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Abstract

Stormwater management wet ponds increase runoff temperatures in discharge waters during summer months. These increases in 

temperatures adversely affect receiving urban stream ecosystems. Monitoring results for three summers (2009 to 2011) from four 

stormwater management ponds in the cities of Guelph and Kitchener, Ontario are employed to advance our knowledge of key 

design parameters that influence the thermal enrichment of stormwater discharges. 

An artificial neural network model was developed to predict the event mean temperature at the pond outlet. The artificial neural 

network model explains 99% of the variability in outlet event temperature. Sensitivity analyses show that increasing the perma-

nent pond volume from 2 000 m³ to 4 000 m³ results in an average increase of 5 °C in outlet event mean temperature. Similarly, 

increasing the travel path ratio from 0.6 m to 1.2 m confirmed an average increase of 6 °C in outlet event mean temperature. In 

addition, ponds with average depths >1.0 m can result in significant decreases in pond outlet water temperature when using 

bottom draw structures.

The results can lead to the promotion of the design of deeper ponds with bottom draw outlets and smaller travel path ratios. 

However, the implications of this approach on other performance criteria should be evaluated. 

1 Introduction
The following notations (Table 1) are used in this paper.

Table 1  Abbreviations and definitions used in this paper.

Abbreviation Unit Definition
ANN Artificial neural network
BMP Best management practice
d m Pond depth
ENS Coefficient of efficiency (Nash–Sutcliffe)
EMT °C Event mean temperature
EMTI °C Event mean temperature of inlet
EMTO °C Event mean temperature of outlet
EMTR °C Event mean temperature of rain
GRCA Grand River Conservation Authority 
GTI Guelph Turfgrass Institute
ID Index of agreement
MA Mean absolute error
MAPE Mean absolute percentage error
Max Max absolute error
MI mm/h Maximum intensity of rain
MLP Multi-layer perceptron
R mm Rainfall magnitude
RMSE Root mean square error
SMRE Square of the mean root error
SWM ponds Stormwater management ponds
TPR Travel path ratio
TSS Total suspended solids
VOL m³ Pond volume

Stormwater ponds have been identified as an effective 
structural BMP for stormwater quantity and quality control over 
the past decades, and have been widely applied across many de-
veloped nations (Anderson et al. 2002). Ponds may be used to 
mitigate the flooding effects of uncontrolled stormwater runoff 
on streams as well as other purposes such as reducing 
contaminants and TSS. However, they may also have negative 
thermal effects on aquatic habitat (Herb et al. 2009). Schueler and 
Galli (1995) investigated a series of seven pond design 
configurations. They found that the thermal regimes of urban 
streams tend to be warmer than for undisturbed catchments. 
Herb et al. (2009) observed that, on average, pond outflow 
temperature was 1.2 °C higher than inflow temperature and, 
indicated that heat energy was added to the runoff from an 
asphalt parking lot. They also reported that the rate of heat 
outflow from the pond is reduced in response to re-ductions in 
ratio of the volumetric outflow rate to inflow rate; as a result, the 
duration of impacts increased; however, rapid changes of 
temperature to a receiving system were reduced. According to 
Van Buren et al. (2000), surface water was 3.6 °C warmer than the 
average temperature recorded at the bottom of the studied pond 
at 0.9 m in Kingston, Ontario. 

In this study both monitoring and modeling methods 
are employed to evaluate the effect of alternative SWM pond 
designs on stormwater pond released outflow temperatures and 
to estimate the water temperature at the outlet of stormwater 
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management ponds. This was accomplished by developing and 
analysing an ANN model to predict the EMTO using collected 
monitoring data. 

2 Material and Methods

2.1 Site Description 
Four urban subwatersheds with stormwater management 

ponds were selected for study. The sites were selected based on 
the accessibility and availability of design reports to collect a 
broad range of data for different design components. Two ponds 
were studied in each of the cities of Guelph and Kitchener and 
monitored during three summers (2009 to 2011) to calculate EMTI 
and EMTO. Design parameters for the ponds are listed in Table 2. 
It is worth noting that ponds 33 and Church were very shallow 
with average depths <0.5 m, while the other two ponds, 53 and 
74, were deeper as shown in Table 2. 

Table 2  Design parameters for the selected ponds.

Pond
Catchment area 

(ha)
Volume (m³)

Surface Area 
(m²)

Average Depth 
(m)

Travel Path Ratio

33 19.4 4 000 6 800 0.48 0.7
53 79.0 6 440 8 400 0.95 1.1
74 35.8 5 376 4 000 1.34 1.4
Church 5.1 950 2165 0.44 1.6

TPR is the ratio of the most likely travel path of runoff (from 
inlet to outlet) to the sum of the length and width of the pond, 
which is idealised as a triangle ( Orozco and Cleveland 2007).

2.2 Monitoring Equipment and Data Collection
The monitoring program included instrumentation designs 

and installation tools to measure and record water level and 
water temperature at the inlet and outlet of each of the ponds. 
Water temperature sensors were installed at incremental depths. 
Onset and Hobo U20 level loggers as well as Pendant and Tidbit 
temperature probes were used to measure water levels and water 
temperatures respectively. Hobo software was used to com-
pensate water level data and imported to Excel when collected 
data was transferred from sensors to a HOBO waterproof shuttle. 
Hydro meteorological data, such as air temperature and relative 
humidity, were obtained from the Elora Research Station and the 
Grand River Conservation Authority for the cities of Guelph and 
Cambridge respectively.

Pond 33 with a contributing area of 19.4 ha is located in 
Guelph, Ontario. A pond inlet forebay had been constructed to 
retain the larger sediment particles. All flows up to the 5 y rainfall 
event discharge through the quality control outlet structure. 
Both the quality and quantity outlets from the pond discharge 
to riprap dispersion structures prior to discharging to a receiving 
system (City of Guelph Works Department 1996). 

Pond 53 is located in Guelph with a contributing area of 79 
ha draining to Clythe Creek. The facility outlet structure consists 
of a fully perforated riser with an orifice plate set at different 

levels to release the water over a minimum of 24 h. The water 
quality extended detention discharge from the orifice is released 
to a cooling trench before entering Clythe Creek.

Ponds 33 and 53, and the location for the data collecting 
apparatus, are shown in Figure 1. The circles represent Tidbit tem-
perature probes and the triangles represent the location of U20 
Hobo water level data loggers.

Inlet

Outlet

Outlet

Inlet

Figure 1  Ponds 33 (upper) and 53 (lower) and the location of 
sensors.

Pond 74 is located at the northwest corner of the inter-
section of Bleams Road and Fischer-Hallman Road in Kitchener. 
The drainage area of the pond is 35.8 ha. Water quality and 
erosion control are provided through a forebay. The outlet struc-
ture discharges directly to an extension of the existing culvert. 
The outlet structure contains orifices intended to control the 
discharge from different sizes of storms. A bottom draw outlet 
structure allows cooler water to discharge from the bottom of the 
pond (MTE 2004). 

Church pond is located west of Strasburg Road and south-
east of Huron Road in Kitchener. The drainage area for this pond 
is 5.14 ha. The forebay is separated from the main pond area by a 
berm–weir, isolating the more turbulent inlet zone from the fine 
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particle settling and outlet zone. The water quality extended de-
tention discharge from the orifice is released to a cooling trench.

Ponds 74 and Church, and the locations of the data col-
lecting apparatus, are shown in Figure 2. The circles represent Tid-
bit temperature probes and the triangles represent the location 
of U20 Hobo water level data loggers. Temperature probes were 
installed in different depth in pond 74.

Inlet

Outlet

Figure 2  Schematic of ponds 74 (upper) and Church (lower) 
and location of sensors. 

3 Results and Discussion
To develop an equation to predict the outlet water tem-

perature of the pond as a function of inlet water temperature, the 
event mean temperature for both inlet and outlet is calculated 
using Equation 1, which was developed by Picksley and Deletic 
(1999).

EMT =
Qtempdt( )

i=1

n
∑

Qdt( )
i=1

n
∑

(1)

where:

	 EMT	 =	 the event mean temperature,
Q	 =	 the runoff discharge rate (m³/s),

	 temp	 =	 the runoff temperature (°C),
dt	 =	 the time increment, and 
n	 =	 the event duration (number of time  increments).

The inflows to the pond and outflows from the pond 
were generated by a PCSWMM model developed to mimic the 
hydrologic conditions of the ponds. The pond water levels mon-
itored during the course of the study were used to calibrate the 
PCSWMM model for ponds. An example of the calibrated model 
for pond 53 is shown in Figure 3.

Figure 3  PCSWMM model simulations for pond 53 
(predicted water level time series, red line, versus 
observed pond water level, green line, during the 2010-
06-19 to 2010-07-05 events).

3.1 Thermal Enrichment in Ponds
Thermal enrichments for the monitored ponds are listed 

in Table 3 and Table 4. The EMTO differs from the EMTI by 3 °C to 
10.6 °C in Table 4, and confirms the thermal effects of Ponds 33 
and 53. 

Table 3  Ponds 33 and 53 calculated events mean 
temperatures (48 h drawdown time considered and 
event separated accordingly; difference are calculated as 
outlet EMT minus inlet EMT).

Pond 33 EMTs (°C) Pond 53 EMTs (°C)
Date Rainfall (mm) Inlet Outlet Difference Inlet Outlet Difference

7/11/2009 13.4 19.6 23.4 3.8 18.9 23.4 4.5
7/20/2009 46.8 18.6 22.3 3.7 17.3 21.4 4.1
8/8/2009 27.0 20.4 24.6 4.2 19.4 22.5 3.1
6/9/2010 18.8 15.4 25.2 9.8 14.6 17.7 3.1
6/16/2010 11.4 15.2 22.2 7.0 16.0 20.2 4.2
6/27/2010 37.8 18.0 22.5 4.5 18.5 21.6 3.0
7/9/2010 19.6 18.3 25.9 7.6 18.2 25.0 6.8
7/23/2010 46.5 19.5 25.3 5.8 18.4 23.6 5.2
6/3/2011 24.6 11.7 21.1 9.5 11.3 18.8 7.5
6/6/2011 37.6 16.1 25.0 8.9 13.9 20.3 6.4
6/21/2011 30.8 13.0 21.8 8.8 14.7 21.8 7.2
7/2/2011 16.2 13.7 24.3 10.6 13.9 23.3 9.4
8/13/2011 16.4 16.1 26.0 9.9 18.8 24.1 5.3

Average 16.6 23.8 7.2 16.5 21.8 5.4



4

Table 4  Ponds 74 and Church calculated EMT (48 h 
drawdown time considered and event separated 
accordingly).

Pond 74 EMTs (°C) Pond Church EMTs (°C)
Date Rainfall (mm) Inlet Outlet Difference Inlet Outlet Difference

6/11/2009 12.8 18.5 18.8 0.3 19.24 21.3 2.1
8/4/2009 36.4 20.8 20.0 -0.7 20.7 25.4 4.8
8/8/2009 30.2 20.2 19.7 -0.5 21.2 24.1 2.9
8/20/2009 59.6 21.1 18.5 -2.6 20.0 24.4 4.4
6/9/2010 32.2 22.0 26.4 4.4 20.8 25.8 5.0
6/22/2010 36.2 20.8 24.7 3.9 18.2 25.6 6.4
8/8/2010 08.4 21.6 23.5 1.9 19.9 23.6 3.8
8/21/2010 23.8 21.8 22.9 1.1 20.4 22.2 1.8
9/2/2010 27.2 19.8 22.7 2.9 17.1 22.0 4.9
9/16/2010 25.8 14.5 16.7 2.2 15.0 15.5 0.5
6/4/2011 18.6 14.5 15.9 1.4 15.3 21.3 6.0
6/22/2011 33.4 17.9 17.7 -0.2 17.5 22.0 4.5
8/14/2011 15.6 19.1 19.1 0.0 19.9 22.7 2.8
8/24/2011 21.6 20.8 19.7 -1.1 20.7 22.8 2.0

Average 19.5 20.5 0.9 19.0 22.8 3.7

Pond 33 discharges water to a cooling trench from a shal-
low bottom draw and pond 53 discharges water to the receiving 
system through a perforated pipe as opposed to pond 74, which 
has a bottom draw outlet to direct the stormwater to an outlet 
manhole from the bottom of the pond at a depth of 4 m. As seen 
from the calculated values in Table 3, the average thermal effect 
of pond 74 for all events was 0.9 °C, which confirms the import-
ance of the bottom draw outlet to mitigating the thermal effects 
of stormwater management ponds. However, there may be other 
factors, which could have contributed to the minimal thermal ef-
fect of pond 74, as compared with other ponds studied here. One 
identified factor is the influence of groundwater. This was sug-
gested by the overall lower temperature of pond 74, as would be 
expected from a groundwater fed pond. This is also supported by 
observations in the MTE report (MTE 2004). The average increase 
in temperature (i.e. the thermal impact) of ponds Church, 33 and 
53 were 3.7 °C, 7.2 °C and 5.4 °C respectively. Table 3 indicates that 
without the bottom draw, the thermal impacts to the receiving 
systems are much greater as opposed to when there is a bottom 
draw outlet. 

The minimum depth for a bottom draw outlet to be effect-
ive and compensate the warming effect of a pond (the warming 
effect of SWM ponds is estimated to be 5 °C according to the MOE 
guideline (MOE 2003) is reported as 90 cm to 120 cm (Sabouri et 
al. 2013). The significant difference (~5 °C) in water temperatures 
is observed between the surface water temperature and that 
of depths between 90 cm and 120 cm. Figure 4 presents water 
temperature profiles during the 2010-08-02 to 2010-08-05 dry 
weather, highlighting the effects of depth on water temperature. 
The largest decreases in water temperature occur when depth 
increases from 0 m to 1.2 m. Therefore ponds deeper than 1.2 m 
would benefit the most from discharging cooler water. The peak 
for water temperatures is estimated to happen at 15:00 according 
to the observed collected water temperature data; accordingly, 
water temperatures at 15:00 are used to create the water temper-
ature profile presented in Figure 4.

Figure 4  Pond water temperature profiles during the 2010-
08-02 to 2010-08-05 dry weather.

3.2 Pond Outlet Temperature Prediction Using 
Artificial Neural Networks
ANNs have been successfully used in the discipline of 

hydrology and water resources to model relations such as rain-
fall runoff processes, the prediction of daily stream flows, and 
forecasting water quality parameters (e.g. Chen and Chang 2008; 
Kumar 2012). This study makes use of the ability of an ANN for 
mapping complex nonlinear relations to approximate the pond’s 
outlet water temperature for rainfall events. Several types of ANN 
exist, of which the most popular is the feed-forward multi-layer 
perceptron which is used in this study. 

In order to choose the input variables to develop the ANN 
model, key storm events and pond design parameters are con-
sidered and named case 1 as shown in Tables 5 and 6. Key storm 
event variables include depth of rainfall (R, mm), event mean tem-
perature for rainfall (EMTR, °C), event mean temperature for runoff 
at pond inlet (EMTI, °C); and pond design parameters consist of 
travel path ratio (TPR), pond volume (VOL, m³), and average pond 
depth (d, m). The surface area of the pond is not included since 
it can be calculated using two other parameters (VOL and d), and 
the surface area of the pond is not an independent variable in 
the model. All mentioned variables were used to develop an ANN 
in which EMTI and TPR were found to have greatest relative im-
portance in the developed model for predicting the EMTO (case 
1). Furthermore, other cases of ANN were developed by elimin-
ating those parameters which had smaller relative importance 
according to sensitivity analyses. Table 5 illustrates the level of 
importance of variables used to develop ANN models. In all cases 
the model is most sensitive to EMTI; the next levels of importance 
belonged to TPR, EMTR, VOL, R and d, respectively. Table 6 shows 
all the input parameters for developed ANN models used to pre-
dict EMTO.
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Table 5  Relative importance of the variables.

Rank Variable Case 1 Case 2 Case 3 Case 4 Case 5
1 EMTI 1.000 1.000 1.000 1.000 1.000
2 TPR 0.802 0.939 0.847 0.894
3 EMTR 0.706 0.823 0.753 0.688
4 VOL 0.643 0.784 0.262
5 R 0.632 0.387 0.226
6 d 0.583

R² 0.99 0.85 0.65 0.77 0.62

The ANN software Tiberius (Brierley 2007) was used to train 
the data. Several networks were trained using the input drivers 
identified in Table 4 in order to predict the EMTO. The ANN mod-
els were trained using seven hidden nodes. 

Five cases were identified to develop ANN models to 
predict EMTO. Case 1 input variables included EMTI, TPR, EMTR 
VOL, R and d. Variables showing the lowest level of importance 
in each case were omitted (according to statistical analyses) and 
other cases (2 through 5) were created and used to develop the 
ANN models. An exception, however, goes to case 4, since design 
parameters (TPR, VOL and d) are excluded to determine the effect 
of these parameters.

Table 6  Input parameters for developed ANN models to 
predict EMTO.

Case 1 Case 2 Case 3 Case 4 Case 5
EMTI EMTI EMTI EMTI EMTI
TPR TPR TPR TPR

EMTR EMTR EMTR EMTR
VOL VOL VOL

R R R
d

A comparison of predicted EMTO versus observed EMTO 
values between case 1 and case 4 is illustrated in Figure 5. When 
comparing the results of all trained ANNs with the calibration set, 
R² varied from 0.99 to 0.62, which demonstrates a good level of 
accuracy of prediction. 

Figure 5  Comparison of observed EMTO and predicted EMTO 
for two cases: (left) full model with six input parameters 
(TPR, VOL, d, EMTI, R and EMTR) vs (right) model with 
only three input parameters (EMTI, R and EMTR).

Shown in Figure 5 are the results of the ANN prediction 
of EMTO presented for case 1 and case 4, which have different 
numbers of input parameters. In the first case, there are six 

input parameters: EMTI, TPR, EMTR, VOL, R and d. Moreover, the 
developed model has R² = 0.99. In the second case, the model 
developed with d omitted shows R² = 0.85. The third case was de-
veloped using four variables, which were EMTI, TPR, EMTR and VOL 
has R² = 0.65. In case 4, an ANN model was developed using only 
three input variables (EMTI, R and EMTR) which are not design par-
ameters, and R² = 0.77 is obtained for this model; and the fifth case 
was developed using two inputs (EMTI and TPR) with R² = 0.62.

The six parameter model was able to explain 99% of the 
variability in the observed mean event temperatures at the pond 
outlet. The three parameter model could only account for 77% of 
the variability. However, the difference shows that TPR, d and VOL, 
which are design parameters, account for 22% of the variability 
in the predicted EMTO. The design parameters (TPR, d, VOL) are 
controlled by the design’s engineer, who could therefore govern 
and improve the construction strategy of the facility.

3.3 Training and Evaluation of the ANN Model
The ANN model (case 1) consisted of six inputs and seven hidden 
nodes. About 70% of the data were randomly selected for the 
training of the network and the remainder were used for testing 
the accuracy of the model. Table 7 illustrates the coefficients and 
different statistical measures for the ANN model evaluation and 
their range of variability. 

Table 7  Statistical measures for model evaluation and 
their range of variability (Oi and Pi are observed and 
predicted values respectively).

Coefficient or Measure Equation
Range of 

Variability
Coefficient of determi-
nation

R2 =
Oi −O( ) Pi −P( )i=1

n
∑
Oi −O( )2i=1

n
∑ Pi −P( )i=1

n
∑

2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

0 to 1

Root mean square error

RMSE =
Oi −Pi( )2

i=1

n
∑

n
0 to ∞

Coefficient of efficiency, 
Nash and Sutcliffe(1970) ENS =1−

Oi −Pi( )2
i=1

n
∑

Oi −O( )2i=1

n
∑

−∞ to 1

Index of agreement, 
Willmott (1984) ID =1−

Oi −Pi( )2
i=1

n
∑
Pi −O + Oi −O( )

2

i=1

n
∑

0 to 1

Maximum absolute error Max = Pi −Oi 0 to ∞

Mean absolute error
MAE =

1
n

Pi −Oii=1

n
∑ 0 to ∞

Mean absolute percent-
age error MAPE =

100%
n

Pi −Oi

Oi
i=1

n
∑ 0 to ∞

Statistical performance of the ANN model (case 1, with 6 
input parameters) for both the training as well as for the testing 
data sets are summarized in Table 8, showing the ANN perform-
ance for case 1 to train and test the prediction of EMTO. 
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Table 8  Statistical performances of train and test value.

Statistical 
Term

Overall 
Performance

70% Dataset  
Used for Training

30% Dataset  
Used for Testing

R² 0.99 0.94 0.99
RMSE 0.12 0.08 1.56

ENS 0.92 0.89 0.93
ID 0.97 0.94 0.95

MAX 0.47 0.24 4.30
MAE 0.09 0.04 1.06

MAPE 0.42 0.98 4.47

3.4 Sensitivity Analysis of the Parameters
Figure 6 presents the sensitivity analyses of the trained ANN 
model; this analysis revealed that increasing pond volumes from 
2 000 m3 to 4 000 m3 resulted in an average increase of 0.5 °C 
in the EMTO, assuming all other factors remain constant. The 
rate of solar radiation absorbed by the pond is related to pond 
surface area. Since pond volume and pond surface area are highly 
related, it is most likely that increasing the volume of the pond 
and providing more surface area that is exposed to solar radiation 
will result in an increased EMTO. In addition, increasing the travel 
path ratio from 0.6 to 1.2 resulted in an average increase of 6 °C 
in EMTO. Both larger volume ponds and ponds with elongated 
travel paths tend to discharge more of the warmer water that has 
been sitting in the pond, rather than the cooler runoff water from 
a fresh event. Sensitivity analysis of the ANN model indicates that 
increasing average pond depth from 0.6 m to 1.0 m in the model 
(keeping the other variables constant) results in a decrease of up 
to 8 °C in EMTO. 

Figure 6  ANN model sensitivity analysis of EMTO to pond 
key design parameters. 

Furthermore, from sensitivity analysis of the developed 
model, most likely increasing EMT of the rainfall by 1 °C tends 
to increase EMTO by 0.5 °C; similarly, every 1 °C increase in EMTI 
resulted in almost 1 °C increase in EMTO in the ANN model as 
shown in in Figure 6.

Finally, sensitivity analysis of rainfall magnitude revealed 
that the first 25 mm of rainfall has a warming effect on EMTO 
and excess rain >25 mm caused EMTO to be reduced. Increasing 
rainfall from 25 mm to 60 mm in the developed ANN model, while 
keeping other variables constant, resulted in 3.4 °C decrease in 
EMTO as shown in Figure 6.

4 Conclusion
A new approach has been proposed to predict outlet event mean 
temperatures of stormwater management ponds using artifi-
cial neural networks. The ANN model which was trained using 
monitoring data explains 99% of the variability in the EMTOs. The 
input variables to develop the ANN were chosen based on two 
categories that consist of key storm event parameters (EMTI, EMTR 
and R) and design parameters (TPR, VOL and d). 

In the late spring and summer months, water that is sitting 
in the typically shallow wet ponds is generally warmer than fresh 
event runoff entering the pond. The average EMTO was 5.4 °C 
warmer than the average EMTI for the monitored storms. In addi-
tion, sensitivity analysis of the ANN model confirms the linear re-
lationship of EMTR and EMTO, which shows warmer rainfalls tend 
to release more warm water to the outlet and receiving system.

 Concerning key design parameters of stormwater ponds, 
larger permanent pool volumes tend to release the warmer water 
resident in the ponds. Increasing the travel path ratio by using 
baffles can lead to less mixing of the water that is resident in the 
pond with the cooler fresh event runoff and therefore an increase 
in EMTO. Thus larger volume ponds and ponds with elongated 
travel paths tend to discharge more of the warm water that is sit-
ting in the pond rather than the cool fresh event runoff, especially 
for events with magnitude >25 mm. However, increasing the 
average pond depth in the model results in a decreasing EMTO; 
therefore the design of ponds with average depth >1 m has a 
significant influence on decreasing EMTO when bottom draw 
structures are implicated. The effects of this approach on other 
performance criteria, such as the removal efficiency of contamin-
ants, as well as effluent temperature should be evaluated.
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