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1 Introduction 

Rules can be thought of as prescribed standards on the basis 
of which decisions are made for specific purposes. A rule is 
a statement that establishes a principle or a standard, and 
serves as a norm for guiding or mandating action or 
conduct. A rule can be a conditional statement that tells the 
system how to react in a particular situation. In data mining, 
rule generation, in the form of association rules, was first 
introduced as market-basket analysis (Agrawal et al., 1993). 
In the case of association rules, rule generation is based on 
the concept of frequent pattern mining for the discovery of 
interesting associations and correlations among itemsets. 
Later, methods were developed for classification rule 
mining (Han and Kamber, 2001). It usually, rules are 
represented in terms of a set of IF-THEN patterns. The IF 
part (or the left hand side) of a pattern is known as rule 
antecedent or precondition. The THEN part is the 
consequent. In the rule antecedent, the condition consists of 
one or more attribute tests which are logically connected by 
AND operations. The consequent contains the class 
prediction. A rough set-based approach to mining concise rules 
from inconsistent data is presented in the work of (Sai et al., 
2006). In this approach, a heuristic algorithm is used to build 
concise classification rules. Rule-based methods have been 
applied successfully in many applications in decision making 
and prediction such as in medical research (Paetz and Brause, 
2002) in economics and finance (Grosan and Abraham, 2006) 
and network security (Vollmer et al., 2011)). 

Three types of rule generation techniques are prevalent: 
frequent association rule mining, rare association rule 
mining, and multi-objective rule mining. In Frequent 
Association Rule Mining (FARM) (Agrawal et al., 1993), 
an association rule is called frequent if its support is not less 
than a given minimum support. A frequent association rule 
is valid if it has a minimum confidence as well, above a user 
defined threshold. 

In Rare Association Rule Mining (RARM) (Kiran and 
Reddy, 2010) an association rule r is called rare or 
infrequent if its support is not more than a given maximum 
support. It means that a rule r is rare if its support is less 
than a given minimum support. A rare association rule is 
valid if it is confident. 

In Multi-Objective Rule Mining (MORM) (Ghosh and 
Nath, 2004), the rule mining problem is considered a multi-
objective problem rather than a single objective one. In 
evaluating a rule, measures such as support count, 
comprehensibility and interestingness are considered to be 
different objectives; the rule mining problem has to satisfy. 
Support count is the number of records, which satisfy all the 
conditions present in the rule. Comprehensibility, which 
tries to quantify the understandability of the rule that can be 
measured by the number of attributes involved in the rule.  
Interestingness can be measured by how surprising a rule is. 

The rules generated by the above three approaches often 
are incapable of 

x handling inconsistency in the database, 

x generating minimal rule sets, and 

x generating non-redundant rule sets as discussed in the 
work of Slowinski (1992). 

In many real life or synthetic data sets, inconsistency is a 
common problem. Inconsistency is caused by the existence 
of an indiscernbility relation in the decision table. A data set 
is represented in Table 1, where each row represents an 
object or record. Every column represents an attribute that 
can be measured for each object. This table is a decision 
table. Attributes are of two categories: condition and 
decision. The indiscernbility relation occurs in a decision 
table if in objects of equivalent condition attributes, decision 
attributes are different. Consider the decision table with 
objects p1, p2, p3 in Table 1. Condition attributes are A and 
C, and the decision attribute is D. The attributes of objects 
p1 and p3 are equivalent whereas their decision attributes are 
different. Here, objects p1 and p3 are indiscernible and the 
decision table has inconsistency. 

Table 1 Inconsistent data set 

Condition Attributes Decision Attribute 
Objects 

A C D 
p1 low high yes 
p2 low low no 
p3 low high no 

A decision table which contains an indiscernible relation is 
called inconsistent. In the conventional method, one 
preprocesses the data set to eliminate the inconsistency, 
before it is used for classification rule generation (Han and 
Kamber, 2001). The preprocessing sometimes may alter, or 
eliminate some data and consequently may lead to the loss 
of information. 

One important aspect in the analysis of rule generation 
is the presence of overlaps among the classification results 
performed by the rules. If a rule overlaps another rule, the 
rule is called a redundant rule. The presence of a redundant 
rule can increase the number of rules and consequently 
cause misclassification in a data set if more than one rule is 
used to classify a single data object. Usually, when one uses 
an existing method for rule generation, the creation of non-
redundant rules is rare. 

None of the previously mentioned techniques can 
generate classification rules that are minimal. To address 
this limitation, Rough Set Theory (RST) was introduced for 
classification rule generation on inconsistent data sets. RST 
was first introduced by Pawlak (1982) in the year 1982, and 
is especially well suited to deal with inconsistencies 
(Slowinski, 1992). One of the major advantages of RST is 
that it does not require any additional information about the 
data such as probability distributions or grade memberships. 
It is also capable of handling inconsistency. 

1.1 Motivation 
The cost of developing and maintaining rule sets is an 
important issue for rule-based systems. Rule generation  
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methods have been used for numerous applications in 
various domains. Many of these methods have been 
developed to solve focused problems in particular 
application domains, while others have been developed in a 
more generic fashion. Rule generation approaches found in 
the literature (e.g., Agrawal et al., 1993; Kiran and Reddy, 
2010; Ghosh and Nath, 2004) have varying scopes and 
abilities. A new heuristic approach based on RST is found 
in the work of Liu and Li (2008) for generation of shorter 
rules and comparison of rules’ abilities. The selection of an 
approach for rule generation depends on the domain of 
application, data type and availability of labelled data. So, 
an adequate knowledge of existing approaches is highly 
essential to select an appropriate method for a specific 
domain. Based on our study, we observe that most existing 
methods for rule generation attempt to address the issue of 
inconsistency handling by eliminating the inconsistent data 
prior to rule generation. However, such elimination of 
inconsistent data may lead to loss of information, which is 
evident from the work of Sai et al. (2006). In this paper, we 
aim to provide a method of rule generation based on the 
work of Grzymala-Busse (1997) and Liu and Li (2008), for 
handling inconsistency in the database as well as generation 
of minimal and non-redundant rule sets for classification. 
We also want to establish the effectiveness of the proposed 
method in the context of classification problems on high-
dimensional data, e.g. network intrusion detection used in 
the work of Gogoi et al. (2010, 2011, 2012) and Bhuyan  
et al. (2011) 

1.2 Our contributions 
Our contributions in this paper are following: 

x We develop a method to find indiscernibility relations 
in a data set to find inconsistencies. 

x We present a method to determine lower and upper 
approximations for inconsistent data. 

x We generate minimised and non-redundant rule sets by 
using lower and upper approximations for classification. 

x We establish the effectiveness of the proposed rule 
generation method using several real-life high-
dimensional data sets, including network flow data we 
generate ourselves. 

1.3 Organisation of the paper 
The remainder of this paper is organised as follows. In the 
next section, we present related work on rule generation. In 
Section 3, we describe the proposed method of rule 
generation. Experimental results are presented in Section 4. 
In Section 5, we outline conclusions and future work. 

2 Related work 

Rough sets were introduced to classify in the presence of 
imprecise and incomplete information. Reduct and core are 

two important concepts in RST. A reduct is a subset of 
attributes that is sufficient to describe the decision 
attributes. Finding all the reduct sets for a data set is an NP-
hard problem (Agrawal et al., 1993). Approximation 
algorithms are used to obtain a reduct set (Kiran and Reddy, 
2010). All reducts contain the core. The core represents the 
most important information in the original data set. The 
intersection of all possible reducts is the core. 

There have been attempts at applying RST to rule 
discovery. Rules and decisions generated from the reducts are 
representative of the knowledge that can be acquired from a 
data set. In the work of Li and Cercone (2005), two modules 
were used in the association rule mining procedure for 
supporting organisational knowledge management and 
decision making. Self-organising maps were used to cluster 
sale actions based on the similarities in the characteristics of a 
given set of customer records. RST was used on each cluster 
to determine rules to explain associations. Adetunmbi et al. 
(2008) used rough sets to all reducts of the data that contain a 
minimal subset of attributes associated with a class label for 
classification. RST that can help determine whether there is 
redundant information in the data so that one can gather the 
essential data needed for applications. The RST-based rule 
generation approach is able to generate minimal and non-
redundant rule sets in inconsistent data. 

2.1 Rough set 

x RST is an approach to computing in the presence of 
vagueness. It is an extension of classical set theory, for 
use when representing vagueness or imprecision. A 
rough set is concerned with working on the boundary 
regions of a set (Pawlak et al., 1995). The basic concept 
of RST is the notion of approximation space, which is 
an ordered pair = ( , )I U R , where 

x I is an information system,  

x U is a nonempty set of objects, called the universe, and 

x R is an equivalence relation on U, called the 
indiscernibility relation. If ,x y U�  and xRy, x and y 
are indistinguishable in I. 

Each equivalence class induced by R, is called an 
elementary set in A, a set of finite attributes is represented as 
U/R. A definable set in I is any finite union of elementary 
sets in I. For x U� , let [X]R denote the equivalence class of 
R containing x. For each X U� , X is characterised in I by 
a pair of sets, its lower and upper approximations in I is 
defined respectively as: 

^ `
^ `

= | [ ] ,

= | [ ] .
R

R

RX x U X X

RX x U X X I

� �

� � z
 (1) 

A rough set in I consists of all subsets of U with the same 
lower and upper approximations. 

Definition 1: A decision table (Pawlak et al., 1995) is a 
quadruple 

^ ` ^ `= , , | , |t a aD U A V a A F a A� �  (2) 
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where U is a universe of finite non-empty objects, A is a set 
of finite attributes, Va is the domain of the attribute a A� , 
and :a aF U Vo  is a function, which assigns a value from 
the domain of attribute a to each object in U. In a decision 
table, there is an outcome of classification. This posteriori 
knowledge is expressed by one distinguished attribute called 
the decision attribute {d}, where d A� . The elements of A 
are called conditional attributes or conditions.  

Definition 2: An indiscernibilty relation (Pawlak et al., 
1995) in a decision table with any R A�  is associated with 
an equivalence relation ER: 

� �^ `= , : , ( ) = ( ) .R a aE x y U U a R F x F y� u � �  (3) 

The equivalence relation ER partitions the set of objects U 
into disjoint subsets, i.e., equivalence classes. Such a 
partition of the set U is denoted by U/R. If two elements x 
and y in U belong to the same equivalence class, x and y are 
indiscernible from each other by attributes from R.  

Definition 3: A reduct (Pawlak et al., 1995) is a set of 
attributes that preserve partition. In other words, a reduct is 
the minimal subset of attributes that enable the same 
classification of elements of the universe as the whole set of 
attributes. In order to express the idea of a reduct, let 
B A�  and a B�  in an information system I = (U, A) 
where U is the universe of objects, A is the set of attributes, 
and R(B) is a binary relation. 

Attributes other than the reduct are redundant attributes. 
The removal of redundant attributes cannot deteriorate the 
classification. Usually, there are several reducts in a data set. 

Definition 4: The core (Pawlak et al., 1995) is the set of all 
indispensable attributes, i.e. it is the intersection of all 
reducts. The core is included in every reduct, i.e, each 
element of the core belongs to some reduct.  

Thus, the core is the most important subset of attributes, 
for none of its elements can be removed without affecting 
the classification. If Red(B) is the set of all reducts of B in 
an information system I = (U, A) where B A� , the  core of 
B is defined as: 

( ) = ( ).core B Red B�  (4) 

2.2 HCRI algorithm 
It is a heuristic algorithm for mining concise rules from 
inconsistent data (Sai et al., 2006). This method is based on 
the variable precision rough set model. It deals with 
inconsistent data to mine concise rules. It first computes the 
reduct for each concept, and then computes the reduct for 
each object. It adopts a heuristic method to build concise 
classification rules for each concept. To compute the 
equivalence classes, it uses two hash functions, which 
substantially reduce the complexity to O(n), =n U . The 
hash functions compute the cardinality of the lower 
approximation. The input to the method is a set of 
inconsistent objects U and the output is a set of concise 
rules satisfying a given classification accuracy. 

2.3 LEM2 
LEM2, Learning by Example Module, Version 2 is a 
machine learning algorithm based on RST (Grzymala-
Busse, 1988). LEM2 learns a discriminant rule set, i.e. 
learns the smallest set of minimal rules describing a 
concept. This algorithm can generate both certain and 
possible rules from a decision table with attributes being 
numerical as well categorical. LEM2 needs discretisation 
for numerical attributes. 

For inconsistent data, LEM2 induces two sets of rules: 
the certain rule set and the possible rule set. The first set is 
computed from lower approximations of concepts and the 
second one from upper approximations. It is assumed that 
the rule set is used automatically by a classification 
component. Nevertheless, induced rules are available and 
comprehensible by the user. Thus, it is possible to use rules 
manually, like in other systems. 

Next, the LEM2 algorithm is discussed with an example. 

Example: Consider a data set with records 1 2 8, , ,p p p! . 
The conditional attributes are A and C. The decision 
attribute is D. The values of A and D are y and n while the 
values of C are n, h and v as shown in Table 2. 

Table 2 Example data set 

Attributes Decision 
Records 

A C D 
p1 y n n 
p2 y h y 
p3 y v y 
p4 n n n 
P5 n h n 
p6 n v y 
p7 n h Y 
p8 n v n 

The two concepts are ^ `1 4 5 8, , ,p p p p  and ^ `2 3 6 7, , ,p p p p . 
The elementary sets of the indiscernibility relation defined 
by the set of attributes {A, C} are {p1}, {p2}, {p3}, {p4}, 
{p5, p7} and {p6, p8}. Clearly, it is a case of inconsistency 
because, neither {p5, p7} nor {p6, p8} are subsets of any of 
the above concepts. 

Let X be a concept. The greatest definable set contained 
in X and the least definable set containing X are computed. 
The former is called a lower approximation and the latter is 
called an upper approximation of X. 

The concept ^ `2 3 6 7, , ,p p p p  has the lower 
approximation {p2, p3} and the upper approximation 
^ `2 3 5 6 7 8, , , , ,p p p p p p , because the elementary sets {p2} and 

{p3} are completely present in ^ `2 3 6 7, , ,p p p p . Similarly, the 

concept ^ `1 4 5 8, , ,p p p p  has the lower approximation {p1, p4} 

and the upper approximation ^ `1 4 5 6 7 8, , , , ,p p p p p p . 
The elements of the upper approximation, which do not 

belong to the lower approximation of a concept, form the 
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boundary region. Elements present in the boundary region 
are not considered members of the concept. Here, the set 
^ `5 6 7 8, , ,p p p p  is the boundary region for both concepts. 

For any concept, the rules induced from a lower 
approximation are certainly valid. These are known as certain 
rules. The rules induced from an upper approximation are 
possibly valid, and are known as possible rules. 

Certain rule from ^ `1 4,p p : � � � �, ,C n D no . 

Certain rules from ^ `2 3,p p :  

� � � � � �, , ,A y C h D y� o , and � � � � � �, , ,A y C v D y� o . 

Possible rules from ^ `1 4 5 6 7 8, , , , ,p p p p p p : 

 � � � �, ,A n D no , and � � � �, ,B n D no . 

Possible rules from � �2 3 5 6 7 8, , , , ,p p p p p p :  

� � � �, ,C h D yo , and � � � �, ,C v D yo . 

The LEM2 algorithm is a single local covering approach. It 
yields a single minimal discriminant description (Grzymala-
Busse, 1997), which means, it learns the smallest set of 
minimal rules for every concept. The local coverings are 
constructed from a minimal complex. Formal definitions of 
minimal complex and local covering are given in the work 
of Pawlak et al. (1995). 

Definition 5: Minimal complex and local covering – Let B be 
a non-empty lower or upper approximation of a concept 
represented by a decision-value pair (d, w). The set T is a 
minimal complex of B if and only if B depends on T and no 
proper subset T c  of T exists such that B depends on T c . Let 
�  be a non-empty set of attribute-value pairs for equivalence 
class [T] of T. Then �  is the local covering of B iff [(i)] 

1 Each member T of �  is a minimal complex of B, 

2 > @ =
T

T B
��* , and 

3 �  is minimal, i.e. �  has the smallest possible number 
of members.  

LEM2 is suitable for rule generation for inconsistent data. In 
the next section, we introduce an enhanced version of the 
LEM2 algorithm to handle, especially for the high-
dimensional classification problems. The proposed method 
is superior to LEM2, because of the following features.   

x Fast identification of the presence of inconsistency  
and accordingly computation of lower and upper 
approximations;  

x Incorporation of attribute priority assignment of lower 
approximation.  

3 Proposed work 

We have developed an effective rule generation technique 
using RST based on the LEM2 algorithm. The method  

works well especially for data sets with inconsistencies. 
Notations used in describing the proposed method are given 
in Table 3.  

Our method starts with inconsistency checking for each 
concept in the data set. If it finds inconsistency, it computes 
an upper approximation and a lower approximation. To 
compute inconsistency and to find the upper and lower 
approximations, it uses the following method to support the 
LEM2-based rule generation technique. 

Table 3 Notation of approximation method 

Symbol Meaning of symbol 
*  Set of concepts 

Ci, Cj ,i jC C Concepts 

{Cij} Indiscernible objects of concept Ci 

,c cc  Objects of Concepts 

Uapprx Upper approximation 
Lapprx Lower approximation 

E Set of concepts with Lapprx and Uapprx 

�  A single local covering for the set E, i.e., it yields the 
smallest set of minimum rules for the entire set E 

pC  The members of E; it is either upper or lower 
approximation of a concept or a concept itself, 
depending upon the existence of inconsistency 

M The members of Cp 
B A selected concept  
G Temporary storage of B 
T Set of attribute value pairs 
t Member of T, i.e.   t T�  

[t] Equivalence class of t, i.e. the set of all objects 
which have the attribute-value pair t 

T(G) Set of attribute-value pairs which are present in 
objects of G, i.e. ^ `( ) :=  | [ ]    T G t t G NULL� z  

[T–{t}] Set of objects which have attribute-value pairs other 
than t  

S Member of �  other than T, i.e. ^ `S T���   

3.1 Generation of upper and lower approximations 
The computation of upper and lower approximations for 
each concept in the data set is given in Algorithm 1. Let *  
be the set of concepts in a data set. The upper and lower 
approximations of each concept in *  are created as follows. 
The attribute-value pairs for each object of a concept are 
compared with attribute-value pairs for an object of another 
concept. If attribute-value pairs of both objects match, both 
objects are indiscernible and the set containing these two 
objects becomes an elementary set. Let object c of concept 
Ci and object cc  of concept Cj be indiscernible and objects c 
and cc  make an elementary set. Finding indiscernibility and 
elementary sets takes place in lines 9–12 in Algorithm 1. 
The upper approximation of concept Ci is the union of all 
the objects of the elementary sets with respect to concept Ci 
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and object list of the concept itself. The lower 
approximation of concept Ci is the subtraction of all the 
objects of the elementary sets with respect to concept Ci 
from the object list of concept Ci. Determination of  
upper and lower approximations of concepts is given in 
lines 19–21 in Algorithm 1.  

Algorithm 1 CLU 
Input:     set of concepts * ;  
Output:    set of concepts E ;  
     1: while NULL* z  do 
     2:       ifor each concept C �*  
     3:  while NULL* z  do 
     4        jfor each concept C �*   
     5   if i jC Cz  then 
     6:     while iC NULLz  do 
     7:             ifor each object c C� ;   
     8:         while jC NULLz  do 
     9:                   jfor each object c Cc�  
     10:            if    all attribute value pairs of�  
                                c all attribute value pairs of cc{ �  
                            then 
     11                      iC is inconsistent  
                               ( , )  and c c inconsistent pairc ;  
     12:                      { }ijindiscernible objects C of    
                                    ( , )iconcept C is updated with c cc ; 
     13:                end if 
     14:             end while 
     15:         end while 
     16:      end if 
     17:    end if 
     18:    if   iC is inconsistent  then 
     19:             { }  { },apprx i ijU is union of C and C  
                     . ., = { }  { }apprx i iji e U C C� ;   
     20:              { }  { },apprx ij iL is subtraction of C from C  
                     . ., = { } { }apprx i iji e L C C� ;  
     21:               approx apprxupdate withU and LE ;   
     22:       else 
     23:        iupdate with CE ;     
     24:    end if 
     25:  end while 

3.2 Rule generation 
The rule generation method is based on the LEM2 algorithm. 
LEM2 is a single local covering approach and it yields a single 
minimal discriminant description. In LEM2, the user may or 
may not consider any attribute priority. In contrast to LEM2, 
the proposed rule generation method extracts the output of 
Algorithm 1 to compute upper and lower approximations and it 
considers the attribute priority for the lower approximation. 
The method is given in Algorithm 2. 

Attribute priority assignment: The lower approximation, 
approxL , of a concept is given as a higher priority input to the 

rule generation algorithm than the higher approximation, 
approxU , of a concept. This is shown in lines 10 and 44 in 

Algorithm 2. 

Algorithm 2 Rule-gen 
Input:  a set of concepts E ; 
Output:  a set rules � ; 
      1: while NULLE z  do 
      2:      for each concept in E  
      3:     if  found inconsistency  then 
      4:            approx approxL and U  will be the member of Cp 
      5:      else 
      6:          =       ;approx pL concept will be the member of C  
      7:     end if 
      8:     while pC NULLz  do 
      9:              pfor each member M C�   
      10:        = ;approxB L  
      11:        := ;G B   
      12:         := ;NULL�  
      13:         while G NULLz  do 
      14:            := ;T NULL  
      15:            > @^ `( ) :=  | ;T G t t G NULL� z  

      16:             while > @=   T NULL or T B�  do 
      17:                      ( ) Select an attribute value pair t T G� �  
                                  ;with the highest attribute priority    
      18:                    if   a tie occurs  then 
      19:                             ( )Select a t T G�  
                                           ;such that t G is maximum�  
      20                             if   another tie occurs  then 
      21:                                 ( )select a t T G�  
                   > @    ;with the smallest cardinality of t  
      22:                              if   further tie occurs  then 
      23:                                     ;select the first pair  
      24:                              end if 
      25:                       end if 
      26:                   end if 
      27:                  ^ `:=  ;T T t�   

      28:                   > @:= ;G t G�   

      29:                   > @^ `( ) := |   ;T G t t G NULL� z  

      30                    ( ) := ( ) ;T G T G T�  
      31:             end while 
      32:                 for each t in T    

      33:               if ^ `T t B� �ª º¬ ¼  then 

      34:                       ^ `:= ;T T t�  
      35:              end if 
      36:              ^ `:= ;T� �*  
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      37:               > @:= ;
T

G B T
��

�*  
      38:         end while 
      39:             ;for each T in �   
      40: if 

^ `> @ =
S T

S B
���*  then 

      41:   ^ `:= ;T� ��   
      42:   end if 
      43:    if   M is inconsistent  then 
      44:          = ;approxB U  
      45:       end if 
      46:    end while 
      47:   end while. 

Attribute-value pair selection: A list of all the attribute-
value pairs T(G) for a concept G is created. For each 
attribute-value pair t where ( )t T G� , a list {t} of objects is 
selected where t exists. Then the algorithm finds a list of 
intersections between each {t} of t(G) and objects list {G}of 
concept G. It selects t from the list of intersections with the 
highest cardinality. If a tie occurs in the highest cardinality, 
it selects t from among those tied such that the selected one 
has the smallest cardinality of {t}. If another tie occurs in 
the smallest cardinality, it selects t which appears first in the 
list of tie occurred. The selection of attribute-value pairs is 
shown in lines 16–22 in Algorithm 2.  

Rule generation: Let t be a selected attribute-value pair 
for concept G. t is the antecedent of a rule, ( )t Go , if 
{ }  { }t G�  for the list of objects { }t  and the list of objects 
{G} of concept G. If { } { }t G� , the list of objects { }t  is 
reduced from the list of objects {G} of concept G, i.e. 
{ } = { } { }G G tc �  and Gc  is a reduced concept. For the 
reduced concept, another attribute-value pair tc  is selected 
from set of attribute-value pairs ( )T Gc  of the reduced 
concept Gc  to build a rule as ( ) ( ) { }t t Gc� o . The object 
list { }Gc  may be further reduced with the object list { }tc  if 
intersection of {t} and { }tc  is not a subset of object list 
{ }G , i.e. { } { } { }t t Gc� � . Additional attribute-value pairs 
are selected till the intersection of the object lists 
{ },{ },{ },t t tc cc  etc., of all the selected attribute-value pairs 
becomes a subset of the object list of concept G, i.e. 
{ } { }t t Gc� � �! . The rule generation steps are given in 
lines 26, 29 and 31–35 in Algorithm 2. 

Minimal rule set generation: Let �  be the set of 
generated rules for all the concepts. To create a minimal 
rule set from � , rules which are covered by another rule are 
removed. Let a rule S c  classify a list of objects { }S c  and a 
rule S classify a list of objects {S}. If { }S c  is a subset of 
{ }S , rule S c  is covered by rule S, and S c  is removed from 
rule set to make rule set �  minimal. The creation of 
minimal rule set is shown in lines 39–40 in Algorithm 2. 

3.3 Complexity analysis 
Let n be the total number of objects in our sample data set. 
In order to verify that our algorithm handles inconsistency 

property, we have to compare each individual object with 
other objects present in our data set. So, the complexity of 
the computation of upper and lower approximations is 
O(n2). LEM2 has the complexity of O(nm) where n is the 
number of objects and m is the number of attributes. The 
complexity of our proposed method, comprising of 
Algorithms 1 and 2, is 2( ) ( )O n O nm� . 

Our algorithm expects the sample data set to have 
inconsistency. The inconsistencies may arise in only some 
of the concepts but not all. So, our algorithm initially 
computes approxU  and approxL  for those concepts only. The 
concepts which do not have inconsistency are fed to the 
program without finding upper and lower approximations. 
The upper and lower approximations are computed before 
execution of the main algorithm. 

4 Experimental results 

4.1 Environment used 
All necessary experiments were carried out on an Intel 
workstation with Intel core 2 Quad @2.4 GHz, 2 GB RAM, 
160 GB HDD. The programs were developed in C in a 
Linux environment. 

4.2 Data sets used 

4.2.1 UCI data set 
The proposed method was tested on several commonly used 
data sets from the UCI Machine Learning Repository data 
set (Blake and Merz, 2001) and a data set mentioned in the 
work of (Slowinski, 1992). The descriptions of data sets we 
experimented with are given in Table 4. 

Table 4 UCI ML repository (Blake and Merz, 2001) and other 
(Slowinski, 1992) data set description 

 Data sets Data Types Instance 
Sizes 

Attributes 
Sizes 

1 Demo (Slowinski, 1992) Categorical 9 6 
2 Breast cancer Categorical 286 10 
3 Congressional Voting Categorical 435 17 
4 Mushroom Categorical 8124 23 
5 Glass Numeric 214 10 
6 Iris Numeric 150 4 
7 New-Thyroid Numeric 215 6 
8 Balloon Categorical 20 5 
9 Hayes-roth Categorical 160 6 
10 Soyabean-Small Categorical 307 35 
11 Balance-scale Categorical 625 5 
12 Liver Disorders Numerical 345 7 

4.2.2 Real life network intrusion data set 
The proposed method was also evaluated using our own 
data set that includes various types of features extracted 
from network flow data captured using our local network. 
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Using existing attack tools, we generated a group of attacks 
against a local network server and collected the produced 
traffic as known attack traffic. The existing attacks along 
with the corresponding tools for their generation are 
presented in Table 5 (Mixter, 2003). These attacks and tools 
are also used by Amini et al. (2006). 

Table 5 Attack list 

Attack Generation Tool Attack Generation Tool 
bonk targa2.c oshare targa2.c 
jolt targa2.c saihyousen targa2.c 

nestea targa2.c smurf smuf4.c 
newtear targa2.c fraggle fraggle 
syndrop targa2.c syn Nmap 
teardrop targa2.c xmas Nmap 
winnuke targa2.c window targa2.c 

1234 targa2.c land targa2. 

The experimental set-up of the testbed for network flow 
capture includes one router, one L3 switch, two L2 switches, 
one server, two workstations and 40 nodes. Six VLANs are 
created from the L3 switch and L2 switch, and nodes and 
workstations are connected to separate VLANs. The L3 
switch is connected to a router through an internal IP router 
and the router is connected to the internet through an external 
IP router. The server is connected to the L3 switch through a 
port called mirror port to observe traffic activity to the switch. 
Another LAN of 350 nodes is connected to other VLANs 
through five L3 and L2 switches and three routers. Attacks 
are launched within our testbed as well as from another LAN 
via the internet. In launching attacks within the testbed, nodes 
of one VLAN are attacked from nodes of another VLAN and 
as well as the same VLAN. Normal traffic is created within 
our testbed in restricted conditions after disconnecting 
another LAN. The traffic activities to our testbed are 
observed in the computer connected to the mirror port. A 
diagram of the testbed is shown in Figure 1. 

Figure 1 Testbed for generating our data set (see online version 
for colours) 

 

The network flow is a unidirectional sequence of packets 
passing through an observation point in the network during a 

certain time interval between source and destination hosts. All 
traffic belonging to a particular flow has a set of common 
properties. The NetFlow protocol, the IPFIX standard 
(Quittek et al., 2004; Claise, 2004), provides a summarisation 
of information concerning the router or switch traffic. 
Network flow is identified by source and destination IP 
addresses as well as by port numbers. To identify a flow 
uniquely, NetFlow also uses several fields, viz., types of 
protocols and types of services (ToS) from the IP header, and 
the input logical interface of the router or the switch. The 
flows are stored in the router or the switch cache and exported 
to a collector under the following constraints. 

x The flows that have been idle for a specified time are 
expired where the default setting is 15 seconds, or the 
user can configure this time to be between 10 and 
600 seconds.  

x The flows lived longer than 30 minutes are expired.  

x If the cache reaches its maximum size, a number of 
heuristic expiry functions are applied to export flows.  

x A TCP connection has finished with flag FIN or RST. 

A flow collector tool, viz., nfdump (Haag, 2010), receives 
flow records from the flow exporter and stores them in a 
form suitable for further monitoring or analysis. A flow 
record is the information stored in the flow exporter cache. 
A flow exporter protocol defines how expired flows are 
transferred by the exporter to the collector. The information 
exported to the collector is referred to as flow record. 
NetFlow version 5 (Cisco.com., 2010) is a simple protocol 
that exports flow records of fixed size (48 bytes in total). 

We used the NetFlow version 5 protocol to export flow 
records and used nfdump to obtain flow records. All data 
are stored to disc before analysing. This separates the 
process of storing and analysing the data. The data are 
organised in a time-based fashion. Nfdump has a flow 
record capturing daemon process nfcapd which reads data 
from the network and stores the data into files. Automatically, 
every n minutes, typically 5, nfcapd rotates and renames 
each output file with time stamp nfcapd.YYYYMMddhhmm. 
For example, nfcapd.201012110845 contains data from 
11th December 2010, 08:45, onward. Based on a five-
minute time interval, this results in 288 files per day. 
Analysis of the data is done by concatenation of several files 
for a single run. The output is stored either in ASCII text  
or as binary data in a file and it is ready to be processed 
again with the same tool. We used C programs to filter  
the captured data to extract new features. Unnecessary 
parameters were removed and the retained parameters were 
flow-start, duration, protocol, source-IP, source-Port, 
destination-IP, destination-Port, flags, ToS, bytes, packets-
per-second (pps), bits-per-second (bps) and bytes-per-packet 
(Bps). Network traffic corresponding to attack and normal 
traffic was gathered using our local network within a four-
week period. We collected 148,712 flow records of  
16 attack types and normal records. The extracted features 
were of 23 types and were classified into three groups  
of features: (a) basic, (b) time-window based and  
(c) connection-based features. The list of features (Gogoi  
et al., 2012) is given in Table 6.  
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Table 6 Features of network flow intrusion data set 

Description  
Features 

Basic features 
1 Duration Length of the flow (in seconds) 

2 Protocol-type Type of protocols e.g. TCP, UDP, 
ICMP 

3 Src IP Source node IP address 
4 Dest IP Destination IP address 
5 Src port Source port 
6 Dest port Destination port 
7 ToS Type of service 
8 URG Urgent flag of TCP header 
9 ACK Acknowledgement flag 

10 PSH Push flag 
11 RST Reset flag 
12 SYN SYN flag 
13 FIN FIN flag 

14 Source byte Number of data bytes transferred from 
source IP to destination IP 

15 Land Same source IP/source port are equal to 
Destination IP/Destination port 

Time-window features 

16 count-dest 
Number of flows to unique destination
IP addresses inside the network in the
last T seconds from the same source 

17 count-src 
Number of flows from unique source IP
addresses inside the network in the last
T seconds to the same destination 

18 count-serv-src 
Number of flows from the source IP to
the same destination port in the last T
seconds. 

19 count-serv-dest 
Number of flows to the destination IP 
using same source port in the last T
seconds. 

Connection based features 

20 count-dest-conn 
Number of flows to unique destination
IP addresses inside the network in the
last N flows from the same source 

21 count-src-conn 
Number of flows from unique source IP
addresses inside the network in the last
N flows to the same destination 

22 count-serv-src-conn 
Number of flows from the source IP to
the same destination port in the last N
flows. 

23 count-serv-dest-conn 
Number of flows to the destination IP 
using same source port in the last N
flows. 

4.3 Validity measure 
The accuracy of each experiment was measured based  
on the percentage of successful classification (PSC) 
(Adetunmbi et al., 2008) on the evaluated data set, where 

.    = 100.
.    

No of Correctly Classified InstancesPSC
No of Instances in Data set

u  (5) 

4.4 Result analysis 

4.4.1 UCI data set 
The results of the experiments are reported in Table 7. 

Table 7 Experimental results on UCI ML repository (Blake 
and Merz, 2001) and other data set (Slowinski, 1992) 

Data sets Training Set 
Size 

Test Set 
Size 

Rules 
Generated

Accuracy 
(PSC) 

Demo (Slowinski, 
1992)  9 9 7 100% 

Breast cancer  500 149 17 97.32% 
Congressional Voting 300 135 14 98.52% 
Mushroom  450 150 18 92.67% 
Glass  144 70 13 85.71% 
Iris  150 150 18 93.5% 
New-Thyroid  215 215 49 86.5% 
Balloon  20 20 7 98% 
Hayes-roth  160 160 50 95.5% 
Soyabean-Small  625 625 80 91.7% 
Balance-scale  625 625 50 94.8% 
Liver Disorders  345 345 33 96.8% 

We observe from the table that our method performs 
consistently well for categorical data sets. Since, the method 
is especially designed for handling inconsistency, it expects 
the occurrence of at least some inconsistencies in the data 
set. Another important advantage of the method is its input 
order independence. We observe in Table 7 that for the UCI 
Machine Learning Repository data sets such as mushroom, 
glass identification, and breast cancer, the algorithm is able 
to generate rules which classify with more than 90% 
accuracy. Examples of generated rules for different UCI 
data sets are given in Table 8. An interesting observation is 
that the number of rules generated is not dependent on the 
number of instances in the data set. For example, as shown 
in Table 4, the mushroom data set has the maximum number 
of instances, 8124. However, the number of rules generated 
(see Table 7) for this data set is not the maximum. However, 
with the increase in dimensionality, the number of rules 
generated also increases, as given in Table 7. This is evident 
in the case of soyabean-small data set given in Table 4. In 
the balance-scale data set, examples of inconsistency 
present in records are given in Table 9. In the presented 
records, the values for the four condition attributes, viz., 
Class name, Left weight, Left distance and Right weight are  
similar whereas the value for the decision attribute Right 
distance is different. The rules are generated by an upper 
approximation of the concept including the inconsistent 
records. So, these rules are possible rules. The possible 
rules generated by the method for these data are as follows. 

1 (  ,1) (  ,1)Left weight Right distanceo   

2 (  ,1) (  , 2)Left weight Right distanceo   
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3 (  ,1) (  ,3)Left weight Right distanceo   

4 (  , )Class name R  �  (  ,1)Left weight  o  
(  ,5)Right distance   

Table 8 Sample rules on UCI ML repository and other  
data set 

Data set  Rules 
1 � � � �

� �
, ,

,

Hemoglobin fair Temperature low

Comfort low

�

o
  

Demo 
2 � � �

�
_ , ,

_

Blood Pressure high Comfort

very low

o
 

1 � � � �
� �

_ ,2 ,2

,2

Fractal Dimension Concavity

Diagonis

�

o
  

Breast cancer 
2 � � � �

� �
_ ,2 ,8

,4

Fractal Dimension Summary

Diagonis

�

o
  

1 � � � �
� �

_ _ , _ ,

,

stalkcolor above ring c stalk root b

habitat m

�

o
Mushroom 

2 � � � �
� �

_ , _ ,

,

geil color f ring type g

habitat g

� o
  

1 � � �
�

,1.32 _ _ ,

_ _ _

Aluminium type of glass

building windows float processed

o
  

Glass 
2 � � � �

� �
,0.00 ,0.00

_ _ ,

Potassium Iron

type of glass tableware

� o
  

Table 9 Inconsistent data in balance-scale data set 

Records Class 
name 

Left 
weight 

Left 
distance 

Right 
weight 

Right 
distance 

6 R 1 1 2 1 
7 R 1 1 2 2 
8 R 1 1 2 3 
10 R 1 1 2 5 

4.4.2 Real life network intrusion data set 
The results of the network flow intrusion data set are given 
in Table 10. The detection performance of the method in the 
network flow intrusion data set is excellent. A total of  
29 rules were generated for the all-attacks and normal 
classes. The percentage of successful classification (PSC) in 
the network flow intrusion data set, in case of the normal 
class, is 99.94%; whereas for the all-attacks class it is 
96.21%. Examples of generated rules for the network flow 
intrusion data set are given in Table 11. 

A comparison of results of rule generation from similar 
data sets using different rule generation methods is shown in 
Table 12. Most existing rule generation methods generate  
 
 

significantly large number of rules in comparison to the  
proposed method. Our method generates classification rules 
in the presence of inconsistency in the data sets and with no 
reduction in the size of data sets. The rule generation for 
Breast cancer data set by Apriori (Agrawal et al., 1993) and 
Apriori-Rare (Agrawal et al., 1993) algorithms give 125 and 
11192 rules, respectively, whereas our method gives  
17 rules only. In the Iris data set, Apriori-Rare algorithm 
generates 88 rules and the HCRI algorithm (Sai et al., 2006) 
generates 13 rules after reduction in the data set, whereas 
our method generates 18 rules without any reduction in the 
data set size. The HCRI algorithm and our approach 
generate seven rules each for the Balloon data set. In case of 
the Liver disorders data set, the proposed method performs 
significantly better than the HCRI algorithm by generating 
only 33 rules against 221 rules generated by the HCRI 
algorithm. Another important advantage of the proposed 
method is that it is capable of operating both with 
categorical as well as numeric data sets. 

Table 10 Results on network flow intrusion data set 

Class name Records Detection Accuracy (PSC) 
bonk 13,000 12,562 96.63% 
jolt 1394 1374 98.57% 

nestea 92 92 100% 
newtear 137 136 99.27% 
syndrop 66 65 98.48% 
teardrop 130 130 100% 
winnuke 12,000 11,559 96.33% 

1234 30,000 28,929 96.43% 
oshare 12,000 11,672 92.27% 

silhyousen 252 25 99.60% 
Smurf 30 30 100% 
fraggle 12,000 10,784 89.87% 

syn 8000 7598 94.98% 
xmas 13,000 12,942 99.55% 

window 14,000 13,565 96.89% 
land 2 2 100% 

All attacks 116,096 111,691 96.21% 
normal 32,616 32,598 99.94% 

Table 11 Sample rules on network flow intrusion data set 

No. Rules 
1 � � � � � �,  ,0 ,1234protocol ICMP source port class� o  

2 � � � � � �, ,0 ,protocol UDP RST class bonk� o  

3 � � � � � � ,172.16.15.12 , ,sourc IP protocol UDP class fraggle� o

4 � � � �_ _ ,1385 ,count serv dest class jolto  

5 � � � � � �, ,1 ,protocol UDP URG class nestea� o  
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Table 12 Comparison of results 

Number of Generated Rules Data sets (Blake 
and Merz, 2001) HCRI algorithm (Sai et al., 2006) Our Method

Iris 13 18 
New-Thyroid 27 49 

Ballon 7 7 
Liver Disorders 221 33 

5 Conclusion and future works 

The work presented in this paper proposes a classification 
rule generation method based on the LEM2 algorithm 
(Grzymala-Busse, 1988). The proposed method is typically 
employable in data sets that have inconsistencies. The method 
exhibits satisfactory performance whenever the data set 
contains inconsistencies, at least for some concepts. We have 
tested our rule generation method on several real life data sets 
from the UCI Machine Learning Repository and the results 
are satisfactory. Thus, experimental results demonstrate the 
effectiveness of the proposed method. The method works 
well with our network flow intrusion data set as well. 

The method covers only the local covering option. For 
every concept, it generates a minimum, non-redundant set of 
classification rules. However, the method does not address 
the generation of a minimum, non-redundant classification 
rule set collectively considering the whole data set. That is, 
it does not perform global covering. Thus, it will be useful 
to expand the method to consider the idea of global covering 
as well. It might yield better results if we use a mixed 
approach with local as well as global coverings. 
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