical 625 5
12 Liver Disorders Numerical 345 7

4.2.2 Real life network intrusion data set
The proposed method was also evaluated using our own
data set that includes various types of features extracted
from network flow data captured using our local network.

68 P. Gogoi, D.K. Bhattacharyya and J.K. Kalita

Using existing attack tools, we generated a group of attacks
against a local network server and collected the produced
traffic as known attack traffic. The existing attacks along
with the corresponding tools for their generation are
presented in Table 5 (Mixter, 2003). These attacks and tools
are also used by Amini et al. (2006).

Table 5 Attack list

Attack Generation Tool Attack Generation Tool
bonk targa2.c oshare targa2.c
jolt targa2.c saihyousen targa2.c

nestea targa2.c smurf smuf4.c
newtear targa2.c fraggle fraggle
syndrop targa2.c syn Nmap
teardrop targa2.c xmas Nmap
winnuke targa2.c window targa2.c

1234 targa2.c land targa2.

The experimental set-up of the testbed for network flow
capture includes one router, one L3 switch, two L2 switches,
one server, two workstations and 40 nodes. Six VLANs are
created from the L3 switch and L2 switch, and nodes and
workstations are connected to separate VLANs. The L3
switch is connected to a router through an internal IP router
and the router is connected to the internet through an external
IP router. The server is connected to the L3 switch through a
port called mirror port to observe traffic activity to the switch.
Another LAN of 350 nodes is connected to other VLANs
through five L3 and L2 switches and three routers. Attacks
are launched within our testbed as well as from another LAN
via the internet. In launching attacks within the testbed, nodes
of one VLAN are attacked from nodes of another VLAN and
as well as the same VLAN. Normal traffic is created within
our testbed in restricted conditions after disconnecting
another LAN. The traffic activities to our testbed are
observed in the computer connected to the mirror port. A
diagram of the testbed is shown in Figure 1.

Figure 1 Testbed for generating our data set (see online version
for colours)

The network flow is a unidirectional sequence of packets
passing through an observation point in the network during a

certain time interval between source and destination hosts. All
traffic belonging to a particular flow has a set of common
properties. The NetFlow protocol, the IPFIX standard
(Quittek et al., 2004; Claise, 2004), provides a summarisation
of information concerning the router or switch traffic.
Network flow is identified by source and destination IP
addresses as well as by port numbers. To identify a flow
uniquely, NetFlow also uses several fields, viz., types of
protocols and types of services (ToS) from the IP header, and
the input logical interface of the router or the switch. The
flows are stored in the router or the switch cache and exported
to a collector under the following constraints.

x The flows that have been idle for a specified time are
expired where the default setting is 15 seconds, or the
user can configure this time to be between 10 and
600 seconds.

x The flows lived longer than 30 minutes are expired.

x If the cache reaches its maximum size, a number of
heuristic expiry functions are applied to export flows.

x A TCP connection has finished with flag FIN or RST.

A flow collector tool, viz., nfdump (Haag, 2010), receives
flow records from the flow exporter and stores them in a
form suitable for further monitoring or analysis. A flow
record is the information stored in the flow exporter cache.
A flow exporter protocol defines how expired flows are
transferred by the exporter to the collector. The information
exported to the collector is referred to as flow record.
NetFlow version 5 (Cisco.com., 2010) is a simple protocol
that exports flow records of fixed size (48 bytes in total).

We used the NetFlow version 5 protocol to export flow
records and used nfdump to obtain flow records. All data
are stored to disc before analysing. This separates the
process of storing and analysing the data. The data are
organised in a time-based fashion. Nfdump has a flow
record capturing daemon process nfcapd which reads data
from the network and stores the data into files. Automatically,
every n minutes, typically 5, nfcapd rotates and renames
each output file with time stamp nfcapd.YYYYMMddhhmm.
For example, nfcapd.201012110845 contains data from
11th December 2010, 08:45, onward. Based on a five-
minute time interval, this results in 288 files per day.
Analysis of the data is done by concatenation of several files
for a single run. The output is stored either in ASCII text
or as binary data in a file and it is ready to be processed
again with the same tool. We used C programs to filter
the captured data to extract new features. Unnecessary
parameters were removed and the retained parameters were
flow-start, duration, protocol, source-IP, source-Port,
destination-IP, destination-Port, flags, ToS, bytes, packets-
per-second (pps), bits-per-second (bps) and bytes-per-packet
(Bps). Network traffic corresponding to attack and normal
traffic was gathered using our local network within a four-
week period. We collected 148,712 flow records of
16 attack types and normal records. The extracted features
were of 23 types and were classified into three groups
of features: (a) basic, (b) time-window based and
(c) connection-based features. The list of features (Gogoi
et al., 2012) is given in Table 6.

 A rough set-based effective rule generation method for classification 69

Table 6 Features of network flow intrusion data set

Description
Features

Basic features
1 Duration Length of the flow (in seconds)

2 Protocol-type Type of protocols e.g. TCP, UDP,
ICMP

3 Src IP Source node IP address
4 Dest IP Destination IP address
5 Src port Source port
6 Dest port Destination port
7 ToS Type of service
8 URG Urgent flag of TCP header
9 ACK Acknowledgement flag

10 PSH Push flag
11 RST Reset flag
12 SYN SYN flag
13 FIN FIN flag

14 Source byte Number of data bytes transferred from
source IP to destination IP

15 Land Same source IP/source port are equal to
Destination IP/Destination port

Time-window features

16 count-dest
Number of flows to unique destination
IP addresses inside the network in the
last T seconds from the same source

17 count-src
Number of flows from unique source IP
addresses inside the network in the last
T seconds to the same destination

18 count-serv-src
Number of flows from the source IP to
the same destination port in the last T
seconds.

19 count-serv-dest
Number of flows to the destination IP
using same source port in the last T
seconds.

Connection based features

20 count-dest-conn
Number of flows to unique destination
IP addresses inside the network in the
last N flows from the same source

21 count-src-conn
Number of flows from unique source IP
addresses inside the network in the last
N flows to the same destination

22 count-serv-src-conn
Number of flows from the source IP to
the same destination port in the last N
flows.

23 count-serv-dest-conn
Number of flows to the destination IP
using same source port in the last N
flows.

4.3 Validity measure
The accuracy of each experiment was measured based
on the percentage of successful classification (PSC)
(Adetunmbi et al., 2008) on the evaluated data set, where

. = 100.
.

No of Correctly Classified InstancesPSC
No of Instances in Data set

u (5)

4.4 Result analysis

4.4.1 UCI data set
The results of the experiments are reported in Table 7.

Table 7 Experimental results on UCI ML repository (Blake
and Merz, 2001) and other data set (Slowinski, 1992)

Data sets Training Set
Size

Test Set
Size

Rules
Generated

Accuracy
(PSC)

Demo (Slowinski,
1992) 9 9 7 100%

Breast cancer 500 149 17 97.32%
Congressional Voting 300 135 14 98.52%
Mushroom 450 150 18 92.67%
Glass 144 70 13 85.71%
Iris 150 150 18 93.5%
New-Thyroid 215 215 49 86.5%
Balloon 20 20 7 98%
Hayes-roth 160 160 50 95.5%
Soyabean-Small 625 625 80 91.7%
Balance-scale 625 625 50 94.8%
Liver Disorders 345 345 33 96.8%

We observe from the table that our method performs
consistently well for categorical data sets. Since, the method
is especially designed for handling inconsistency, it expects
the occurrence of at least some inconsistencies in the data
set. Another important advantage of the method is its input
order independence. We observe in Table 7 that for the UCI
Machine Learning Repository data sets such as mushroom,
glass identification, and breast cancer, the algorithm is able
to generate rules which classify with more than 90%
accuracy. Examples of generated rules for different UCI
data sets are given in Table 8. An interesting observation is
that the number of rules generated is not dependent on the
number of instances in the data set. For example, as shown
in Table 4, the mushroom data set has the maximum number
of instances, 8124. However, the number of rules generated
(see Table 7) for this data set is not the maximum. However,
with the increase in dimensionality, the number of rules
generated also increases, as given in Table 7. This is evident
in the case of soyabean-small data set given in Table 4. In
the balance-scale data set, examples of inconsistency
present in records are given in Table 9. In the presented
records, the values for the four condition attributes, viz.,
Class name, Left weight, Left distance and Right weight are
similar whereas the value for the decision attribute Right
distance is different. The rules are generated by an upper
approximation of the concept including the inconsistent
records. So, these rules are possible rules. The possible
rules generated by the method for these data are as follows.

1 (,1) (,1)Left weight Right distanceo

2 (,1) (, 2)Left weight Right distanceo

70 P. Gogoi, D.K. Bhattacharyya and J.K. Kalita

3 (,1) (,3)Left weight Right distanceo

4 (,)Class name R � (,1)Left weight o
(,5)Right distance

Table 8 Sample rules on UCI ML repository and other
data set

Data set Rules
1 � � � �

� �
, ,

,

Hemoglobin fair Temperature low

Comfort low

�

o

Demo
2 � � �

�
_ , ,

_

Blood Pressure high Comfort

very low

o

1 � � � �
� �

_ ,2 ,2

,2

Fractal Dimension Concavity

Diagonis

�

o

Breast cancer
2 � � � �

� �
_ ,2 ,8

,4

Fractal Dimension Summary

Diagonis

�

o

1 � � � �
� �

_ _ , _ ,

,

stalkcolor above ring c stalk root b

habitat m

�

o
Mushroom

2 � � � �
� �

_ , _ ,

,

geil color f ring type g

habitat g

� o

1 � � �
�

,1.32 _ _ ,

_ _ _

Aluminium type of glass

building windows float processed

o

Glass
2 � � � �

� �
,0.00 ,0.00

_ _ ,

Potassium Iron

type of glass tableware

� o

Table 9 Inconsistent data in balance-scale data set

Records Class
name

Left
weight

Left
distance

Right
weight

Right
distance

6 R 1 1 2 1
7 R 1 1 2 2
8 R 1 1 2 3
10 R 1 1 2 5

4.4.2 Real life network intrusion data set
The results of the network flow intrusion data set are given
in Table 10. The detection performance of the method in the
network flow intrusion data set is excellent. A total of
29 rules were generated for the all-attacks and normal
classes. The percentage of successful classification (PSC) in
the network flow intrusion data set, in case of the normal
class, is 99.94%; whereas for the all-attacks class it is
96.21%. Examples of generated rules for the network flow
intrusion data set are given in Table 11.

A comparison of results of rule generation from similar
data sets using different rule generation methods is shown in
Table 12. Most existing rule generation methods generate

significantly large number of rules in comparison to the
proposed method. Our method generates classification rules
in the presence of inconsistency in the data sets and with no
reduction in the size of data sets. The rule generation for
Breast cancer data set by Apriori (Agrawal et al., 1993) and
Apriori-Rare (Agrawal et al., 1993) algorithms give 125 and
11192 rules, respectively, whereas our method gives
17 rules only. In the Iris data set, Apriori-Rare algorithm
generates 88 rules and the HCRI algorithm (Sai et al., 2006)
generates 13 rules after reduction in the data set, whereas
our method generates 18 rules without any reduction in the
data set size. The HCRI algorithm and our approach
generate seven rules each for the Balloon data set. In case of
the Liver disorders data set, the proposed method performs
significantly better than the HCRI algorithm by generating
only 33 rules against 221 rules generated by the HCRI
algorithm. Another important advantage of the proposed
method is that it is capable of operating both with
categorical as well as numeric data sets.

Table 10 Results on network flow intrusion data set

Class name Records Detection Accuracy (PSC)
bonk 13,000 12,562 96.63%
jolt 1394 1374 98.57%

nestea 92 92 100%
newtear 137 136 99.27%
syndrop 66 65 98.48%
teardrop 130 130 100%
winnuke 12,000 11,559 96.33%

1234 30,000 28,929 96.43%
oshare 12,000 11,672 92.27%

silhyousen 252 25 99.60%
Smurf 30 30 100%
fraggle 12,000 10,784 89.87%

syn 8000 7598 94.98%
xmas 13,000 12,942 99.55%

window 14,000 13,565 96.89%
land 2 2 100%

All attacks 116,096 111,691 96.21%
normal 32,616 32,598 99.94%

Table 11 Sample rules on network flow intrusion data set

No. Rules
1 � � � � � �, ,0 ,1234protocol ICMP source port class� o

2 � � � � � �, ,0 ,protocol UDP RST class bonk� o

3 � � � � � � ,172.16.15.12 , ,sourc IP protocol UDP class fraggle� o

4 � � � �_ _ ,1385 ,count serv dest class jolto

5 � � � � � �, ,1 ,protocol UDP URG class nestea� o

 A rough set-based effective rule generation method for classification 71

Table 12 Comparison of results

Number of Generated Rules Data sets (Blake
and Merz, 2001) HCRI algorithm (Sai et al., 2006) Our Method

Iris 13 18
New-Thyroid 27 49

Ballon 7 7
Liver Disorders 221 33

5 Conclusion and future works

The work presented in this paper proposes a classification
rule generation method based on the LEM2 algorithm
(Grzymala-Busse, 1988). The proposed method is typically
employable in data sets that have inconsistencies. The method
exhibits satisfactory performance whenever the data set
contains inconsistencies, at least for some concepts. We have
tested our rule generation method on several real life data sets
from the UCI Machine Learning Repository and the results
are satisfactory. Thus, experimental results demonstrate the
effectiveness of the proposed method. The method works
well with our network flow intrusion data set as well.

The method covers only the local covering option. For
every concept, it generates a minimum, non-redundant set of
classification rules. However, the method does not address
the generation of a minimum, non-redundant classification
rule set collectively considering the whole data set. That is,
it does not perform global covering. Thus, it will be useful
to expand the method to consider the idea of global covering
as well. It might yield better results if we use a mixed
approach with local as well as global coverings.

References

Adetunmbi, A.O., Falaki, S.O., Adewale, O.S. and Alese, B.K.
(2008) ‘Network intrusion detection based on rough set and k-
nearest neighbour’, International Journal of Computing and
ICT Research, Vol. 2, pp.60–66.

Agrawal, R., Imielinski, T. and Swami, A. (1993) ‘Mining
association rules between sets of items in large databases’,
Proceedings of 1993 ACM SIGMOD, ACM, New York, NY,
USA, pp.207–216.

Amini, M., Jalili, R. and Shahriari, H.R. (2006) ‘RT-UNNID: a
practical solution to real-time network-based intrusion
detection using unsupervised neural networks’, Computers &
Security, Vol. 25, No. 6, pp.459–468.

Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2011)
‘Surveying port scans and their detection methodologies’, The
Computer Journal, Vol. 54, No. 4, pp.1–17.

Blake, C.L. and Merz, C.J. (2001) UCI Machine Learning
Repository, University of California, Department of
Information and Computer Science, Irvine, CA. Available
online at: http://www.ics.uci.edu/~mlearn/MLRepository.html

Cisco.com. (2010) Cisco IOS netflow con guide, Release 12.4.
Available online at: http://www.cisco.com

Claise, B. (2004) RFC 3954: Cisco systems netflow services export
version 9. Available online at: http://www.ietf.org/rfc/rfc
3954.txt

Ghosh, A. and Nath, B.T. (2004) ‘Multi-objective rule mining
using genetic algorithms’, Information Sciences: an
International Journal, Vol. 163, pp.123–133.

Gogoi, P., Bhattacharyya, D.K., Borah, B. and Kalita, J.K. (2011) ‘A
survey of outlier detection methods in network anomaly
identification’, The Computer Journal, Vol. 54, No. 4, pp.570–588.

Gogoi, P., Bhuyan, M.H., Bhattacharyya, D.K. and Kalita, J.K. (2012)
‘Packet and flow based network intrusion dataset’, Proceeding of
the 5th International Conference on Contemporary Computing
(IC3-2012), Springer, India, pp.322–334.

Gogoi, P., Borah, B. and Bhattacharyya, D.K. (2010) ‘Anomaly
detection analysis of intrusion data using supervised &
unsupervised approach’, Journal of Convergence Information
Technology, Vol. 5, No. 1, pp.95–110.

Gogoi, P., Borah, B., Bhattacharyya, D.K. and Kalita, J.K. (2012)
‘Outlier identification using symmetric neighborhoods’,
Proceedings of 2nd International Conference of
Communication Computing & Security (ICCCS 2012), Vol. 6,
Procedia Technology, Elsevier, India, pp.239–246.

Grosan, C. and Abraham, A. (2006) ‘Stock market modeling using
genetic programming ensembles’, Genetic Systems
Programming: Theory and Experiences, Vol. 13, pp.133–148.

Grzymala-Busse, J.W. (1988) ‘Knowledge acquisition under
uncertainty a rough set approach’, Journal of Intelligent &
Robotic Systems, Vol. 1, No. 1, pp.3–16.

Grzymala-Busse, J.W. (1997) ‘A new version of the rule induction
system LERS’, Fundamenta Informaticae, Vol. 31, No. 1,
pp.27–39.

Haag, P. (2010) NFDUMP & NFSEN. Available online at:
http://nfdump.sourceforge.net/

Han, J. and Kamber, M. (2001) Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers, San Francisco, CA.

Kiran, R.U. and Reddy, P.K. (2010) ‘Mining rare association rules
in the datasets with widely varying items’ frequencies’,
Lecture Notes in Computer Science, Vol. 5981, pp.49–62.

Li, J. and Cercone, N. (2005) ‘A rough set based model to rank the
importance of association rules’, Lecture Notes in Computer
Science, Vol. 3642, pp.109–118.

Liu, Z. and Li, Y. (2008) ‘A new heuristic algorithm of rules
generation based on rough sets’, Proceeding of ISBM 2008,
IEEE Computer Society, Washington, DC, USA, pp.291–294.

Mixter, D. (2003) Attacks Tools and Information. Available online
at: http://packetstormsecurity.nl/index.html

Paetz, J. and Brause, R. (2002) ‘Rule generation and model
selection used for medical diagnosis’, Journal of Intelligent &
Fuzzy Systems: Applications in Engineering and Technology
– Challenges for future intelligent systems in biomedicine,
Vol. 12, No. 1, pp.69–78.

Pawlak, Z., Grazymala-Busse, J.W., Slowinski, R. and Ziarko, W.
(1995) ‘Rough sets’, Communications of the ACM, Vol. 38,
pp.88–95.

Quittek, J., Zseby, T., Claise, B. and Zender, S. (2004) Requirements
for IP flow information export: IPFIX, Hawthorn Victoria.
Available online at: http://www.ietf.org/ rfc/rfc3917.txt

Sai, Y., Nie, P., Xu, R. and Huang, J. (2006) ‘A rough set approach
to mining concise rules from inconsistent data’, Proceedings
of IEEE GRC 2006, IEEE, Atlanta USA, pp.333–336.

Slowinski, R. (1992) In Intelligent Decision Support: Handbook of
Applications and Advances of the Rough Set Theory, Kluwer
Academic Publishers, Norwell, MA, USA.

Vollmer, T., Foss, J.A. and Manic, M. (2011) ‘Autonomous rule
creation for intrusion detection’, Proceedings of SCCI 2011,
IEEE, Paris, France, pp.1–8.

