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Abstract. In this paper the first and the second Zagreb indices of generalized hierarchical
product of graphs, which is generalization of standard hierarchical and Cartesian product
of graphs, is computed. As a consequence we compute the Zagreb indices of some chemical
graphs.

1 Introduction

In the early work of the Zagreb mathematical chemistry group on the topological basis

of π-electron energy, in 1972, two terms appeared in the approximate formula for the

π-energy of conjugated molecules [1]-[2], which were later used separately as topological

indices in QSPR and QSAR studies [3]-[4].

Let G = (V (G), E(G) be a simple connected graph with vertex set V (G) and edge

set E(G). Then the first and second Zagreb indices are defined as

M1(G) =
∑

v∈V (G)

δ(v)2

M2(G) =
∑

uv∈E(G)

δ(v)δ(u),

where δ(v) is the degree of vertex v (see [1]). We encourage the reader to consult [5]-

[10] for historical background, computational techniques and mathematical properties of

Zagreb indices.
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A new operation on graphs, namely hierarchical product, were introduced by Spain

mathematicians, L. Barriere and coauthors in 2009 (see [11]). Also a generalization of

both Cartesian and the hierarchical product of graphs, namely generalization hierarchical

product of graphs, were reported by this team in 2009 (see [12]).

Now we recall these graph operations. Let G = (V (G), E(G)) and H = (V (H), E(H))

be two graphs and U be a non-empty subset of V (H). Let Γ = G 	 H(U) be the

hierarchical product of G and H corresponding to U . Then V (Γ) = V (G) × V (H) and

(a, x)(b, y) ∈ E(Γ) if and only if a = b, xy ∈ E(H) or ab ∈ E(G), x = y ∈ U . It is clear

that if U = V (H), then G 	 H(U) = G�H, the Caretesian product of G and H. Also

if U = {z} be a singleton, then G 	H(U) = G 	H, the (standard) hierarchical product

of G and H with root vertex z. The hierarchical product can be naturally extended for

more than two graphs (see [11]).

Note that the structure of the generalized hierarchical product Γ heavily depends on

the subset U of V (H). Note also that Γ is simply a subgraph of the classical Cartesian

product of G and H. Although the Cartesian product is both commutative and asso-

ciative, the generalized hierarchical product has only the second property, provided that

the subsets are conveniently chosen. Moreover such a product is also distributive on the

right with respect to the union of graphs.

Through this paper our notation is standard and taken mainly from [13]. Pn, Cn

and Kn are a path, a cycle and a complete graph on n vertices, respectively. By simple

calculations one can see that M1(Pn) = 4n − 6, M2(Pn) = 4n − 8 for n ≥ 3. Moreover

M1(P1) = 0, M1(P2) = 2, M2(P1) = 0 and M2(P2) = 1. Also M1(Cn) = M2(Cn) = 4n,

M1(Kn) = n(n− 1)2 and M2(Kn) =
n(n−1)3

2
.

2 Main Results

In this section, some exact formulae for the first and second Zagreb indices of the gener-

alized hierarchical product of graphs are presented. We begin with the following crucial

lemma related to the degree of a vertex in generalized hierarchical product of graphs.

Lemma 2.1. (see [12]) The degree of a vertex x = (xN , xN−1, . . . , x2, x1) in the general-

ized hierarchical product HN = GN 	 · · · 	G2(U2) 	G1(U1) is

δ(x) = δ(x1) + χU1(x1)δ(x2) + · · ·+
[
χU1(x1) · · ·χUN−1(xN−1)

]
δ(xN) ,
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where δ and χUi
denote, respectively, the degree and the characteristic function on the

set Ui which is 1 on Ui and 0 outside Ui.

Theorem 1. Let Γ = G 	H(U). Then

M1(Γ) = |V (G)|M1(H) + |U |M1(G) + 4|E(G)|
∑
u∈U

δ(u) .

Proof. For every v = (g, h) ∈ V (Γ), we have δ(v) = δ(h) + χU(h)δ(g). Thus

M1(Γ) =
∑

v∈V (Γ)

δ(v)2 =
∑

g∈V (G),h∈V (H)

(δ(h) + χU(h)δ(g))
2

= |V (G)|
∑

h∈V (H)

δ(h)2 + |U |
∑

g∈V (G)

δ(g)2 + 2
∑

g∈V (G),u∈U
δ(g)δ(u)

= |V (G)|M1(H) + |U |M1(G) + 2
∑

g∈V (G)

δ(g)
∑
u∈U

δ(u)

= |V (G)|M1(H) + |U |M1(G) + 4|E(G)|
∑
u∈U

δ(u)

as desired. �
We know that if U = V (H), then G 	 H(U) = G�H and if U is a singleton, then

G 	H(U) = G 	H. So we have the following corollary:

Corollary 2.2. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. Then

(a)If G�H is the Cartesian product of G and H, then

M1(G�H) = |V (G)|M1(H) + |V (H)|M1(G) + 8|E(G)||E(H)|

(b) If G 	H is the standard hierarchical product of G and H with root vertex z, then

M1(G 	H) = |V (G)|M1(H) +M1(G) + 4|E(G)|δ(z) .
�

If for j > k, we put
∑k

i=j f(i) = 0 and
∏k

i=j f(i) = 1, then we can simplify the first

Zagreb index of generalized hierarchical product of N graphs as follows:

Corollary 2.3. Let Gi = (Vi, Ei), Ui ⊆ Vi and HN = GN 	GN−1(UN−1) 	 · · · 	G1(U1),

N ≥ 2. Then

M1(HN) =
N∑
i=1

[
M1(Gi)

i−1∏
j=1

|Uj|
N∏

k=i+1

|Vk|
]

+ 4
N−1∑
i=1

[∑
u∈Ui

δ(u)

(
N∑

j=i+1

[|Ej|
j−1∏

k=1,k �=i

|Uk|
N∏

r=j+1

|Vr|]
)]

.

-133-



Proof. By associativity of generalized hierarchical product and lemma 1 and inductive

argument, we have

M1(HN+1) = M1(GN+1 	HN(UN × · · · × U1))

= |VN+1|M1(HN) +M1(GN+1)
N∏
i=1

|Ui|+ 4|EN+1|
∑

u=(uN ,...,u1)∈UN×···×U1
δ(u)

= |VN+1|
(

N∑
i=1

[
M1(Gi)

i−1∏
j=1

|Uj|
N∏

k=i+1

|Vk|
]

+ 4
N−1∑
i=1

[∑
u∈Ui

δ(u)

(
N∑

j=i+1

[|Ej|
j−1∏

k=1,k �=i

|Uk|
N∏

r=j+1

|Vr|]
)])

+ M1(GN+1)
N∏
i=1

|Ui|+ 4|EN+1|
(

N∑
i=1

[
N∏

j=1,j �=i

|Uj|
∑
u∈Ui

δ(u)

])

=
N+1∑
i=1

[
M1(Gi)

i−1∏
j=1

|Uj|
N∏

k=i+1

|Vk|
]

+ 4
N∑
i=1

[∑
u∈Ui

δ(u)

(
N+1∑
j=i+1

[
|Ej|

j−1∏
k=1,k �=i

|Uk|
N+1∏
r=j+1

|Vr|
])]

as desired. �

Corollary 2.4. Let Gi = (Vi, Ei) be a graph for 1 ≤ i ≤ n with root vertex zi. Then

M1(Gn� · · ·�G1) = |V |
(

n∑
i=1

M1(Gi)

|Vi| + 8
n−1∑
i=1

n∑
j=i+1

|Ei||Ej|
|Vi||Vj|

)

M1(Gn 	 · · · 	G1) =
n∑

i=1

[
M1(Gi)

n∏
j=i+1

|Vj|
]
+ 4

n−1∑
i=1

[
δ(zi)

n∑
j=i+1

|Ej|
n∏

k=j+1

|Vk|
]

.

In particular if G1 = G2 = · · · = Gn = G where G = (V,E) is a graph with root vertex

z, and Gn = G� · · ·�G (n-times) and G[n] = G 	 · · · 	G (n-times), then

M1(G
n) = n|V |n−2 (|V |M1(G) + 4|E|2(n− 1)

)
and

M1(G
[n]) =

(|V |n − 1)(|V | − 1)M1(G) + 4|E|δ(z)(|V |n − n|V |+ n− 1)

(|V | − 1)2
.

Now we give an important lemma as follows.
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Lemma 2.5. Let G = (V (G), E(G)) be a r-regular graph. Then M1(G) = |V (G)|r2 and
M2(G) = |E(G)|r2 = r3|V (G)|

2
.

Proof. Since in any r-regular graph the degree of any vertex is r, and
∑

v∈V (G) δ(v) =

2|E(G)|, the result is clear. �
Let G be a molecular graph of a fullerene with n vertices. Since G is a 3-regular

graph, M1(G) = 9n and M2(G) = 27n
2
. For example M1(C60) = 540 and M2(C60) = 810.

Corollary 2.6. Let G and H be r and s-regular graphs, respectively. Then

M1(G�H) = |V (G)||V (H)|(s+ r)2 , (1)

M1(G 	H) = |V (G)|(s2|V (H)|+ 2rs+ r2) (2)

and more generally, if G1, . . . , Gn be r1, . . . , rn-regular graphs, respectively, then

M1(G1�G2� · · ·�Gn) = |V1||V2| · · · |Vn|(r1 + r2 + · · ·+ rn)
2 , (3)

M1(Gn 	 · · · 	G2 	G1) =
n∑

i=1

n∏
j=i

r2i |Vj|+ 2
n−1∑
i=1

n∑
j=i+1

n∏
k=j

rirj|Vk| (4)

where |Vi| is the number of all vertices of Gi. In particular if G be a r-regular graph,

then

M1(G
n) = |V (G)|nn2r2

and

M1(G
[n]) =

r2|V (G)| (|V (G)|n+1 + |V (G)|n − |V (G)|(1 + 2n) + 2n− 1)

(|V (G)| − 1)2
.

Using the above corollary we can give the following examples.

Example 2.7. Let G = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnk
, k ≥ 2, be a tori graph. Then M1(G) =

4n1n2 · · ·nkk
2. If k = 2, then the resulting graph is a C4-tori and in this case M1(Cn1 ⊗

Cn2) = 16n1n2.

Example 2.8. Let G = Kn1 ⊗Kn2 ⊗ · · · ⊗Knr . Since Kni
is a ni − 1-regular graph, so

M1(G) = n1n2 · · ·nr(n1 + n2 + · · ·+ nr − r)2.

As a corollary we can compute the first zagreb index of a hypercube of dimension

n, Qn. We know that Qn =
⊗n

i=1 K2, where K2 is the complete graph on 2 vertices.

K2 is a 1-regular graph. So M1(Qn) = 2nn2. It is well-known fact that a graph G is a
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Hamming graph if and only if it can be written in the form G =
⊗r

i=1 Kni
where Kni

is the complete graph on ni vertices and so the Hamming graph G is usually denoted as

Hn1,...,nr . So M1(Hn1,...,nr) = n1n2 · · ·nr(n1 + n2 + · · ·+ nr − r)2.

Example 2.9. Consider the binary hypertree Tm which is the standard hierarchical

product of m copies of the complete graph K2. So Tm = K
[m]
2 and M1(Tm) = 3 · 2m+1 −

4m− 6.

Now we give an exact formula for the second Zagreb index of generalized hierarchical

product of graphs.

If for every x ∈ V (G), we define N [x] as the set of all adjacent vertices of x, then we

have

Theorem 2. Let Γ = G 	H(U). Then

M2(Γ) = |V (G)|M2(H) + |U |M2(G) + 2|E(G)|
∑
u∈U

∑
x∈N [u]

δ(x)

+ M1(G) |{xy ∈ E(H) | x, y ∈ U}|+ |E(G)|
∑
u∈U

δ(u)2 +M1(G)
∑
u∈U

δ(u)

Proof. Since E(Γ) = {(a, x)(a, y) | a ∈ V (G), xy ∈ E(H)} ∪ {(a, x)(b, x) | ab ∈
E(G), x ∈ U}, we have

M2(Γ) =
∑

a∈V (G),xy∈E(H)

δ(a, x)δ(a, y) +
∑

ab∈E(G),x∈U
δ(a, x)δ(b, x)

=
∑

a∈V (G),xy∈E(H)

(δ(x) + χU(x)δ(a)) (δ(y) + χU(y)δ(a))

+
∑

ab∈E(G),x∈U
(δ(x) + δ(a)) (δ(x) + δ(b)) .

By a simple calculation one can see that

∑
a∈V (G),xy∈E(H)

(δ(x) + χU(x)δ(a)) (δ(y) + χU(y)δ(a))

= |V (G)|M2(H) + 2|E(G)|
⎛
⎝ ∑

xy∈E(H),y∈U
δ(x) +

∑
xy∈E(H),x∈U

δ(y)

⎞
⎠

+M1(G) | {xy ∈ E(H) | x, y ∈ U} |

= |V (G)|M2(H) + 2|E(G)|
∑
u∈U

∑
x∈N [u]

δ(x) +M1(G) | {xy ∈ E(H) | x, y ∈ U} |
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and∑
ab∈E(G),x∈U

(δ(x) + δ(a))(δ(x) + δ(b)) = |E(G)|
∑
x∈U

δ(x)2 +M1(G)
∑
x∈U

δ(x) + |U |M2(G) .

Note that in the last equality we used this fact that
∑

ab∈E(G)[δ(a)+ δ(b)] = M1(G). Now

the result is clear. �
If we put U = V (H) or U = {z}, then we have the following corollary:

Corollary 2.10. LetG�H andG	H be the Cartesian and standard hierarchical product

of G and H with root vertex z, respectively. Then

M2(G�H) = |V (G)|M2(H) + |V (H)|M2(G) + 3|E(H)|M1(G) + 3|E(G)|M1(H)

M2(G 	H) = |V (G)|M2(H) +M2(G) + 2|E(G)|
∑

x∈N [z]

δ(x)

+ |E(G)|δ(z)2 +M1(G)δ(z)

�

Corollary 2.11. If G and H be r and s-regular graphs, respectively, then

M2(G�H) =
1

2
|V (G)||V (H)|(s+ r)3

M2(G 	H) =
|V (G)|

2

(
s3|V (H)|+ r3 + 2rs|N [z]|+ rs2 + 2r2s

)
.

Inductively one can see that if Gi be a ri-regular graph for every 1 ≤ i ≤ n, then

M2(G1� · · ·�Gn) =
1

2
|V1| · · · |Vn|(r1 + · · ·+ rn)

3 .

As a corollary, we have

M2(Cn1� · · ·�Cnk
) = 4n1 · · ·nkk

3

M2(Kn1� · · ·�Knr) =
1

2
n1 · · ·nr(n1 + · · ·+ nr − r)3 .

Now we consider some chemical structures and compute the first and second Zagreb

indices of these structures.

Let Γ = P2 	H(U), then by Theorem 1, M1(Γ) = 2M1(H) + 2|U |+ 4
∑

u∈U δ(u) and

by Theorem 2,

M2(Γ) = 2M2(H) + |U |+ 2
∑
u∈U

∑
x∈N [u]

δ(x) + 2 |{xy ∈ E(H) | x, y ∈ U}|

+ 2
∑
u∈U

δ(u)2 + 2
∑
u∈U

δ(u) .
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Now we consider some chemical structures of the form P2 	H(U) and compute the first

and second Zagreb indices of them.

Example 2.12. Let Γ = DDp,r = P2	H (see Figure 1). Then M1(Γ) = 2M1(H)+2+4p.

But M1(H) = p(pr+1+3pr−3p−1)
p−1 . So M1(Γ) = 2(pr+2+3pr+1−p2−2p−1)

p−1 . Also M2(P2 	 H) =

2M2(H) + 3p2 + 4p+ 1. But M2(H) = 2p(1+p)(pr−p)
p−1 and so M2(Γ) =

(1+p)(4pr+1−p2−2p−1)
p−1 .

Figure 1: Regular dicentric (DD2.4) dendrimer.

Example 2.13. Consider the molecular graph of linear phenelyne Fn including n benzene

rings (see Figure 2). Then Fn = P2	P3n(U) where U = {1, 4, 7, .., 3n−2}∪{3, 6, 9, ..., 3n}.
It is easy to see that M1(Fn) = 44n− 20. M2(Fn) = 60n− 40.

Figure 2: A linear phenylene

Example 2.14. Let n be an even positive integer number and Rn be a cyclic phenelyne

including n benzene ring (see Figure 3). Then Rn = P2 	 Fn
2
. So M1(Rn) = 44n and

M2(Rn) = 60n− 4.

Figure 3: A cyclic phenylene
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Example 2.15. Let Γ = P2 	 C60(U) be the molecular graph of dimer fullerene (see

Figure 4). Then M1(Γ) = 1108 and M2(Γ) = 1674.

Figure 4: Dimer fullerene C60
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