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High Temperature Creep Damage 
Under Biaxial Loading—Part II: 
Model and Simulations 
The inadequacies, in describing the high temperature creep damage of two industrial 
alloys (Part I) with a model where the anisotropic damage variable D depends only 
on time have been pointed out. It is therefore proposed to introduce directly strain 
rate in the damage law. This rule is then integrated into a unified viscoplastic model, 
with internal variables, that has been developed elsewhere. Some numerical simu
lations obtained with the complete formulation are reported and, in general, yield 
acceptable results. 

1 Introduction 

In Part I [1], the respective influence of the Von-Mises equiv
alent stress a and of the maximum principal stress <jpl on the 
high temperature creep damage of two industrial alloys (INCO 
718 and 1 7 - 1 2 SPH stainless steel) are pointed out in a 
quantitative way through tensile-torsion biaxial tests. Through 
inversions of the shear component, the important part taken 
by the principal direction npl corresponding to the maximum 
principal stress has been shown. Opposite results are observed 
according to whether the alloy suffers cyclic hardening (17 -
12 SPH) or cyclic softening (INCO). These results are sup
ported by metallographic observations. The effects, on the 
rupture time and rupture strain of a short preloading (pre-
strain effect) are pointed out. 

In this part, the interpretation and the modeling of such 
behavior are presented. 

2 Interpretation and Modeling 

2.1 Damage Evolution Laws 

(i) Classical Approach. The one-dimensional analysis of 
Rabotnov-Kachanov [2-4] leads to a damage variable obeying 
the equation: 

D/D0={a/a0)'(l/(l-D))i, (1) 

whereD0 and a0 are dimensional constants. Its solution predicts 
a rupture time, (for a critical damage D* = 1) given by: 

tR = (l/(r1+l)D0)(<j0/ar. (2) 

The generalization of (1) and (2) to the case of complex 
stress states can be obtained using a function A(ov,/o-0) of the 
stress tensor invariants. In such a way, Hayhurst [5] introduces 
a linear functions of the maximum principal stress apl, the first 
stress invariant / , and the second invariant of the deviatoric 
stress J\/2 a o. Contrary to the ductile plastic rupture case, 
the part of J\ is generally negligible during creep. Analyses 

based on material science use a product of the previous in
variants [6-8]. In the present case, as in equation (6), Part I, 
v = vi + v2, A (07/CTO) m a y be written as: 

A ( V ff„) = (o« • a <'- *>/o&)l'>, (3) 

thus corroborating Cane's results [8]. Clearly, relationship (3) 
predicts D = 0 in a purely compressive test for which the 
maximum principal stress is zero; this might disagree with 
experiments. To verify this and assess for damaging capability 
of compressive states of stress, several cyclic creep tests with 
rectangular shaped cycles (i.e., tension, torsion with inversion, 
compression) including holding times in the compressive state 
are being performed. In addition, different tension-internal 
pressure test are under way in order to verify the small influence 
of Ji (or J}). Therefore, relationship (3) will be retained in the 
present state of the study; however, it might further appear 
that a contribution of a compressive state of stress to damage 
should be accounted for; which could be obtained through an 
additive combination of o-pl and a. 

Taking into account the influence of the principal direction 
npl can be obtained through the introduction of the second 
rank tensor (npl ® npl), i.e., the tensor product of npl. Thus, 
the tensor D is defined as: 

Dij=D-(npl®npl)ij, together with: 

ZJ/D0= ((«»s!-ff< ' -*2 ) /o8)-(l /( l-^») ' ) . 
with V2=v(opl/oR), 

or in another contracted form: 

H©(*)®)W-
(4) 
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v = 9 for the 17 - 12 SPH and v = 14 for the INCO alloy. 
The equations (4) constitute a simple approach to damage 

in agreement with the experimental results about the rupture 
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times for monotonic loadings and which can be solved in an 
analytical way. 

A more complete theoretical modeling was proposed by Mu
rakami et al. [9, 10]. It consists in extending the uniaxial Ra-
botnov-Kachanov basic concept of an effective stress a = (o/ 
(1 - D)) to the stress tensor. For this, a second rank tensor 
* is defined as: 

<S> = ( I - D ) - ' (I unit tensor), (5) 

and the effective stress tensor, symmetrical, of the order two 
a, is given by: 

a=l/2(ff* + *a). (6) 

By analogy to the processes leading to (2) and (3) one can 
write: 

Dy/i>0= (5Jj.5 (»-'2/o8).*'-"(n /,1®npi)(„ (7) 

- £ 
where: $ = (*y$,y)1/2, a = I- (?/• a(j)in, a(j being a com-

AT 
ponent of the deviatoric effective stress. It must be noticed 
that no $ invariant leads to (1/(1 - D)) when the uniaxial 
case is considered and the term ($(i~',)) is retained in (7), in 
the same way as i) ^ v is introduced in (1). The inequality, ri 
T1 v has no clear physical meaning but it provides a supple
mentary parameter aimed at improving the fitting of the ex
perimental creep curves by the model as does the factor {kh ~v)). 
In view of the ambiguity in the meaning of this term, the 
analysis which follows will assume ij = v. 

It must be noticed that when the same rupture time in uni
axial tensile tests is taken for the two models, (4) and (5) to 
(7), their respective numerical predictions with respect to pro
portional tensile-torsion curves are close to each other. 

The damage evolution laws (5) to (7) introduced above make 
damage depend only on time in creep tests, therefore tm/tR 

determination does not depend on the flow rules. tRi/tR was 
calculated with rj = v in equations (5) to (7). The two extreme 
cases for INCO: v = v2 or v2 = 0 are reported in Fig. 4. In 
the completely anisotropic case (first one, curve 2 in Fig. 4), 
tRi/tR increases from 1 to 2 when Ai/< is changed from 0 to 90 
deg. On the contrary, use of the average experimental values 
for v and v2, leads to a predicted ratio tRi/tR always smaller 
than 2 (curve 1 in Fig. 4). Moreover, Fig. 4 also shows that 
damage anisotropy is larger for the stainless steel 17 -12 SPH 
than in the INCO alloy, which agrees with experiments. 

However the model predicts that tRi/tR can never exceed two 
or be less than one and is not in agreement with the experiments. 
In addition, this formulation predicts the rupture time to be 
independent of pre-hardening effects, which is in contradiction 
to the results reported in paragraph 3.6, Part I. 

Actually, as previously mentioned, it is likely that damage 
does not depend only on time but also on strain or strain rate; 
therefore damage rules and flow rules can no longer be sep
arated. This remark agrees with the conclusion drawn from 
the work of Hales [11] and Majumdar et al. [12] relative to 
the study of the creep-fatigue interaction phenomena in a 304 
and 316 type steels in the neighborhood of 600°C. Adding a 
strain parameter aimed at accounting for the cyclic properties 
of the material should give more freedom on the predicted 
evolution of tRi/tR and make it possible to get tRi/tR < 1 for 
cyclic softening and tRj/tR > 2 for materials exhibiting cyclic 
hardening. The analysis of such a model is presented in the 
next paragraph. It is worth noting at this point that, contrary 
to present equations (4) to (7), Pineau et al. proposed a model 
in which only strain is taking a part [13, 14]. 

(H) New Approach. The hypothesis that the tensor product 
takes into account the damage anisotropy is not challenged. 

with 

(8) 

In fact, microscopic observations have clearly shown the role 
of api and of its associated principal direction. An attempt 
could be made to modify the scalar component which expresses 
the amplitude of the damage, and a simple way to introduce 
the strain into the damage kinetics is to write: 

where e j represents a normalization strain rate and coincides 
with the minimum (or steady) strain rate corresponding to the 
imposed stress state. 7 is a parameter allowing to weighting 
of the relative effects of time and strain, p is a supplementary 
parameter that is taken equal to unity. A" (ff///cr0) results from 
equation (7), and the minimum strain rate can be written, in 
accordance with experimental observations, in the form: 

ex = KamapU with m + n = i>. (9) 

It can be noted that with p = 1 and for a uniaxial loading, 
equation (8) has analytical solutions in the two extreme cases 
where 7 = 0 and 7 = 1 , which allows the determination of 
the ratio (D0/ofi) for a fixed critical damage D*. 

However, two distinctions should be made relative to the 
formulation (8). First of all, considering the behavior of each 
material during tests with inversion of the torsion component, 
it can be assumed that no damage occurs due to the strain 
during the hardening phase. More generally, each time that 
the equivalent strain rate decreases, it is assumed that there is 
no damage connected with the strain and only the damage 
connected with time remains. On the other hand, as soon as 
the strain rate increase, this growth being a function of time, 
then a damage term is introduced due to the strain. This comes 
down to testing the sign of the derivative of k. It can be noted 
that in this formulation, it is time that causes e > 0 and thus 
starts the strain damage. Secondly, the developed damage law 
is integrated into a unified viscoplastic model [15, 16], that is 
to say, only one type of strain is considered and the large 
strains connected with the loading contribute in the same way 
as the smaller viscoplastic strains to the evolution of strain 
damage. The hypothetical damage created during the loading 
path is essentially ductile and does not appear until a critical 
strain ec is reached [3, 4], This case is treated by another 
formulation [3,4]. It is for this reason that a criteria is intro
duced which allows the loading phase to be recognized. Thus, 
when there is a variation of applied stress, the part of the 
damage connected with the strain must be set equal to zero. 
It can be noted that with the partitioned model [17], this sep
aration is realized directly since plastic and viscous strains are 
dissociated. To summarize, considering the distinctions that 
have been made and equations (5) to (9), the damage laws can 
be written: 

Do W 
7 + ( l - 7 ) - # ( e ) ( l 

«i 

> 

-H{b)) (npl®npl)u, 

(10) 
where H{ . ) is the Heaviside function: 

H(x) = 1 if x>0 and H(x) = 0 if x<0 
# = ( I - D ) - 1 , f f = l / 2 ( o * + *ff) and 

A"P0= -^ with 

e{=Komo"pl and v2=v(<jpl/oR). 

2.2 Flow Rules. It has already been mentioned that cyclic 
properties and the flow direction rotations (Fig. 7, Part I) are 
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Fig. 1 Examples of predictions obtained on the 17 - 12 SPH Steel from 
equations (10) and (12) to (27). Uniaxial case with different stress levels. 

accounted for through two internal variables (Y and a), re
spectively, isotropic and kinematic, the recovery of which is 
not negligible because of the high temperatures. A unified 
model developed by the authors [15, 16] and identified for 
undamaged states of the two considered alloys gave very sat
isfactory predictions. 

At this stage of the modelization it remains to couple the 
damage law (10) to the behavior laws, that is to say, to explicit 
the effect of damage on the behavior of the material. Consid
ering the form of equation (6) for the effective stress cr, in 
agreement with Murakami et al. [10, 18], the effective stress 
tensor S, which takes part in the behavior laws, can be defined 
in two ways: 

—either in an anisotropic fashion by the intermediary of a 
fourth order tensor y (#) relating S to a: 

S=l/2(7(*V+(7(*)(r)7 ' ) ) (11) 

—or in an isotropic fashion by the intermediary of an in
variant of D, for example the first: 

S = ( l + c trace D)<r. (12) 

In order to avoid unnecessary complexity and in view of the 
fact that the density of defects remains small even at rupture, 
the second solution will be adopted. In addition, it can be 
noted that the parameter c plays a direct role in the behavior 
law and thus offers the supplementary possibility of adjusting 
the rupture strain as a function of the loading conditions. 
Taking into account the experimental observations that show 
that the rupture strain strongly depends on apl, (Figs. 1(a) and 
\(b)), it can be written: 

c = ( l+c„) °P\ _ co> (13) 

where c0 is a constant. 
Equations (12) and (13) constitute the mode in which the 

damage will influence the behavior laws. 
Without entering into the mathematical details of the model 

explicited in references [15] and [16], a summary of its structure 
and a complete formulation with the introduction of damage 
will be given. 

(/) The Unified State Equation. The model in question is a 
unified model, which is to say, that only one type of strain is 
considered and it is of a viscoplastic nature; the time inde
pendent plasticity is an asymptotic condition of the present 
formulation (exponential branch of equation (14)). This model 
is essentially of a kinematic and viscous character (introduction 

of the kinematic tensor variable ay). The scalar variable Fis 
used, on one hand, to define a yield surface F allowing the 
distinction between a state of loading or unloading in the space 
of internal variables, and on the other hand, to control the 
evolution of the viscous component with the strain. 

h = 1 (mH)"*. (sinh (IzA) ") ^ (14) 

where Y and a represent the damaged internal variables, re
spectively, isotropic and kinematic, S/j and ay the damaged 

components of the deviatorics of S and a, and § - 5 = (3/ 
2 (Sjj - a!/) (Sy - a{j))yl the second invariant of the tensor 
S - a. e0» otf a n d n* are the constants for a given isotherm. 
It is recalled that the definition of S is given by equation (12), 
while 5 and Y are defined below (equations (17) and (19)). 
The increase of the viscous component av with strain is assured 
by the function K( Y); 

ov = K(Y)smh-
2 

3 e 
1 ( ff° V* 
eo \K(Y)J 

where 

K{Y)=K0Y and e 
U(i(^) (15) 

(//') As in classical plasticity, but in the space of the internal 
variables, the surface F translates kinematically (introduction 
of the tensor variable a2iJ) and grows isotropically (scalar vari
able Y). The hypersphere F is thus written: F = a - a 2 ~~ Y 
= 0. If the variable a is located on the surface F(F = 0) then 
an active loading yielding macrostrains is defined and inversely, 
if a is in the interior (F < 0), then a passive loading yielding 
microstrains is defined. A transition criteria between these two 
states is also necessary. For a damaged material, these two 
kinds of strain are mathematically defined by equation (16) to 
(21): 

—macrostrains: 
F=a1-a2-Y=0i 

ay = a i u if _ • 

where a2 and Y are defined by: 

a 2 ( /= ( l+c trace D) a2iJ) 

Y= Y/(l+c trace D) \ ' 

with: 

«2,y=/( ) 

Y =g(. . . .) 
(equations given below). 

(16) 

(17) 

(18) 

In addition, there is the consistency equation (F = F = 0), 
which prevents aUJ from leaving the surface F during the 
macroplastic strain: 

&iy = &2U+ ^Y(aw-a2ij). (19) 

Equations (17) and (19) allow the introduction of damage into 
the expression for the surface F and a transition criteria. The 
introduction of damage in the kinematical variables ct2 is per
formed in the same way but only with respect to the stress 
(equation (12)), that is to say, isotropically by the intermediary 
of the factor (1 + c trace D). The same for the variable Y, 
but this factor intervenes in the denominator, which leads to 
a diminution of Y with the damage since experimentally the 
elastic limit, for a given offset, decreases with damage. The 
definition of a is performed directly by the consistency equa
tion (19) associated with the derivatives of equations (17): 

—microstrains: 

ay = &]y if F= &i — a2 — Y< 0 
or • I 

F=0 and a,,ya1y<0> 

(20) 
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Table 1 Material constants tor the two considered alloys: 17 - 12 SPH 
and INCO 
• Damage parameters 

V 

rj-y 

"2 

7 

P 

fm+n-i/ 

A 

D* 

C0 

<Vo> 

17-12 SPH 

8 

-
op1/<7R with oR - 580 MPa 

0.12 

1 

7.6 

0.4 

9.18 10" 2 8 s" ' (MPa)" 8 

0 . 3 

0 . 6 

1.13 l O ' ^ s " 1 (MPa)"8 

INCO 718 

12 

1.2 

0 . 5 

. 1 

13.5 

-1 .5 

9.5 1 0 " ' V (MPa)"'2 

0 . 2 

- l ( C - l ) 

1.15 l C ' V ^ M P a ) ' 1 2 

Flow rule parameters 

^0 

n 

Ko 
P2 

R2 

h 
b 

R, 
Y0 
b s» t 

vy< 
Y s „ 

i 

Pi 

rm 

P 
H0 

17-12 SPH 

1.7 I 0 ' l 2 s " 1 

0.15 MPa 

2 . 2 

0.13 

4 5 0 

9.34 I 0 " 3 4 s " 1 (Nm"2)"8 

3 . 5 

10 

5.8 I 0 " 2 8 s ' 1 (Nm"2) '8 

65 MPa 

3.5 103 

230 MPa 

65 MPa 

0.04 

4.4 105 

1.63 1 0 ' V 

4.5 l O " ' ( N m ' 2 ) ' 1 

8 

INCO 718 

3 l O - ' V 
1 MPa 

12 

427 

5.5 I 0 " 2 5 s " 1 (Nm"2) 

2 

200 

730 MPa 

Y s « t _ y | a t_ 6 5 ( ) H p a 

4.7 103 

-2 

and in this case, the kinematic equations are given by: 

(21) 

(18) 

auj = h{. . . . ) , ) 

«2,y=/(- • • •) \ 

Yh{. ...). f 

The group of equations (18) and (21) is given below in (iii). 

{Hi) The Kinetic Equationsfor <x2, Yandu,. These equations 
govern the evolution of the surface F and thus those of a via 
the consistency equation in the case of macrostrains (equations 
(19) and (22)) and directly in the case of microstrains. These 
equations are constructed following the classical approach of 
Bailey-orowan where hardening and recovery are two antag
onistic phenomena. It can be remarked that the hardening 
terms are nonlinear and that a recovery term is present, made 
necessary on account of the stress domain and the elevated 
temperatures. The damage plays an explicit role only in re
covery terms, as the hardening terms are already affected by 
the intermediary of the strain-rate. 

aVl =^2(3 Yejj-a2ije\ -R2{Y-a2){5t2-a02) 
~^\L0 «2i/-<*02(/> 

« 2 - « 0 2 I 

Y=b{r*t-Y){k-Rl\Y-Y0i\
L0 sign {Y-Y0i)) ) 

(22a,b) 

with the initial conditions: a2ij (0) = 0 and 7(0) = 70 < F a t 

for cyclic hardening, 7n > F a t for cyclic softening. a2 = ( 3 / 

2 {otiij «2»)) and a2 - 502 = (3/2 (a2',y - afaj) {ajy 
- otQVj))- L<>' Ri' R2' Pi' a n d b are constants, a02 and f01 

are the maximum nonrecoverable values of ct2 and 7, whose 
expressions have been given in detail in references [15-16]. 

In order to take into account the cyclic properties and in 
particular, the effects of partial memorization of the prestrains, 
Yat (equation {22b)) is related to a memory variable q, such 
that: 

ysat = £sat ( ysat _ ysat) g w J t h ysat = ysat> (23) 

bSM and Yg1 are two constants. 
In agreement with Chaboche et al. [19] and Ohno [20], q is 

related to the evolution of a nonhardening surface G, expressed 
in the strain space: 

G={I=f)-q with T^f = (2/3(e„- tu)(.ev- ^J))in. (24) 

fy represents the translation of this surface and q its max
imum radius. This surface can evolute only if the strain e,y is 
located on its boundary, which implies a consistency equation 
of the form G = G = 0. q can be written in the form: 

(25) q = y]*H{G)<nijnfj>e, 

leJ!ZA , H{ .) is the pre

viously defined Heaviside function and < . > the Macawley 
brackets «x> = x if x > 0 and <x> = 0 if x < 0). The 
consistency equation G = G = 0 allows ft, to be obtained as 
follows: 

r< /= ( ( l - ,«) / / (G)<« s «j |>«Je) . (26) 

The parameter ij* fixes the rapidity of the establishment of 
the memory variable q. 
The evolutionary law for 5tUJ in the case of microstrains is 
given by: 

&UJ= (1 + c trace H)aUj and 

(2 «.„=/>.(! Y eij-{oiiij-a2l V)e) -/•m(sinh/3 a,)1 M0 " l y 

(27) 

with aw (0) = 0. pu rm, (3 and M0 are constants and a{ = (3/ 
2 6t[y a[jj)in. The procedure for the introduction of damage 
in a{ is identical to that used for a2. 

The complete model, identified under cyclic and monotonic 
loading conditions, with the damage law, is composed of equa
tions (10) and (12) to (27). 

3 Numerical Simulations 

3.1 Case of 17 - 12 SPH Stainless Steel. The set of model 
parameters for this steel is given in Table 1. Note that the 
prestrains connected with the machining of the samples have 
been accounted for in the numerical simulations. 

Note that, with the exception of the parameter 7 and C0 

which remain free and thus numerically adjustable from certain 
experimental curves, the remaining parameters of equations 
(10), (12), and (13) are directly accessible from the experimental 
results reported in Part I. v, v2 and aR are obtained with the 
aid of Figs. 3{a, b) and 12, respectively. The critical damage 
D* has been determined with the aid of the metallographic 
study described in 3.7b. The parameters A, m, and n are 
directly accessible^ from the study of the evolution of the min
imum creep rate emi„ with aa, a and apl (paragraph 3.1). For 
a uniaxial loading and a knowledge of these parameters, it is 
possible to integrate analytically equation (10) in the two ex-
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Fig. 2 Idem Fig. 1 —biaxial case, influence of ffp, 
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Fig. 3 Idem Fig. 1—biaxial case, effect of shear component inversion 

treme cases 7 = 0 and 7 = 1 . This allows the two values of 
(Z)0/cfg) to be determined: (D0/o$)y=0. and (-D0/ag)T=,. In the 
case of the model (7 ^ 0 and 1), (IV°o) is calculated with 
the aid of the formula: (A/^8) = Y ( A A 8 ) 7 = I + (1 - 7) ( A / 
cro)-y=o- The parameter C0 essentially affects the strain at rupture 
and 7 allows the damage components to be weighted by time 
and the strain. These two parameters are free and adjusted 
numerically by successive tests in such a way as to obtain a 
good compromise in the restitution of the experimental results 
reported in Figs. 1 to 5. In summary, C0 is adjusted from the 
analysis of the evolution of the strain at rupture with a and 
api (Fig. 2) and 7 from the evolution of the ratio (tRi/tR) (Fig. 
4). The complete identification of the behavior model is out 
of the scope of this article, but the methodology can be found 
in the reference [21]. All the parameters can be experimentally 
determined with the aid of the following tests: tensile (y0)> 
creep (e0, OQ> n*> Mo)» inverse relaxation (K0), aging under 
zero stress (R2,Ri,L0), creep hesitation measurement following 
stress decrements (pu rm, /3), and finally cyclic tests under 
different levels of imposed strain ( ± Aer/2). The establishment 
rate of the stabilized cycle allows the adjustment of (b, bsat, 
Yo" and »;*), the stress level of the stabilized cycle (Y£l, ??*) 
and the form of the stabilized cycle (P2). 

The simulated uniaxial responses are reported in Fig. 1, for 
different stress levels. The loading strains, the shapes of the 
creep curves, the time and the strain at rupture are all correctly 
represented. Figure 2 shows the precision with which the model 
reconstructs the influence of api on the rupture time and strain. 
The general agreement is acceptable. Figures 3 and 4 present 
the possibilities of the model with respect to the effects of shear 

Fig. 4 Relationship between {tmlt^ and A^. Experimental results and: 
— predictions obtained from equations (5) to (7) with v = 8, i>2 = 4 and 
v = v2 = 8 in the case of the 17 - 12 SPH alloy, y2 = 2, v = 14, v = v2 

= 14 and »2 = 0, v = 14 in the case of the INCO alloy, — predictions 
obtained with the new model, equations (10) and (12) to (27) with 7 = 
0.12. 
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tfh] 

Fig. 5 Idem Fig. 1—uniaxial case, influence of the prestrain 

component inversions. In contrast with the classical formu
lations, the ratio (tRj/tR) can be greater than two (Fig. 4). 

Finally, Fig. 5 shows the predictions, with respect to pre-
hardening effects, notably the increase in rupture time and the 
quasi-insensitivity of the rupture strain. 

Globally, the effects are taken into account even though the 
rupture times are overestimated for the larger prehardening 
ratios. This disagreement is certainly due to neglecting the 
ductile damage associated with prehardening and is apparent 
after a critical strain ec is reached, which was certainly the case 
for the larger ratios of prestrain. 

In summary, the different experimental observations for this 
steel have, in general, been well represented by this model. 

3.2 Case of INCO 718. As for the INCO 718, the situation 
is more difficult, both in terms of the physical damage mech
anisms (the ductile damage component seems dominant) and 
in terms of the identification of the model (too few monotonic 
and cyclic tests are available in order to identify the set of 
model parameters). Lacking precise experimental information 
on the amplitude of the viscous component, there remains a 
large latitude for adjusting the parameters of the state equation 
(14), that we take in the simplified form (small argument in 
the sinh function (equation (14))): 

e0 

( ^ r t A (28) 
\.o$ ) S-a 
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Fig. 6 Examples of predictions obtained on the INCO alloy from equa
tions (10), (12), (13), (28) and (16) to (27). Note that the rupture strains are 
underestimated. 

Figure 6 shows the first simulations obtained with the aid 
of a complete model whose parameters are reported in Table 
1. The identification method for the damage parameters is 
identical to that mentioned for 17 - 12 SPH. Note that the 
rupture times are correctly described but that the rupture strains 
are strongly underestimated. As mentioned earlier, this dis
agreement is certainly connected to the neglect of the ductile 
damage which lead to too weak nonlinearity for the damage 
variable. This agrees with the analysis of Saanouni [22] who 
showed that the rupture strains can be correctly described, for 
these tests, by introducing a strongly nonlinear function of D 
into the state equation (14), which amounts to strongly in
creasing the viscous component. This lead, in the first ap
proximation, to replace equation (12) by: 

§ = (1 + c trace D) a with K(D) 
K(D) 

= Ks+(K0-Ks)exp-ooD, (29) 
where D is the scalar part of the damage (equation (8) or (10), 
Ks, K0, and to are constants, with the condition K0 > Ks. 

4 Conclusions 
The part taken in damage by the equivalent stress a, the 

maximum principal stress api and the corresponding principal 
direction npl has been pointed out through torsion-tensile creep 
experiments and this on two alloys having different mechanical 
behaviors. Damage rules using a damage tensorial variable in 
a way close to the model of Murakami et al. [9, 10] are pro
posed; they are aimed at completing a model including kine-
matical and isotropic hardening variables. The inadequacies 
of a model where D depends only on time, (Rabotnov — 
Kachanov extensions) i.e., the failure to predict the evolution 
of the tRj/tR ratio (tRi/tR > 2 and/or < 1), the underestimation 
of rupture strains and the failure to predict the effects of 
preloading the samples are pointed out. 

In order, to improve upon this model, a damage formulation 
is proposed in which the strain directly intervenes. It is then 
integrated into a unified viscoplastic model developed else
where. Some numerical simulations are reported and, in gen
eral, yields acceptable results. 
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