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1 Introduction 
 
The chapters in Part A, Theory, describe in some detail the theory and methodology 
of data assimilation. This chapter will focus on the role of the predictive model in an 
assimilation system. There are numerous books on atmospheric modelling, their 
history, their construction, and their applications (e.g. Trenberth 1992; Randall 2000; 
Jacobson 2005). This chapter will focus on specific aspects of the model and 
modelling in data assimilation.  

The chapter is outlined as follows: 
• Definition and Description of the Model; 
• Role of the Model in Data Assimilation; 
• Component Structure of an Atmospheric Model; 
• Consideration of the Observation-Model Interface; 
• Physical Consistency and Data Assimilation; 
• Summary. 

 
2 Definition and description of the model 
 
Dictionary definitions of model include: 

• “A work or construction used in testing or perfecting a final product”; 
• “A schematic description of a system, theory, or phenomenon that accounts 

for its known or inferred properties and may be used for further studies of 
its characteristics”. 

 
In atmospheric modelling a scientist is generally faced with a set of observations 

of variables, for instance, wind, temperature, water, ozone, etc., as well as either the 
knowledge or expectation of correlated behaviour between the different variables. A 
number of types of models could be developed to describe the observations. These 
include: 

• Conceptual or heuristic models which outline in the simplest terms the 
processes that describe the interrelation between different observed 
phenomena. These models are often intuitively or theoretically based. An 
example would be the tropical pipe model of Plumb and Ko (1992), which 
describes the transport of long-lived tracers in the stratosphere; 

• Statistical models which describe the behaviour of the observations based 
on the observations themselves. That is the observations are described in 
terms of the mean, the variance, and the correlations of an existing set of 



 

observations. Johnson et al. (2000) discuss the use of statistical models in 
the prediction of tropical sea surface temperatures; 

• Physical models which describe the behaviour of the observations based on 
first principle tenets of physics (chemistry, biology, etc.). In general, these 
principles are expressed as mathematical equations, and these equations are 
solved using discrete numerical methods. Detailed discussions of modelling 
include Trenberth (1992), Randall (2000), and Jacobson (2005). 

 
In the study of geophysical phenomena, there are numerous subtypes of models. 

These include comprehensive models which attempt to model all of the relevant 
couplings or interactions in a system and mechanistic models which have prescribed 
variables, and the system evolves relative to the prescribed parameters. All of these 
models have their place in scientific investigation, and it is often the interplay 
between the different types and subtypes of models that leads to scientific advance. 

Models are used in two major roles. The first role is diagnostic, in which the 
model is used to determine and to test the processes that are thought to describe the 
observations. In this case, it is determined whether or not the processes are well 
known and adequately described. In general, since models are an investigative tool, 
such studies are aimed at determining the nature of unknown or inadequately 
described processes. The second role is prognostic; that is, the model is used to make 
a prediction.  

In all cases the model represents a management of complexity; that is, a scientist 
is faced with a complex set of observations and their interactions and is trying to 
manage those observations in order to develop a quantitative representation. In the 
case of physical models, which are implicitly at focus here, a comprehensive model 
would represent the cumulative knowledge of the physics (chemistry, biology, etc.) 
that describe the observations. It is tacit, that an accurate, validated, comprehensive 
physical model is the most robust way to forecast; that is, to predict the future. 

The physical principles represented in an atmospheric model, for example, are a 
series of conservation equations which quantify the conservation of momentum, 
mass, and thermodynamic energy. The equation of state describes the relation 
between the thermodynamic variables. Because of the key roles that phase changes 
of water play in atmospheric energy exchanges, an equation for the conservation of 
water is required. Models which include the transport and chemistry of atmosphere 
trace gases and aerosols require additional conservation equations for these 
constituents. The conservation equations for mass, trace gases, and aerosols are often 
called continuity equations. 

In general, the conservation equation relates the time rate of change of a quantity 
to the sum of the quantity’s production and loss. For momentum the production and 
loss follow from the forces described by Newton’s Laws of Motion. Since the 
atmosphere is a fluid, either a Lagrangian or an Eulerian description of the flow can 
be used (see chapter General Concepts in Meteorology and Dynamics, Charlton-
Perez et al.). The Lagrangian description follows a notional fluid parcel, and the 
Eulerian description relies on spatial and temporal field descriptions of the flow at a 
particular point in the domain. Data assimilation can be performed in either the 
Lagrangian or Eulerian framework. In this chapter the Eulerian framework will be 
the primary focus. Holton (2004) provides a thorough introduction to the 



 

fundamental equations of motions and their scaling and application to atmospheric 
dynamics. 

In order to provide an overarching background, it is useful to consider the 
elements of a modelling, or simulation, framework described in Fig. 1. In this 
framework are six major ingredients. The first are the boundary and initial 
conditions. For an atmospheric model, boundary conditions include topography, sea 
surface temperature, land type, vegetation, etc.; boundary conditions are generally 
prescribed from external sources of information.  

 

 
Fig. 1. A schematic description of the conceptual elements of an atmospheric model 

formulation. The boundary conditions include, for example, emissions of trace gases, sea 
surface temperature (SST), and topography. There are a set of partial differential equations 
that are the “Representative Equations”, i.e., the conservation principles important in the 

physics (and chemistry, biology, ...) of the atmosphere. Here, there is a generic variable A, and 
its change with respect to time, t, is equal to its Production, P, minus Loss, which is 

proportional to a Loss Frequency (L) and the amount of A. These partial differential equations 
are, usually, specified following scale analysis and approximation for the particular application 

targeted by the model. The Representative Equations are represented as numerical 
approximations (“Discrete/Parametrize”), where the index, n, represents a step in time of 

increment Δt. The “Theory/Constraints” are important to robust model formulation. Here, the 
geostrophic approximation is used as an example. It is important that the numerical methods 

represent the theoretical constraints that are obtained, for instance, by scale analysis. The 
“Primary Products” are those products for which there is a prognostic equation. The “Derived 

Products” are either diagnosed from the primary products or as a function of the primary 
products. Here potential vorticity and the residual circulation are used as examples. ε 

represents the error that is present at all stages of the model formulation. 
 

The next three items in the figure are intimately related. They are the 
representative equations, the discrete and parametrized equations, and the constraints 
drawn from theory. The representative equations are the continuous forms of the 
conservation equations. The representative equations used in atmospheric modelling 
are approximations derived from scaling arguments (see Holton 2004); therefore, 
even the equations the modeller is trying to solve have a priori simplification which 
can be characterized as errors. The continuous equations are a set of non-linear 



 

partial differential equations. The solutions to the representative equations are a 
balance amongst competing forces and tendencies.  

The discrete and parametrized equations arise because it is not possible to solve 
the representative equations in analytical form. The strategy used by scientists is to 
develop a numerical representation of the equations. One approach is to develop a 
grid of points which covers the spatial domain of the model. Then a discrete 
numerical representation of those variables and processes which can be resolved on 
the grid is written. Processes which take place on spatial scales smaller than the grid 
are parametrized. These approximate solutions are, at best, discrete estimates to 
solutions of the analytic equations. The discretization and parametrization of the 
representative equations introduce a large source of error. This introduces another 
level of balancing in the model; namely, these errors are generally managed through 
a subjective balancing process that keeps the numerical solution from producing 
obviously incorrect estimates. 

While all of the terms in the analytic equation are potentially important, there are 
conditions or times when there is a dominant balance between, for instance, two 
terms. An example of this is thermal wind balance in the middle latitudes of the 
atmosphere (see Holton 2004; see chapter General Concepts in Meteorology and 
Dynamics, Charlton-Perez et al.). It is these balances, generally at the extremes of 
spatial and temporal scales, which provide the constraints drawn from theory. Such 
constraints are generally involved in the development of conceptual or heuristic 
models. If the modeller implements discrete methods which consistently represent 
the relationship between the analytic equations and the constraints drawn from 
theory, then the modeller maintains a substantive scientific basis for the 
interpretation of model results. 

The last two items in Fig. 1 represent the products that are drawn from the model. 
These are divided into two types: primary products and derived products. The 
primary products are variables such as wind, temperature, water, ozone – parameters 
that are most often, explicitly modelled; that is, an equation is written for them. The 
primary products might also be called the resolved or prognostic variables. The 
derived products are of two types. The first type is those products which are 
diagnosed from model state variables, often in the parametrized physical processes. 
The second type follows from functional relationships between the primary products; 
for instance, potential vorticity (Holton 2004). A common derived product is the 
budget – the sum of the different terms of the discretized conservation equations. The 
budget is studied, explicitly, on how the balance is maintained and how this 
compares with budgets derived directly from observations or reanalysis (chapter 
Reanalysis: Data Assimilation for Scientific Investigation of Climate, Rood and 
Bosilovich). 

In some cases the primary products can be directly evaluated with observations, 
and errors of bias and variability are estimated. If attention has been paid in the 
discretization of the analytic equations to honour the theoretical constraints, then the 
derived products will behave consistently with the primary products and theory. 
They will have errors of bias and variability, but when a budget is formed from the 
sum of the terms in the conservation equations, it will balance. That is, the discrete 
form of the conservation equation is solved. In this case the correlative relation 
between variables is represented and there is a “physical” consistency. 



 

 
3 The role of the model in data assimilation 
 
Data assimilation is the melding of observational information with information 
provided by a model (Daley 1991; Kalnay 2003; Swinbank et al. 2003). In 
assimilation for Earth system science, all types of models, conceptual, statistical, and 
physical, are used. Models are used in both their prognostic and diagnostic roles. 
First and foremost in data assimilation, the model provides an estimate of the 
expected value of the state variables that are observed and assimilated. The 
discussion, which follows, centres on this role of state estimation. 

The focus here is on physically based models of the atmosphere formulated in an 
Eulerian description of the fluid dynamics. Outside of the atmospheric model (or 
more generally geophysical models) there are other models in the data assimilation 
system. Notably, because of the complexity of expressing error covariances, these 
are generally modelled. Also, there are forward and inverse models which transfer 
quantities between observed quantities, for example radiances observed by a satellite 
instrument, and geophysical quantities, for example corresponding temperature 
estimates. These types of models are discussed elsewhere in the book; see, e.g., the 
chapters in Part B (Observations) and Part D (Chemistry), and the companion 
chapters in Part C (Meteorology and Atmospheric Dynamics). 

A schematic of an assimilation system is given in Fig. 2. This is a sequential 
assimilation system where a forecast is provided to a statistical analysis algorithm 
that calculates the merger of model and observational information. Some 
assimilation methods cycle back and forth between these steps to assure maximum 
coherence. In this figure, errors are specified based on external considerations and 
methods. There is a formal interface between the statistical analysis algorithm and 
the model prediction which performs a quality assessment of the information prior to 
the merger. This interface might also include a balancing process called initialization 
(see Lynch 2003; see chapter Initialization, Lynch and Huang). The figure shows, 
explicitly, two input streams for the observations. The first of these streams represent 
the observations that will be assimilated with the model prediction. The other input 
stream represents observations that will not be assimilated. This second stream of 
observations could be, for example, a new type of observation whose error 
characteristics are being determined relative to the existing assimilation system. 
 
 
 



 

 

Fig. 2. A schematic of Data Assimilation System. This is a sequential assimilation system 
where a “Model Forecast” is provided to a “Statistical Analysis” algorithm that calculates the 
merger of model and observational information using “Error Covariance” information. In this 
figure, errors are specified based on external considerations and methods. There is a formal 

interface between the statistical analysis algorithm and the model prediction which performs a 
quality assessment (“Quality Control”) of the information prior to the merger. This interface 
might also include a balancing process called initialization, which is not explicitly shown. 

There are two input streams for the observations, “Data Stream 1” and “Data Stream 2”. The 
first of these streams represent the observations that will be assimilated with the model 

prediction. The other input stream represents observations that will not be assimilated. This 
second stream of observations could be, for example, a new type of observation whose error 

characteristics are being determined relative to the existing assimilation system. The products 
from the system are discussed more fully in the text. 

 
From a functional point of view, the model provides a short-term forecast of the 

expected values of the state variables. This forecast is often called the first-guess, the 
background, or the prior. The background and the observations are mapped to the 
same space-time domain where they are compared. The model-provided background 
is used in the data quality control algorithm, as an objective assessment of the quality 
of the assimilation system, and as a crucial element of the statistical analysis (see, for 
example, Dee et al. 2001) – see also chapter Error Statistics in Data Assimilation: 
Estimation and Modelling (Buehner). In addition, there may be a formalized process 
to balance the spatial and temporal attributes of the features represented (or not 
represented) in both the model and the observations – initialization. In the statistical 
analysis, observation-based corrections to the background are determined based on 



 

the error characteristics of both the observations and the modelled forecast. These 
corrections are applied to the background and replace the existing values in the 
model. These new, corrected values provide the initial conditions for the next model 
forecast. 

The specification of model-error covariances and their evolution with time is a 
difficult problem. In order to get a handle on these problems it is generally assumed 
that the observational errors and model errors are unbiased over some suitable period 
of time, e.g. the length of the forecast between times of data insertion. It is also 
assumed that the errors are in a Gaussian distribution. The majority of assimilation 
theory is developed based on these assumptions, which are, in fact, not realized. In 
particular, when the observations are biased, there would the expectation that the 
actual balance of geophysical terms is different from the balance determined by the 
model in the assimilation process. Furthermore, since the biases will have spatial and 
temporal variability, the balances determined by the assimilation are quite complex. 
Aside from biases between the observations and the model prediction, there are 
biases between different observation systems of the same parameters. These biases 
are potentially correctible if there is a known standard of accuracy defined by a 
particular observing system. However, the problem of bias is a difficult one to 
address and perhaps the greatest challenge facing assimilation (see Dee 2005). Bias 
is discussed in chapter Bias Estimation (Ménard). 

Figure 2 above shows a set of products which comes from the assimilation 
system. These are (see chapters Mathematical Concepts of Data Assimilation, 
Nichols; Evaluation of Assimilation Algorithms, Talagrand):  

• Analysis:  The analysis is the merged combination of model information 
and observational information. The analysis is the estimate of the state of 
the system (in this case the atmosphere) based on the optimization criteria 
and error estimates; 

• Forecast/simulation:  The forecast/simulation is a model run that starts 
from an initial condition defined by the analysis. For some amount of time 
this model run is expected to represent the state of the system with some 
deterministic accuracy. For this case the model run is a forecast. After a 
certain amount of time the model run is no longer expected to represent the 
particular state of the system; though, it might represent the average state 
and the variance (i.e., the climate). In this case the model run is simply a 
simulation that has been initialized with a realistic state estimate at some 
particular time; 

• Observation minus forecast increment: The observation minus forecast (O-
F) increment gives a raw estimate of the agreement of the forecast 
information (i.e., the first guess) with the observation information prior to 
assimilation. Usually, a small O-F increment indicates a high quality 
forecast, and O-F increments are used as a primary measure of the quality of 
the assimilation. O-F increments are exquisitely sensitive to changes in the 
system and are the primary quantity used for monitoring the stability and 
quality of the input data streams. Study of the O-F increment is useful for 
determining the spatial and temporal characteristics of some model errors; 

• Observation minus analysis increment: The observation minus analysis 
(O-A) increment represents the actual changes to the model forecast that are 



 

derived from the statistical analysis algorithm. Therefore, they represent in 
some bulk sense the error weighted impact of the O-F increments. If the 
assimilation system weighs the observations heavily relative to the forecast, 
then the O-A increments will have significant differences relative to the O-F 
increments. The opposite is also true; if the model information is weighed 
more heavily than the observational information then there will be little 
change represented by the O-F increments. If either of these extremes are 
realized the basic assumptions of the assimilation problem need to be 
reconsidered. 

 
Assimilated data products are often said to be “value-added” (see also chapter 

Data Assimilation and Information, Lahoz et al.) The extra value comes from 
combining two sources of information under the premise that if the error sources are 
well represented and if the combination process is robust, then there is more 
information than in either individual source. The two basic sources of information 
are observed information and model information. Hence, if there is value added to 
the observed information, then that value comes from the model. Both the prognostic 
and the diagnostic attributes of the model contribute to the added value. 

There are a number of types of information expected to come from the model. 
The observations are distributed in both space and time. The observations have 
different attributes; for instance, some observations are point values, while others 
represent deep layer means. The observations are not continuous; there are spatial 
and temporal gaps. The model represents the flow of the atmosphere. The model, 
therefore, takes the information from the observations and propagates that 
information. This fills in the gaps. Hence, at its most basic level the model is a 
physically based mapping routine. 

From the point of view of information, the model propagates information from 
observed regions to unobserved regions. If the assimilation is robust, then this greatly 
improves knowledge of the state in unobserved regions. Further, if at one time a 
region is not observed and if at a future time the region is observed then, if the model 
has provided an improved state estimate, then the new observation can better refine 
the state estimate. That is, there is better use of the observational information. From a 
different perspective, this comparison of model prediction and observation provides 
a measure of quality of the assimilation system. 

Another function of the model is to transfer information from one observed 
parameter to other observed parameters. For example, temperature and wind are 
related to each other. For many years, because temperature observations were by far 
the most prevalent observation type, temperatures were used to estimate the wind. 
Elson (1986) compared geostrophic estimates to a number of methods presumed to 
be more accurate. Such estimates of the ageostrophic wind are crucial, for instance, 
to weather forecasting and mass transport (see Holton 2004). One place that 
assimilation has had tremendous impact is in the estimate of mid latitude wind fields, 
where the geostrophic balance is strong and the wind is strongly influenced by the 
structure of the temperature field. 

Perhaps best viewed as an extension of one observation type influencing another 
observation type, assimilation also provides estimates of unobserved quantities (see 
also chapter Constituent Assimilation, Lahoz and Errera). One quantity of specific 



 

interest is the vertical component of the wind. Because of the strong hydrostatic 
stratification of the atmosphere, the vertical component of the wind is three orders of 
magnitude less than the horizontal components. It is difficult to measure; it remains 
mostly unmeasured. The vertical wind is, however, critically important to 
atmospheric physics, linking not only the conservation of thermodynamic energy and 
momentum, but it also is directly correlated with precipitation and release of latent 
heat through the condensation of water. Hence a goal of assimilation is to provide 
meaningful estimates of the vertical component of the wind through the correlated 
information provided by the temperature and horizontal velocity measurements. 
There are large errors associated with the estimates of the vertical wind. 

The estimate of vertical wind follows from the divergence of the horizontal 
velocity field. The horizontal velocity is usually a resolved variable, by the 
nomenclature of Fig. 1, a primary product. Estimates of unobserved quantities also 
come from the parametrizations used to represent subscale processes. These 
quantities might include precipitation, clouds, turbulent kinetic energy, or in the case 
of chemistry-transport models, unobserved chemically reactive constituents or 
surface emissions. In general, the success of using the assimilation system to 
estimate unobserved quantities varies widely from one geophysical quantity to 
another. 

Similar in spirit to estimating unobserved quantities, assimilation has the prospect 
of estimating incompletely observed quantities. An archetypical example is 
tropospheric ozone. There are many measures of the total amount of ozone in a 
column above a point on the surface of the Earth. There are also many measures of 
ozone column above the troposphere. Given the sensitivity of the ozone field to 
dynamical features in the atmosphere, especially synoptic-scale and planetary-scale 
waves, the dynamical mapping aspects of assimilation are reasonably expected to 
offer significant advantage in residual-based estimates of tropospheric ozone (see, 
for example, Štajner et al. 2008).  

As will be discussed more fully below, the products from assimilated data sets 
may not be physically consistent. There are a number of ways to examine the issue of 
consistency. As mentioned in the discussion of Fig. 1, the equations of motion tell us 
that there are expected balances between variables. These balances suggest 
correlative behaviour between variables that reflect the physical connectivity. There 
is no reason that independent observations and their errors rigorously represent these 
balances. Similarly, the observations are not required to sample the mass field such 
that mass is conserved. We look to the model to develop these balances. How well 
the model does depends on the time-scales that connect the variables and the strength 
of the expected correlation and the quality of the observations and the model. 

Perhaps the best way to look at the consistency problem is whether or not the 
conservation equation balances. In a well formulated model the conservation 
equation is solved; there is precise balance. The insertion of data acts like an 
additional forcing in the conservation equations. In general, this additional forcing 
will not average to zero over, say, the time-scale between data insertions. 
Conservation is not obtained. This is an important point to remember as many users 
of assimilated data sets assume that because they are essentially continuous in space 
and time, that the variables balance the conservation equation.  



 

The consequences of this violation of conservation propagate through the model. 
There are fast modes in the model which will balance quickly and accurately. There 
are slow modes, for instance those balances revealed in the long-term space and time 
averages suitable for studying the general circulation, which will be influenced by 
the forcing that comes from the insertion of data. Hence, the assimilated data 
products might have better estimates than a free running model of primary products 
like temperature and wind, but the estimates of the derived products such as 
precipitation and the Eulerian-mean residual circulation (see Holton 2004) may be 
worse. That is, the analysis increments (i.e., data insertion) are a major part of the 
forcing. Molod et al. (1996) was one of the first to document the representation of 
the moisture and energy budgets in side-by-side free-running climate simulations and 
assimilated data using the same predictive model as used in the climate simulation.  
 
4 Component structure of an atmospheric model 
 
This section lays out the component structure of an atmospheric model. The 
equations of motion for the atmosphere in tangential coordinates using altitude for 
the vertical coordinate (x, y, z) are given below (see Holton 2004). The first three 
equations represent the conservation of momentum components. The fourth equation 
is the mass continuity equation, and the fifth equation is the thermodynamic energy 
equation. The last equation is the equation of state (see chapter General Concepts in 
Meteorology and Dynamics, Charlton-Perez et al.).  
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In Eq. 1, t is time; φ is latitude; a is radius of Earth, and Ω is the angular velocity 

of the Earth; g is gravity; ν is a coefficient of viscosity; cv is specific heat at constant 
volume and cp is specific heat at constant pressure; R is the gas constant for air; ρ is 



 

density; T is temperature; and p is pressure. (u, v, w) = (x (zonal), y (meridional), z 
(vertical)) velocity; J is heating. 

In addition, equations are needed which describe the conservation of trace 
constituents (see chapters in Part C, Chemistry). The generic form of these continuity 
equations are: 

ii QQi
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DQ

−=•∇+ u                                          (2) 

 
Where Qi is the density of a constituent identified by the subscript i; P and L 

represent the production and loss from phase changes and photochemistry. An 
equation for water in the atmosphere, Qi = QH2O, is required for a comprehensive 
model. For water vapour, the production and loss terms are represented by 
evaporation and condensation. These are associated with significant consumption 
and release of heat, which must be accounted for in, J, the heating, de facto 
production and loss term of the thermodynamic energy equation. In general, in the 
atmosphere below the stratopause, heating due to the chemical reactions of trace 
constituents is assumed not to impact the heat budget of the atmosphere. It is 
possible for the spatial distribution of trace constituents, for example, ozone, to 
impact the absorption and emission of radiative energy; hence, there is feedback 
between the constituent distributions and diabatic processes in the atmosphere. 

Water not only affects the atmosphere through the consumption or release of 
energy due to phase changes, but also affects the radiative balance of the atmosphere 
through both the distribution of vapour and through the distribution of clouds. 
Therefore, it is common in modern models to not only represent water vapour, but 
also to include an equation for cloud water, Qi = Qcloud, which is partitioned between 
cloud liquid and cloud ice. The episodic and local scales of the phase changes of 
water and clouds offer one of the most difficult challenges of atmospheric modelling. 
This is important for modelling weather, climate, and chemistry. 

Due to their impact on both the radiative budget of the atmosphere and formation 
of cloud water and ice, a set of constituent conservation equations for aerosols is 
required in a comprehensive atmospheric model. Like water vapour, the spatial and 
temporal scales of aerosols are often small, below the resolved scales of the model. 
Again, aerosol modelling provides significant challenges, and they are important for 
modelling weather and, especially, climate and chemistry. 

The equations of motion and a suitable set of constituent continuity equations are 
the representative equations of the model (see Fig. 1). The equations of motion 
support many types of dynamical features, for example, waves, such as, Rossby 
waves, synoptic- or baroclinic-scale waves, gravity waves, Kelvin waves, etc. and 
vortices, such as hurricanes, tornadoes, etc. There is spatial and temporal 
heterogeneity in the forcing terms. Hence, the atmosphere is characterized by 
complexity, and this complexity is confronted when trying to build a predictive 
model out of the above equations. Further, the complexity is increased by the fact 
that discrete numerical representations of the equations of motion support a whole 
variety of behaviour unique to numerical approximation.  

Atmospheric models are usually built from components. There are several useful 
paradigms for organizing their construction. In the first, the model can be divided 
into processes, and the solution as a whole is the accumulation of these processes. 



 

This is called “process splitting” and has been discussed in, for instance, Strang 
(1968), Yanenko (1971) and McCrea et al. (1982). Another useful way to look at 
models is from the perspective of systems engineering, where the whole model 
system is built from systems of subsystems. This systems approach is useful when 
formulating strategies for model evaluation and validation; the interacting 
subsystems determine the performance of the model as a whole. It is, therefore, often 
difficult to relate model performance to the design characteristics of a particular 
component. 

Recent efforts to organize the modelling community at different laboratories and 
in different countries have led to the formalization of a component architecture 
approach to organize the structure. In this approach there are base level components 
and composited components which rely on the results of the base level components. 
The interface between the components is formalized by two-way couplers, which 
transfer the needed information. The model as a whole is a composite of composited, 
coupled components. Figure 3 shows the Goddard Earth Observing System, version 
5 (GEOS-5) component architecture as expressed in the Earth System Modeling 
Framework (Hill et al. 2004; http://www.esmf.ucar.edu/ ).  

Referring to Fig. 3, the box labelled “agcm” represents the atmospheric general 
circulation model. The components represented here are appropriate for climate and 
weather. Additional components would be required to resolve the processes above 
the mesosphere; for example, to support space weather (Toth et al. 2005; see also 
chapter Assimilation of GPS Soundings in Ionospheric Models, Khattatov). Below 
“agcm” are two components which represent the fluid “dynamics” and the “physics.” 
The fluid dynamical part of the model represents both the resolved flow and the drag 
associated with small (subgrid) scale gravity waves. The dynamics will be discussed 
more fully below. The terms that form the components of the physics generally 
represent processes that occur on a scale smaller than resolved; again, they are 
subgrid. These are often called “parametrizations” (see Fig. 1). A useful, 
approximate concept is that those components collected under the term physics are 
treated as occurring only in a vertical column; hence, they can be extracted and 
tested in one-dimensional column models.1  Those terms in the “dynamics” are fully 
three-dimensional; they connect the columns. 

From left to right those components which composite as “physics” are as follows. 
The “surface” box represents, for an atmospheric model, the boundary conditions. 
Different variables characterize the transfer of momentum, mass, and energy from 
lakes, ice, ocean, and land (chapters Ocean Data Assimilation, Haines; Land Surface 
Data Assimilation, Houser et al., discuss models of the ocean and land, respectively). 
In this particular model the “land” model is a composite of a vegetation model and a 
catchment basin hydrology model. The next box to the right, “chemistry,” is the 
interface to chemical production and loss terms which take place point-by-point in 
both the horizontal and the vertical. This is followed by the accumulation of the 
processes associated with water and its phase changes, “moist process”: clouds, 
water vapour, liquid water, ice, convection, etc. Next are those processes needed to 
represent the absorption and reflection of both solar and terrestrial (infrared) 

                                                 
1 See information on column models at the National Center for Atmospheric Research - 
http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/  

http://www.esmf.ucar.edu/
http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/


 

“radiation.” On the far right is a box labelled as “turbulence”. Usually, in 
atmospheric models there is a separate parametrization which represents the 
turbulent mixing associated with the planetary boundary layer. More than the other 
processes in the composite of “physics,” the processes in the planetary boundary 
layer may be connected in the horizontal; that is, they might not fit appropriately into 
the concept of column physics. As described here, these parametrizations connect 
momentum, mass, and energy in the vertical; there is transfer between model levels. 

Figure 3 is a specific description of an atmospheric model, which relies on the 
representative equations listed above. In Fig. 1, a conceptual description for building 
a model was proposed. There are some obvious links. The boundary conditions 
appear explicitly, and Fig. 3 provides a framework for splitting up the processes of 
the representative equations. It remains to develop a discrete representation of 
equations and the identification of the primary and derived products from the model.  
 

Component representation of atmosphere models 

  
Fig. 3. Earth System Modeling Framework (ESMF) component architecture of the Goddard 

Earth Observing System, version 5 (GEOS-5) atmospheric model 
(http://www.esmf.ucar.edu/about_us/ ). See text for detailed discussion. 

 
As stated at the beginning of the chapter the technical aspects of numerical 

modelling are left to comprehensive texts such as Jacobson (2005). Some numerical 
concepts will be developed here to demonstrate the art of model building. The focus 
will be on the “dynamics” part of the model (see Fig. 3). To demonstrate the 
concepts consider the thermodynamic energy equation and only the advection of 
temperature by the horizontal winds 
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Attention will be focused on strategies to discretize the advective transport. 
Figure 4 illustrates the basic concepts. On the left of the figure a mesh has been laid 
down to cover the spatial domain of interest. In this case it is a rectangular mesh. The 
mesh does not have to be rectangular, uniform, or orthogonal. In fact the mesh can be 
unstructured or can be built to adapt to the features that are being modelled. The 
choice of the mesh is determined by the modeller and depends upon the diagnostic 
and prognostic applications of the model (see Randall 2000). The choice of mesh can 
also be determined by the computational advantages that might be realized.2 

Using the mesh, index points are prescribed to determine location. In Fig. 4a both 
the advective velocity and the temperature are prescribed at the centre of the cell. In 
Fig. 4b, the velocities are prescribed at the middle of the cell edges, and the 
temperature is prescribed in the centre of the cell. There are no hard and fast rules 
about where the parameters are prescribed, but small differences in their prescription 
can have large impact on the quality of the estimated solution to the equation, i.e., 
the simulation. The prescription directly impacts the ability of the model to represent 
conservation properties and to provide the link between the analytic equations and 
the theoretical constraints (see Fig. 1; see Rood 1987; Lin and Rood 1996, 1997; Lin 
2004). In addition, the prescription is strongly related to the stability of the numerical 
method; that is, the ability to represent any credible estimate at all. 

A traditional and intuitive approach to discretization is to use differences 
calculated across the expanse of the grid cell to estimate partial derivatives. This is 
the foundation of the finite-difference method, and finite-differences appear in one 
form or another in various components of most models. Differences can be 
calculated from a stencil that covers a single cell or weighted values from 
neighbouring cells can be used. From a numerical point of view, the larger the 
stencil, the more cells that are used, the more accurate the approximation of the 
derivative. Spectral methods, which use orthogonal expansion functions to estimate 
the derivatives, essentially use information from the entire domain. While the use of 
a large stencil increases the accuracy of the estimate of the partial derivatives, it also 
increases the computational cost and means that discretization errors are correlated 
across large portions of the domain.   

One approach to solving the model equations is to take the continuous 
representative equations and make term-by-term numerical approximations to 
variables and their derivatives. There are many approaches to discretization of the 
dynamical equations that govern geophysical processes (Randall 2000; Jacobson 
2005). Given that these equations are, in essence, shared by many scientific 
disciplines, there are sophisticated and sometimes similar developments in many 
different fields. One approach that has been recently adopted by several modelling 
centres is described in Lin (2004). In this approach the cells are treated as finite 
volumes and piecewise continuous functions are fit locally to the cells. These 
piecewise continuous functions are then integrated around the volume to yield the 

 
2 Typical mesh sizes at the time of this article are 200 km for climate models down to 20 km 
for global weather models. Experiments are being run at resolutions as small as ~1 km. 
Computational resources limit resolution, but also as the resolution becomes finer the 
foundational assumptions of physical parametrizations must be reconsidered. 
 



 

forces acting on the volume. This method, which was derived with physical 
consistency as a requirement for the scheme, has proven to have numerous scientific 
advantages. The scheme uses the philosophy that if the correlated physics are 
represented, then the accuracy of the scheme can be robustly built on a physical 
foundation. In addition, the scheme, which is built around local stencils, has 
numerous computational advantages. 

The variables, u, v, T, and QH2O are often termed the resolved or prognostic 
variables. Models are often cast into the form that surface pressure, psfc, is the 
prognostic equation for conservation of mass. These variables and their gradients are 
explicitly represented on the grid. The hydrostatic balance is a strong balance in the 
atmosphere. Most current global models are hydrostatic and do not include a 
prognostic equation for the vertical velocity, w; it is a diagnostic quantity. Cloud 
resolving models and non-hydrostatic models do resolve the vertical velocity. Non-
hydrostatic effects need to be considered if the horizontal resolution is finer than, 
approximately, 10 km. The importance of the consistent representation of the vertical 
velocity will be discussed more fully later in the chapter. Reactive constituents and 
aerosols can add to the list of resolved or prognostic variables. Generally, when the 
term prognostic is used to describe a variable, it means that a conservation equation 
has been written for that variable. 

In contrast to the resolved or prognostic variables, there are a set of variables 
which are diagnosed at the grid scale. An example of this is the cloud mass flux 
between vertical layers of the atmosphere associated with the updrafts and 
downdrafts of cumulus clouds. There are some variables such as cloud liquid water 
and cloud ice which may be either explicitly resolved or diagnosed. This is 
dependent on the spatial resolution of the model. If the model has a resolution that is 
much larger that the scale of clouds, then cloud water and cloud ice have lifetimes 
too short to be advected from one grid box to another. In this case, these quantities 
are diagnosed in the column physics. The terminology prognostic and diagnostic are 
not precise; they are jargon. Many of the diagnostic variables are, in fact, predicted; 
therefore, they have the time-change attribute associated with the term “prognostic.” 

There is also a set of derived products associated with the model (see Fig. 1). For 
example, it is often productive to interpret atmospheric motions in terms of vorticity 
( ) and divergence ( u×∇ u•∇ ). For large-scale, middle latitude dynamics, using 
pressure as the vertical coordinate, the relative vorticity, ζ, is related to the 
geopotential, Φ, by the following relationship 

Φ∇= 21
f

ζ                                                               (4) 

f is the Coriolis parameter. Geopotential,Φ , is defined as , and is 

the variable which represents the height of a pressure surface when pressure, instead 
of height, is used as the vertical coordinate. (Geopotential can be related to a 
parameter with height dimension by dividing it by g; this is termed geopotential 
height.) The ability of the discretization method and the numerical technique to 
represent relationships such as the one described above is an important and 
underappreciated aspect of model construction. Lin and Rood (1997) show explicitly 
both a configuration of variables on the grid and a specification of averaging 

')(
0∫=Φ
z
gdzz



 

                                                

techniques that assures that the relationship between geopotential and vorticity is 
maintained in the discrete equations.3 

• ∂T/∂t = –u•∇T 
       Figure 4a: Discretization of Resolved Transport 
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Fig. 4. The use of grids to represent the variables in the governing equations of an atmospheric 

model. Two examples are given to demonstrate that these choices are up to the model 
developer. The choices made profoundly impact the characteristics and the performance of the 

numerical solution. 4a) all variables at grid centre. 
 

Returning to the grids of Fig. 4, the spatial scale of the grid is related to the 
smallest scales which can be resolved in the model. As guidance, it takes a minimum 
of 8–10 grid boxes to resolve a wave meaningfully. There is transport and mixing 
which occurs at smaller spatial scales. Therefore, for both physical and numerical 
reasons there is the need to specify a subgrid mixing algorithm. In addition, explicit 
filters are used to counter errors that arise because of the discrete representation of 
continuous fields. Subgrid mixing and filters often take on the characteristics of 
diffusion. Their role in atmospheric models is complex and not well quantified. For 
instance, filters have been used to remove gravity waves in weather forecasting 
models (see chapter Initialization, Lynch and Huang). Given the important role of 
gravity wave dissipation in climate models, such a filter minimally complicates the 
quantitative representation of mixing in the atmosphere. 4 There are similar 

 
3 This constraint, therefore, implicitly links the numerical scheme to large-scale, rotationally 
dominated flows. As resolution is increased, the divergent component of the flow becomes 
larger. Therefore, different numerical considerations are expected to be required. 
4 The initialization routine removes scales, for example, gravity waves that are detrimental to 
the short-term forecast. This is, in part, due to the fact that these scales are not well 
represented in either the model or the observations. Plus there are spurious sources of small 
scales related to imbalances due to scale errors and random error. It is incorrect to state that 
waves at these scales are not important to the atmosphere. They are important to both weather 



 

                                                                                                                   

complications associated with the boundary layer turbulence parametrization. It is 
important to recognize that the dynamical core of the atmospheric model includes not 
only an approximation to the resolved advection, but also an algorithm for subgrid 
mixing, and filters to remedy numerical errors. All these pieces are tightly related to 
each other; they are often conflated. 

 
 

Figure 4b: Discretization of Resolved Transport 
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Fig. 4 ( continued). 4b) Temperature, T, at grid centre, and velocity (u, v) at grid edges. 

 
As is apparent from the discussion above, there is not a unique or defined way to 

build an atmospheric model. With the benefit of many years of experience, there are 
a set of practices which are often followed. These practices evolve as experience is 
gained. There are decisions in model building which balance known sources of 
errors. There are decisions simply to give the model viable computational attributes. 
In many modelling environments there are parts of the code, components, which 
have not been altered in many years. There remain many open problems which need 
to be addressed and many paths proposed to address these problems. There are 
decisions in design and engineering, which contain more than a small element of art. 
 
5 Consideration of the observation-model interface 
 
The interaction between the model and the observations takes place, ultimately, 
through the statistical analysis algorithm (see Fig. 2). There are many aspects of this 
interface which are described elsewhere in this book (e.g. chapters in Part A, Theory; 
chapter Constituent Assimilation, Lahoz and Errera; and chapter Land Surface Data 

 
and climate. The behaviour of motions at these scales changes as the resolution of the model 
changes. 
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Assimilation, Houser et al.). The model and the observations are formally connected 
through the observation operator which can be as straightforward as interpolation 
routines or as complex as radiative transfer models which convert between the model 
variables and, for instance, the radiances that are observed by satellite instruments 
(chapter Assimilation of Operational Data, Andersson and Thépaut). The model 
provides information directly to the quality control algorithm. Information from the 
analysis may be returned to the model through initialization algorithms which strive 
to filter out dynamical scales which are not important to the short-term forecast. The 
model and analysis interface can be a one-time passing of information, or there are 
numerous strategies for cycling the information across the interface to improve the 
balance in the model. Four-dimensional variational techniques and the incremental 
analysis update (Bloom et al. 1996) are examples of such cycling.  

This section focuses on those geophysical variables that serve
ables and where these variables are updated in the component architecture of the 

model (Fig. 3).  
In order for a
 a number of attributes that need to be considered. For example, are there enough 

data to specify the state variables of the atmosphere? If there are not enough 
observations to specify the state, then the model predictions are not likely to be a real 
source of information. Alternatively, if there are so many observations that the model 
is essentially specified by the observations, then a model is not needed for the 
analysis. The model must be of sufficient quality that it can propagate information 
from one observing time to the next. The observed variable must have a time-scale, a 
lifetime, such that information lasts from one observing time to the next; that is, there 
is the possibility of deterministic prediction. For the assimilation to be robust both 
the model and observations must contribute to the analysis; the error characteristics 
from one source or another should not always dominate the other.  

For the atmosphere the geophysical parameter with, by far, th
erage is temperature (chapter The Global Observing System, Thépaut and 

Andersson). Since World War II there has been adequate coverage from surface 
measurements and balloons to support forecast-assimilation systems. With 
temperature observations it is possible to make credible estimates of winds by both 
the transference of information through the equations of motion and the propagation 
of information to chronically under-observed or unobserved regions. There is, also, a 
substantial body of horizontal wind observations and water vapour observations in 
the troposphere. Wind observations are especially important to the definition of the 
atmospheric state.  

The temperature
y are prognostic variables (see Fig. 1). Their spatial and temporal scales are such 

that their information is utilized and propagated by the model, especially in middle 
latitudes. From Fig. 3, these variables are directly provided by the dynamical core. 
The physics of the atmosphere are such that temperature and wind reflect integrated 
information. Temperatures and winds from assimilated data systems are often 
excellent estimates of the true state in the free troposphere and lower stratosphere. 

Though there is a conservation equation for water vapour and water is a primar
gnostic variable, the water vapour distribution is largely determined in the “moist 

processes” component of the “physics” (Fig. 3). Because of phase changes, the 
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 satellite observations have come to dominate the absolute number of 
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an interesting variable to examine the model-observation-analysis 
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les outlined above highlight both the ability of the observing system to 
defi

t, the quality, and the 
spa

spatial and temporal time-scales are both small. The observations of water which 
come from weather balloons reflect the small spatial scales of water in the 
atmosphere. These scales are far smaller than those represented by the model grid. 
The sampling network is not always representative of the state as a whole. The error 
characteristics are also a strong function of environment, i.e., temperature. Therefore, 
the representation of water from assimilated data sets is often not of quality for 
geophysical use (see chapter Constituent Assimilation, Lahoz and Errera).  

One challenge that must be faced when using the observations from, for i
loons, is mapping the observational characteristics to the model. The model might 

be assumed to represent, for instance, the average temperature in a grid box. The 
balloon measurement might be appropriately considered a point measurement, at 
least relative to the model grid. Again, there is a more straightforward relation 
between modelled and observed temperatures and winds than modelled and observed 
water vapour. 

Since 1979
ervations used in assimilation systems (see chapter The Global Observing System, 

Thépaut and Andersson). The first variables observed by satellites that were useful 
for assimilation are temperature and ozone observations. As compared with balloon 
measurements, satellite information is, often, smeared out over several model grid 
cells. It took many years to learn how to use satellite temperature observations 
effectively, and it was determined that mapping of the model information to the 
radiance space observed by the satellite often facilitated the use of observed 
information.  

Ozone is 
rface. In some parts of the atmosphere the ozone distribution is determined by 

advection. Hence, the primary model information would come from the “dynamics” 
component (Fig. 3) in these regions. Given quality representation of the winds, ozone 
assimilation works well in these regions (see also chapter Constituent Assimilation, 
Lahoz and Errera). Other parts of the ozone distribution are primarily determined by 
processes contained in the “chemistry” component (Fig. 3). There are strong spatial 
gradients in the chemistry; in some places the time-scales are very short. Further, 
there are strong interdependencies with other gases, aerosols, and temperature (see 
chapter Introduction to Atmospheric Chemistry and Constituent Transport, Yudin 
and Khattatov). In these regions the assimilation is dominated by the chemical 
sources and sinks and the advection of ozone from other places and other times has 
little impact. 

The examp
ne the atmospheric state and the ability of the model to use the information. 

Experience to date shows that if the model information comes from the “dynamics” 
(Fig. 3) and the spatial gradients are resolved with some accuracy, then the 
assimilation can be robust. Alternatively, if the model information comes from the 
“physics” (Fig. 3) and the spatial and temporal scales are small, then the assimilation 
is likely to have large errors and be of little geophysical value.  

Since 1979, and especially since the early 1990s, the amoun
n of satellite observations have all grown tremendously. There are many 

geophysical parameters being measured in the atmosphere, and on the land, ocean, 
and ice surface. Some of the data, for instance, ocean surface winds have proven to 



 

 Physical consistency and data assimilation 

ata assimilation has had dramatic impacts on the improvement of weather forecasts 

st concerned with providing quantitative 
esti

have large impact in assimilation systems. Other observations have proven more 
difficult to use. The same ideas as described for atmospheric assimilation hold; the 
observing system must be able to define the state, and the model able to use the 
observations. Many of these new observations would have their interface with model 
through the “physics” component. The spatial and temporal scales of the 
observations as compared to their representation within the model are often not 
compatible. The composites that make up the variables in the model are often not 
what the satellite is observing. The greatest challenges in modelling lie in the 
representation of “physics,” and one of the primary development paths for model-
data assimilation should be the development of the model variable–observed variable 
interface. 
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D
(see chapter Assimilation of Operational Data, Andersson and Thépaut). There has 
been wide-scale use of assimilated data sets in climate applications with some great 
success, as well as identification of a set of problems for which the assimilation 
analyses are not up to the application. Problems that rely on correlated behaviour of 
geophysical parameters that are not directly measured, i.e., those estimated by the 
model parametrizations, are difficult to address. Two examples of such problems, 
hydrometeorology and constituent transport, are discussed in chapter Reanalysis: 
Data Assimilation for Scientific Investigation of Climate (Rood and Bosilovich). The 
rest of this chapter will explore the attributes that distinguish data assimilation for 
weather from data assimilation for climate. 

Weather forecasting is first and foremo
mates of a set of key variables which define local atmospheric conditions. 

Successful forecasts benefit from the atmosphere being organized into dynamical 
structures, e.g. waves and vortices, whose propagation is well represented by both 
the equations of the motion and the numerical methods used to approximate their 
solution. The observation system can resolve the actual configuration of the 
dynamical structures at a particular time. In the midst of the forecast-assimilation 
cycle, the model also has a configuration of the dynamical structures. Through well-
defined interfaces, the assimilation routine hands a scale-dependent, balanced initial 
state to the predictive model, which, in principle, corrects the observed scales in the 
model state. The model propagates these features forward in time. As is well 
established, in mid latitudes, during winter, predictions of temperature and wind are 
useful for several days. When precipitation is associated with large scale dynamics, 
the prediction of precipitation is useful. Whether that precipitation will be rain or 
snow is a more difficult prediction. In the tropics and in the summer, when the 
dynamical features are of smaller scale and the localized moist processes are 
important to organization of the features, the length of the useful forecast is shorter. 
Van den Dool et al. (1990) discuss measures of forecast skill for high, medium and 
low temporal variations in the atmosphere, including the tropics and the extra-
tropics; Waliser et al. (1999) discuss the predictability of tropical phenomena and the 
relationship to their time-scale.  



 

                                                

“Weather” is a subset of the dynamical features that make up the Earth’s climate. 
The role of weather is to transport energy, and consequently, water and other 
constituents. A good weather forecast is characterized by a good forecast of wind 
velocity, which is essentially the flux of momentum. Since the ultimate impact of 
weather on climate is a transport process, climate is directly related to the divergence 
of fluxes.  

The atmosphere, especially at mid latitudes, is dominated by rotational flows 
close to geostrophic and hydrostatic balance (see Holton 2004). The divergent 
component of the flow, that responsible for irreversible transport, is an order of 
magnitude smaller that the rotational part of the flow. Alternatively, the part of the 
flow most important to the quality of a weather forecast, the rotational part, is an 
order of magnitude larger than the part of the flow important for a physically 
consistent representation for climate, the divergent part.5  While the fluxes are 
directly related to resolved variables such as the horizontal wind, the divergence of 
the fluxes are related to transience, non-linearity, and, ultimately, the dissipation of 
dynamical systems (see Andrews and McIntyre 1978).  

A metric of physical consistency is whether or not the conservation equation 
balances. That is, when all advection, production and loss terms are accounted for, is 
an accurate estimate of the time rate of change of a quantity realized? If the 
numerical methods of a model are formulated from a foundation of physical 
consistency and numerical accuracy, then for a free-running model the budgets 
should balance. This is not achieved without attention to the details. The effects of 
corrective filters must be accounted for, and if the filters are a significant part of the 
conservation equation, then the numerical scheme must be reconsidered.  

There is no reason to expect that the disparate observations of the Earth system 
will satisfy a conservation equation. Therefore, when the observation-based 
corrections are added to the model equations, imbalance is added. The observations 
act like a complicated source-sink term. Whether the model and observations in 
some time averaged sense satisfy a geophysical conservation equation depends upon 
many things. If there is bias between the model and the observations then the data 
insertion, the analysis increments, will be a forcing term of constant sign. If there is 
bias between the models and the observations, then that suggests that the model 
predicts a different mean state than is observed. If the biases in the resolved variables 
are “corrected” in the assimilation process, then there is an inconsistency between 
the values of those “corrected” resolved variables and the values that the physical 
parametrizations of the model generate. This inconsistency might have little or no 
effect on the short-term forecast; however, the data insertion is constantly forcing 
this imbalance, and it will impact those circulations induced by dissipating waves 
that are important to the climate (see Hoskins et al. 1985; Holton et al. 1995; Holton 

 
5 To be clear, it is the estimate of the divergent part of the wind by data assimilation that is 
responsible for much of the improvement of weather prediction. However, it is true that in 
many instances that a reasonable short-term forecast at middle latitudes can be realized by the 
barotropic vorticity equation; hence, the non-divergent geostrophic wind. A good weather 
forecast might be viewed as, “how fast is the wind blowing in my face?”  This is the flux of 
momentum. 



 

2004). Data insertion will impact where and how resolved scales are formed and 
dissipated. 

In order to demonstrate the impact of data insertion more clearly and more 
quantitatively, two examples will be developed. The first is based on the assimilation 
of temperature corrections into the thermodynamic equation. The second is based on 
the analysis of the vertical velocity in the transformed-Eulerian mean formulation of 
the equations of motion (see Holton et al. 1995; Holton 2004). 
 
Example 1:  Observational correction to the thermodynamic equation 
 
To demonstrate the problem of physical consistency more quantitatively, consider 
the thermodynamic equation written with a simple heating rate and a loss rate 
proportional to temperature. 

               ff
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Tf  is written to explicitly represent that this is the model forecast temperature. Two 
cases will be examined. 

Example 1, Case 1:   In Case 1 assume that the assimilation acts as a forcing 
term which relaxes the modelled temperature to an analysed temperature determined 
from the observations. This analysed temperature, for example, might be a gridded, 
least squares estimate from a variety of observations. The subscript “a” represents 
the analysis of the observational information.  
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Note that the time-scale, 1/λ associated with the original equation follows from 

physical principles. The parameter 1/λa represents the relaxation time-scale 
associated with the analysis. The time-scale from the analysis follows from the 
design and assumptions of the data assimilation system (see Swinbank and O’Neill 
1994). This appears as an additional forcing term; in the construct of Fig. 3, a 
“physics” term that is not in the model equations. Therefore, the estimated solution 
of the equation for Tf evolves in the presence of this additional forcing term. 

The equation can be rearranged as 

faaa
f TTH

Dt
DT

)( λλλ +−+=                                        (7) 

 
The analysis can be viewed as a change to the loss rate. If the observations are biased 
relative to the forecast, then the observations are in the time average, a heating term. 
If the observations are unbiased in the time average, then this heating term averages 
away; still however, the loss rate is changed. The conservation equation is altered. 

Example 1, Case 2: Case 2 implements the data-driven correction to the model 
equation by correction of the prognostic variable. That is, Tf is replaced with a 
corrected temperature which is Tf + δTa. On substitution into Eq. 5 and re-arranging 
the terms: 
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The terms on the left side are the model equations, which balance to zero in a 

free-running simulation. The terms on the right side represent an additional forcing 
to the model associated with the data insertion. 

Under the condition that the model equation is satisfied, the left side of Eq. 8 is 
zero, then the following equation is obtained. 
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In this case, the increment from each data insertion relaxes to zero with time.  

There are two intuitive time-scales to compare with the cooling time-scale 1/λ. 
The first is the advective time-scale, which is a comparison of physically derived 
time-scales. This would divide the atmosphere into regions that are dominated by the 
“physics” and the “dynamics” as well as transition regions where both are important. 
The second time-scale is the time-scale associated with the frequency of insertion of 
observational information. From the point of view of “correcting” the model, the 
balance of these time-scales provides a mechanism to understand the system 
performance. In this case, following a parcel, the data insertion is a succession of 
corrections. These corrections relax to zero; hence, the state desired by the model. 
However, as the system is relaxing, the slow time-scales in the model are being 
constantly impacted by the observations. This impact lasts far longer than the direct 
impact of a single observation on the analysis increment. If there is bias between the 
model and the observations, then this represents a forcing to a new equilibrium state. 
The data insertion is, also, a source of variability at the time-scales of the observing 
system. 

Another way to think about the role of the model in the assimilation system is to 
imagine the model as an instrument “observing” a suite of observations that describe 
the atmosphere, or more generally, the Earth. Some parts of the model directly 
observe this suite of observations and are well specified. Other parts of the 
observation suite are indirectly observed, and there are some unobserved variables 
which are diagnosed as part of the model “circuitry.” The influence that the 
observations have on these indirectly determined and unobserved variables is 
strongly dependent on the design of the model and how information flows through 
the model. It is strongly dependent on the logic and construction of the numerical 
parametrizations.  

To illustrate this, consider the component architecture of Fig. 3. Since this figure 
represents a solution to a set of conservation equations, then the model can be 
viewed as residing within a closed system. The correction of the model by observed 
information makes this an open system; the tenets of the conservation principle are 
no longer true. For the climate, which is the accumulation of the processes 
represented in the system, this insertion of information (forcing) from outside the 
system must be assumed to have consequences on the basic physical processes.  
 



 

              
Fig. 5. Schematic of model as a closed system, which accepts forcing from outside the system. 

Balance here is represented symbolically as if the model was an electrical circuit with a 
voltage difference across the “coupler.” agcm stands for “atmospheric general circulation 

model”. 
 

Figure 5 is a reduced version of Fig. 3; the box around the components shows 
that the model is a closed system. The coupler determines the transfer of information 
between the “physics” and the “dynamics.”  There are numerous time and space 
scales present in the coupler, as well as those intrinsic to the “dynamics” and the 
“physics.” If the model is viewed as an electronic instrument, as posed above, then 
there is a network of resistors which determine flow of signal through the system. 
There are capacitors that represent the time-scales of processes. The balance across 
the coupler is represented as a voltage difference, Vdyn-Vphy. The two data insertion 
scenarios described above are illustrated in Fig. 5. They both explicitly bring in 
information from outside of the system and to different sides of the coupler. They 
both would change some aspect of the system, represented symbolically by a change 
in the voltage difference across the coupler.  
 
Example 2:  Horizontal divergence and the vertical wind 
 
The two cases in Example 1, above, used a simple form of the thermodynamic 
equation. The thermodynamic variables have the property of being in local 
equilibrium. However their relationship to the wind fields is not always local; the 
winds are related to the spatially integrated thermodynamic state. There is the 
possibility of action at a distance as momentum that is dissipated in one region can 
induce circulations which impact distant regions (see Hoskins et al. 1985; Holton et 



 

al. 1995; Holton 2004). Therefore, errors in the wind field are expected to impact the 
analysis in a different way than errors in the temperature field.  

As pointed out above, for many years atmospheric observations were dominated 
by temperature measurements. Winds were estimated from the temperature 
observations. Assume that the horizontal winds are corrected by the temperature 
observations by transfer of information through the assimilation system. 

))((  and  ))(( afcafc TvvvTuuu δδδδ +=+=                (10) 
 

The subscript c is the corrected forecast; subscript f is the forecast. u(δTa) and 
v(δTa) are the corrections to the velocity field related to the correction in the 
temperature field that comes from the analysed observations. Through the mass 
continuity equation, the divergence of the horizontal wind is related to the vertical 
gradient of the vertical velocity. The divergence of the horizontal wind field, 
therefore, is the primary quantity that connects the thermodynamic equation and the 
momentum equations in the atmosphere (see Eq. 1 and Holton 2004). Schematically, 
the vertical velocity is a key variable connecting the “dynamics” and “physics” 
components of the model (see Fig. 3). Hence the vertical velocity is a key variable in 
the coupling of the “dynamics” and the “physics.”  

As an example, consider large-scale, mid latitude dynamical features. Scale 
analyses in the atmosphere shows that for these dynamical systems the divergence of 
the horizontal wind is an order of magnitude smaller than either of the individual 
terms that make up the divergence. That is, for a representative velocity scale U and 
length scale L  
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The divergence of the assimilation-corrected horizontal wind is 
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A 10% “correction” in the wind is, potentially, a 100% error in the divergence. It 
follows that there are similarly large errors in the vertical velocity.  

As stated in the previous section, the vertical velocity is usually diagnosed in 
global models. The vertical velocity can, in general, be diagnosed in two ways. 

Following Holton (2004), in pressure coordinates, where 
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The subscript “k” indicates that this velocity is diagnosed from the kinematics of the 
flow field. psfc is the surface pressure. 



 

The vertical velocity can also be diagnosed from the thermodynamic equation. 
Again, in pressure coordinates and following Holton (2004), assuming the diabatic 
terms, J, can be ignored,  
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Where Sp is the static stability parameter in pressure coordinates. The subscript T 

indicates this estimate of the vertical velocity is from the thermodynamic equation. 
In this simplified case the consistency question would ask whether or not these two 
estimates of the vertical velocity are equal. Experience shows that this is not the case 
in assimilated data sets, and the errors in the divergence dominate the calculation in 
ωk.  

To illustrate this problem further, and to make the connection to the climate 
problem clearer, it is useful to consider the transformed Eulerian-mean formulation 
of the equations of motion (see Holton et al. 1995 and Holton 2004). This 
formulation has proven a powerful paradigm for understanding the general 
circulation and constituent transport and is an important example of the physical 
constraints discussed in Fig. 1. The transformed Eulerian-mean approximates the 
compensating transport of the waves (represented by a prime) and the Eulerian-mean 
meridional circulation (represented by an over bar). In this case the diabatic terms 
cannot be ignored, and one estimate of the residual mean vertical velocity, *w , is 
called the diabatic (subscript d) vertical velocity and should equal 
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For convenience, the vertical coordinate, z, is log pressure-height. N2 is the 

square of the buoyancy frequency, and H is a constant scale height ~7 km. 
By definition the corresponding analogue to the kinematic estimate is                                                                  
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In this case the question of consistency comes to whether or not **

dk ww = is true.  
In general this equality is not realized from assimilated data sets, even in the 

relatively simple case of the stratosphere (see Schoeberl et al. 2003).  
Finally, this form of the exposition of the concepts of physical consistency is 

illustrated in Fig. 6. The value of the vertical velocity presented to the coupler should 
be the same from the diagnostics via the “physics” and “dynamics.” If this is not the 
case, then the assimilation is physically inconsistent. This particular exposition 
through the vertical velocity is perhaps the most relevant and important in data 
assimilation. It is relevant not only to climate and chemistry transport, but to 
weather. It poses a physical constraint for assimilation – can physically consistent 
thermodynamic and kinematic vertical velocities from the model be maintained in 
the assimilation? Or more generally - can the physical balance of the model be 



 

maintained in the presence of the assimilation of observations?  This is a formidable 
task. 
 

             
Fig. 6. Schematic of model as a closed system, which accepts forcing from outside the system. 

Balance here is represented as consistency between vertical velocity estimates coming from 
the “physics” or “dynamics” components. agcm stands for “atmospheric general circulation 

model”. 
 
7 Summary 
 
This chapter introduced the fundamental ideas that a scientist needs to understand 
when building or using models in Earth system science research. Rather than 
focusing on technical aspects of modelling and data assimilation, the chapter focused 
on a number of underlying principles. These principles, if adhered to, will allow the 
models and model products to be used in quantitative, data-driven research.  

With regards to stand-alone models in the absence of data assimilation, it was 
emphasized that the underlying physics should be well represented. Specifically, the 
need to represent correlated behaviour between geophysical parameters was 
emphasized. A strategy for meeting such a design criteria is to assure that the 
discrete, numerical approximation to the continuous equations honours the balance 
conditions that are used in the development of theoretical constructs. This 
emphasizes “consistency,” perhaps at the expense of formal numerical accuracy, as 
accurate numerical techniques do not guarantee physical consistency. Data 
assimilation was introduced as the addition of a forcing term to the model that is a 
correction based on observations. This additional forcing term changes the balance of 



 

forces. Therefore, budgets calculated from assimilated data are not expected, a 
priori, to be robust for geophysical applications.  

The role of the model in data assimilation was discussed. It is the assimilation of 
observational information into the predictive-diagnostic model that sits at the 
foundation of the value and the potential value of the information produced by data 
assimilation. In applications ranging from mapping, to improved predictions, to 
generation of unobserved geophysical variables, data assimilation stands as an 
essential ingredient of modern Earth system science. The future development of data 
assimilation includes both the improvement of the models and the better use of 
information provided by the model. Model improvements include a more robust link 
in the models between resolved scales and subgrid physical parametrizations. 
Specifically, with regard to the link to data assimilation, the interface between the 
subgrid information and the observations needs more attention (see Zhang and Lin 
1997). Better use of model information includes using the information developed by 
the model that connects the correlative physics important to the climate – how is this, 
first, preserved, then improved, when data is inserted into the model? 

Several frames of reference were offered for thinking about models, model 
construction, and physical consistency. A summary version of these concepts 
follows. There are many time-scales represented by the representative equations of 
the model. Some of these time-scales represent balances that are achieved almost 
instantly between different variables. Other time scales are long, important to, for 
instance, the general circulation which will determine the distribution of long-lived 
trace constituents. It is possible in assimilation to produce a very accurate 
representation of the observed state variables and those variables which are balanced 
on fast time scales. On the other hand, improved estimates in the state variables are 
found, at least sometimes, to be associated with degraded estimates of those features 
determined by long time-scales. Conceptually, this can be thought of as the impact of 
bias propagating through the physical model (see Dee 2005). With the assumption 
that the observations are fundamentally accurate, this indicates errors in the 
specification of the physics that demand further research. The identification, the 
management, the correction, and the elimination of sources of bias are crucial for 
improving the physical robustness and self-consistency of assimilated data sets. 
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