
Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 91

Ontological approach to derive product configurations from a
Software Product Line Reference Architecture
Francisca Losavio,i Oscar Ramón Ordazii y Stephane Jeaniii

RA Ontology for product configuration

Abstract

Software Product Lines (SPL) based on reuse, claim to improve evolution, time
to market and decrease software development costs. Concrete software products or
systems, members of the SPL family, are derived by instantiating a generic Reference
Architecture (RA), holding common and variant components. The construction of RA
is a complex and costly task, as well as its usage for product derivation, due to the huge
number of variants, essentially caused by non functional requirements variability. In
consequence, the selection of an RA instance or Feasible Solution (FS), meeting RA
constraints and customer requirements, is not straightforward. In this work RA is built
by a bottom-up process from existing products; RA and its instances are represented by
a non-directed connected graph. The HIS-RA Ontology also represents RA and captures
Healthcare Integrated Information Systems (HIS) domain knowledge. Moreover, FS
must be connected (the induced graph by FS in RA has no isolated components),
consistent (it verifies consistency rules among FS components), and working (it meets
domain functional (FR) and non functional (NFR) requirements). The main goal of this
paper is to define a semiautomatic process (FFSP), to derive consistency rules using the
HIS-RA Ontology built-in reasoning capabilities, to construct consistent, connected and
working FS. Software quality is considered by FFSP in the traceability between FR and
NFR, and it is specified by ISO/IEC 25010, to guarantee RA evolution and the overall
concrete product configuration quality. FFSP is validated on a HIS domain a case study.

Keywords: software product line, reference architecture, ontology, quality
product derivation, Healthcare Integrated Information System

i Doctora en Informática de la Universidad de Paris XI, docente e investigadora en la Escuela
de Computación de la Facultad de Ciencias (Universidad Central de Venezuela), Coordinadora
del Laboratorio de Modelos, Software y Tecnología (MoST).

ii Doctor en informática de la Universidad de Paris XI, Profesor titular, docente e investigador
en Escuela de Matemática en la Facultad de Ciencias (Universidad Central de Venezuela),
Miembro del Laboratorio de Modelos, Software y Tecnología (MoST).

iii Profesor de la Universidad de Poitiers y miembro del Laboratoire d’Informatique et d’Automatique
pour les Systèmes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357312285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-087092

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

 Resumen

Las Líneas de Productos de Software (LPS) basadas en reutilización, mejoran
la evolución, el tiempo de comercialización y los costos del desarrollo. Productos
o sistemas de software, miembros de la familia SPL, son derivados instanciando
una Arquitectura de Referencia (AR) genérica, que contiene componentes comunes
y variantes. La construcción de AR es tarea compleja y costosa, así como su uso
en la derivación de productos, debido al gran número de variantes, causado por
los requisitos no funcionales. Como consecuencia, la selección de una instancia
de AR (solución factible o “Feasible Solution (FS)”, que cumpla con restricciones
y requisitos del cliente, no es directa. En este trabajo AR es construida por un
proceso ascendente (“bottom-up”), a partir de productos existentes; un grafo
conexo no dirigido representa RA y sus instancias. La ontología HIS-RA Ontology
también representa AR, capturando el conocimiento del dominio de Sistemas de
Información Integrados de Salud (SIS). Además, FS deben ser conexas, consistentes
y convenientes (“working”) respecto a las tareas que desempeñan para cumplir con
requisitos funcionales (RF) y no funcionales (RNF). El objetivo de este trabajo
es definir un proceso semiautomático (FFSP), para derivar reglas de consistencia
usando herramientas de razonamientos de HIS-RA Ontology, para construir FS
consistentes, conexas y convenientes. En FFSP la calidad del software, especificada
por ISO/IEC 25010, es considerada en la trazabilidad entre RF y RNF, garantizando
la evolución de AR y la calidad global de la configuración del producto. FFSP es
validado sobre un caso de estudio en el dominio SIS.

Palabras clave: línea de productos de software, arquitectura de referencia,
calidad en la derivación del producto, Sistema de Información Integrado de Salud

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 93

I. Introducción

In the context of industrial software production, a Software Product Line (SPL) is
a family of software intensive systems or products sharing a common and organized
set of features that satisfy specific requirements of a market sector or domain.
These features are developed from a Reference Architecture (RA) or generic frame
containing a common set of assets that are reused in different products of the SPL
family [1]. In the literature [2] there are some differences between Product Line
Architecture (PLA) and RA according to the design process (proactive top-down or
extractive/reactive bottom-up) followed; in this context, however, the more widely
used term RA will be considered. RA is represented by a connected graph (P, R),
where P are nodes or components and R are edges or connectors. Feasible Solutions
(FS) are “convenient” architectural configurations conformed by components,
connectors and behaviors [3]; FS are derived from RA instances and must be
connected, consistent and working. FS is said to be connected when the induced
graph by FS in RA has no isolated components, consistent when it is compliant
with consistency rules relating FS components, and working when it is compliant
with main domain functional (FR) and non functional requirements (NFR).

The main goal of this paper is to define a process, called FFSP: FindFS Process,
to derive consistency rules among FS components and construct connected,
consistent, and working FS, using an ontological representation of RA, which
captures the domain knowledge. FFSP is a semiautomatic process; the intervention
of the Application Engineer (AE), domain expert or design engineer plays a major
role interacting with FFSP. Our approach is not based on the classic FODA (Feature-
Oriented Domain Analysis) [6], as usual SPL engineering top-down approaches
do [7]. In SPL, feature-based product configuration is the process of selecting the
desired features for a given software product from a repository of features called
a feature model [27]. This process is usually carried out collaboratively by people
with distinct skills and interests (stakeholders). Collaboration benefits stakeholders
by allowing them to directly intervene in the configuration process. However,
collaboration also raises an important side effect, i.e., the need of stakeholders
to cope with decision conflicts. Conflicts arise when decisions that are locally
consistent cannot be applied globally because they violate one or more constraints
in the feature model. Product configurations are directly derived from the feature
model into coded modules, without considering at all the architectural structure
organizing the features, causing further problems with the related architectural
documentation, which in SPL is also considered an asset; the analysis of the FODA
variability model is done applying constraints programming techniques [26] [27]
[28], or ontology-based approaches [21] [29] [30] [38], which are used to verify
consistency of variability models and/or represent feature models. However,

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-087094

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

notice that a feature model is not an architectural model; according to FODA
[6], only directly users-perceived, usually FR, are considered. In our ontological
approach, RA components and connectors [3], which are architectural elements
and not “features”, are considered and our variability model is defined on these
elements, including NFR required by FR, which is a major limitation of FODA;
hence in our approach a clear traceability between FR and NFR is enhanced, to
guarantee an evolutionary RA, which is one of the major SPL requirement. To
cope with this problem, many adaptations of features models can be found in the
literature to consider also NFR [7] [8] [9] [10] [11] [25]. In our approach, FS are
derived directly by instantiating RA, which has been constructed by a bottom-
up (extractive) semiautomatic process [12] [13], by refactoring architectures of
existing products on the market. The bottom-up approach is claimed to be faster,
less expansive, and more practical for industrial usage than classic SPL top-down
approaches; however their limitation is that the number of existing products can
be small [4]. In our case, domain knowledge has been captured from the available
documentation on three widely used existing products and it is imbedded into
RA, which has been built considering explicitly quality properties related to
FR, capturing also the overall domain quality [12] [13]. However, if our initial
baseline or candidate architecture obtained automatically from the union of the
architectural configurations of the existing products considered, is found limited
due to the bottom-up construction, it could be extended with new components, by
studying future products that can be built for the SPL. The “modus operandi” to
find connected, consistent and working FS by instantiating and operating variation
points [4], denoted by <<vp>>, is supported by FFSP. FS are sets containing RA
components conforming to an architectural configuration of a concrete product of
the SPL family. A <<vp>> groups a set of variants sharing similar tasks, and they
can provide different architectural solutions to satisfy quality properties and/or FR;
they denote variability of FR and NFR. On the other hand, ontologies are tools
used to specify domain knowledge [14] and are found in different SPL approaches,
mostly to verify the consistency of variability models in feature models, as we have
already pointed out, to help reasoning for product derivation [7].

An ontology is used in our approach to check the validity of deriving connected,
consistent and working product configurations directly from the RA configuration,
without involving feature models. Our RA, called HIS-RA, has been constructed for the
Healthcare Integrated Information Systems (HIS) domain [13] [19]. The knowledge on
HIS quality properties is imbedded into HIS-RA by construction. The HIS-RA Ontology
has been defined in this work to represent HIS-RA and provide support to FFSP.

Besides this Introduction and the conclusion, the paper is structured as follows:
section 2 presents the work context, describing HIS domain and HIS-RA; section 3
defines HIS-RA Ontology; section 4 presents FFSP. In section 5, FFSP is applied and

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 95

validated on a case study considering given customer requirements for a concrete
product in HIS domain; finally section 6 discusses works related to this research topics.

II. Context

FFSP concerns the product specification stage of the SPL Derivation phase, in the
Application Engineering lifecycle [4], [5]. Three basic stages [16] are considered:
Product Specification, Product Development and On-site Product Configuration,
see Figure 1. In this paper we are concerned only with the first step of Product
Specification, the Find Feasible Solutions step. Our RA has been constructed in
the Domain Engineering lifecycle [4] by a bottom-up process for the HIS domain,
as it was mentioned above, considering three existing open-source products on
the market. The representation of RA by a graph was used to derive automatically
a first SPL candidate architecture after a similarity analysis of the architectural
configurations of the existing products [12] [13]. Knowledge about NFR related to
FR is specified by a standard quality model [15], to facilitate common understanding
of software product quality terminology. FFSP is quality-centric, focused on the
satisfaction of the quality properties required by the components instantiated from
RA to conform concrete product configurations; note that quality properties are
the main responsible of the SPL variability [17]. The goal is to ensure that this
configuration will fulfill the product required quality, besides the usual functionality.

Fig. 1. SPLE Derivation Process – step Find Feasible Solutions corresponds to FFSP.
Adapted from [16] and [39]

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-087096

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

II.1 HIS Domain

For the scope of this study, the HIS domain is restricted to its basic
functionalities, namely EHR (Electronic Health Records) management, patient
attention for appointment scheduling and capture of demographic data, and
medical reports including basic administrative services. Imaging and laboratory
services, hospital rooms’ management, nursing services, urgencies, etc. will not
be considered here [18] [19]. HIS are complex information systems, generally
located in different and distant institutions and with mandatory NFR requirements,
such as interoperability, availability and security. They are supported by a hybrid
event-based Client-server/Layers architectural style [3] [13], used in distributed
Web-based systems. HIS must facilitate transparent sharing of different kinds of
medical information, such as EHR, offering also telemedicine services that can be
performed on-line at remote locations, with wide information technology support.
Moreover, in actual medical practice SPL for HIS have not yet been completely
defined, developed and adopted; the lack of agreement on standards and other
psychosocial factors makes difficult the sharing (interoperability) of EHR, and
HIS general adoption is still difficult. Network providers are now offering HIS
cloud solutions, which will not be discussed in this work, but could be considered
to study HIS-RA evolution. According to [18] [19], the open-source systems
OpenEMR, PatientOS with a 90% and 92% usage respectively, and Care2X,
similar to OpenEMR, are used recently in health national projects. They have
been refactored into the HIS-RA [12][13], see figure 3.

The HIS domain quality model (HIS-DQM) [12] [13] [15][19], shown in
figure 2, constituted by seven inherent quality characteristics (that do not change
even if software changes) and sub-characteristics, correspond to HIS global NFR.
HIS-DQM was adapted in [12] [13] from [15] as input to the HIS-RA bottom-up
construction process. HIS-DQM represents the global quality of the HIS SPL
family; it is a hierarchical model, where high-level, usually non-measurable,
quality characteristics are refined into sub-characteristics, until the measurable
elements, the quality attributes are attained. In particular, priority has been added
to this information, (1≤ priority ≤ 3, where 1 is maximum), since it is relevant to
consider instances of HIS-RA choices. HIS-DQM quality characteristics/sub-
characteristics with their priority are: compatibility (1) (interoperability), security
(1) (authenticity, confidentiality, integrity), reliability (1) (availability-persistency),
functional suitability (2) (completeness, correctness-precision), portability (2)
(adaptability-scalability (2)), maintainability (3) (modifiability, modularity), and
efficiency-performance (2) (time-behavior).

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 97

Quality attributes could be included with internal metrics at this early stage
of development, such as the existence (yes/no) of a mechanism to handle data
availability-persistency as mirrors/replication mechanisms, or the time-behavior
value of certain communication protocols involving algorithms to handle security
or certain QoS1 measures [20]. However, quality metrics are outside the scope
of this work, which aims to establish a clear traceability among RA components
requiring/providing quality properties.

II.2 HIS-RA

A UML2 representation of HIS-RA is shown in figure 3, with variation points,
common components and their connectors, representing the RA variability model
to be instantiated for concrete product derivation in the SPL family. Functional
variability is handled as usual, however non functional variability is treated
extensively and it has been considered in RA by construction. Notice that HIS-RA
is compliant with HIS-DQM; all quality properties are explicitly accomplished by
some variant or component; completeness w.r.t. functionality, is implicitly assured
because HIS-RA contains the core of common components, and time-behavior is
implicitly contemplated in network protocols. In this work the RA instantiation to
derive architectural configurations for a concrete product from established rules
will be considered in FFSP. Notice that for a <<vp>> corresponding to a NFR, for
example <<b9>> Security Modules, there are three variants which are solutions
for the security quality sub-characteristics confidentiality, authenticity, integrity
respectively (see figure 2) they are required by components b1 Patient, b2 HER
Man. and b3 Report System (see figure 3); the connections between components
1 Quality Of Service.
2 Unified Modeling Language, www.omg.org/spec/UML/2.0

Fig. 2. Quality Model for the HIS domain (HIS-DQM) – adapted from ISO/IEC 25010 [12] [13].

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-087098

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

are of type provide/require, in the sense that, for example, b1 Patent requires
security, that will be provided by <<b9>> Security Modules using its variants to
solve authenticity and confidentiality and so on; finally a solution for security is
provided to b1, b2 and b3. This knowledge on RA and its domain is captured in
the ontology that will be described in the next section.

Fig. 3. HIS-RA with variability model [13]

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 99

III. HIS-RA Ontology

Ontologies represent knowledge organized in a hierarchical and structured
way [14]. In the literature many works appear concerning variability management
for product derivation from a feature model [8] [9] [10] [11] [21] [29] [30] [38].
However, few of them consider variability directly from RA [23] [24] [39], as in our
present approach, nor as much the explicit handling of NFR. Our HIS-RA Ontology
contains the domain knowledge imbedded in HIS-RA, including the variability
model, and it is not a feature model representation but the representation of an
architectural model. RA is generally constructed for a specific SPL domain; if it
has to be constructed for another domain by our approach, the information captured
in the ontology should be changed, maintaining globally the same hierarchical
structure; but this happens also with feature models representations, that are domain
specific. A partial view of the class hierarchy of HIS-RA Ontology is shown in figure
4; its main classes specify the following basic information on HIS-RA:

• Common-Components; - Variation-Points with their variants providing
architectural solutions; for example, variation point b9-SecurityMod
groups three solutions considering internet protocols, like HTTP/HTTPS in
transmission layer, combined with modules to handle biometrics data, etc.
in Process Layer, see figure 5; - Connectors, with sub-classes Connector
denoting the usual connector between two components a, b, denoted by
aRb; - Quality-Properties are inherent quality properties [15]; they are related
to Components by the quality object property to indicate that a component
requires/provides this quality; - SetB, with sub-classes InitialB and B
containing selections of HIS-RA components to conform convenient FS.

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870100

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Fig. 4. HIS-RA Ontology - partial view of the class hierarchy; source: authors

Fig. 5. HIS-RA Ontology - variants b7-HTTP, b7-HTTPS, HTTPS of <<vp>> b9- SecurityMod;
source: authors

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 101

Constraints that usually appear in feature models, are also specified in HIS-RA
Ontology as data or object properties, such as Mandatory and Optional for components
and cannot_be_with when two components cannot be present at the same time
in the same architectural configuration. Class Assigned-Properties with sub-class
Cost, specifies the cost assigned to variant components; has_ArchSol and its inverse
is_architectural_solution are object properties to relate architectural solutions with
Common-Components and Variation-Points; the object property has_cost (low,
medium, high, undetermined) relates Variation-Points and Architectural-Solutions
with cost value; Common-Components do not require explicit cost because they are
mandatory; has_priority (one, two, three) is an object property assigning priority to
each Quality-Char; other object properties are connected_to and directly to specify the
indirect connection by transitivity and the direct connection between two components,
respectively. Data properties is_CC and is_CR indicate if a component is common or
is a customer requirement, respectively; has_value specifies a priority value for each
quality characteristics, requires_ …, provides_ …, and Mandatory, Optional with range
“boolean” for each required/provided quality characteristics. The list of these properties
and available architectural solutions is shown in figure 6. Queries for mandatory and
optional components are shown in figure 7, see also comments in Table 1.

HIS-RA Ontology
http://www.semanticweb.org/francesca/ontologies/2015/9/HIS-RA-24-10-15
runs on Protegé 5,3 for Mac OS X El Capitan.

3 protege.stanford.edu/products.php

Fig. 6. Object and Data Properties with DL query for available architectural solutions; source: authors

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870102

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Fig. 7. Mandatory and Optional components of HIS-RA; source: authors

The Application Engineer (AE) constructs the Constraints Table (CT) from the
HIS-RA Ontology; Table 1 shows a quick glance of the ontology. CT contains,
namely, Common-Components (CC) and Variation-Points with their variants
(instances of Variation-Points in the ontology) in columns 1 and 2 respectively.
Column 3, for Consistency Rules, which are presented now in Table 1 to abridge
this presentation, but they are actually to be derived in Section IV by FFSP, from
relations among ontology elements.

In the consistency rules, let P, Q be Boolean expressions involving functional
and variant components, respectively. Clause XOR {a, b} or a XOR b means that
only a or b can be present at the same time in a configuration, and XOR {a,{b,
c}} means that only a, or only b and c are present. Clause a AND b means that
components a and b are both present in a configuration. The expression P => Q is
interpreted as follows: “fact P implies that fact Q must be true”. For example b1
AND b3 => b6 means that functionalities b1-Patient and b3- ReportSystem require
b6-Algo to perform correctly with adequate precision. Column 4 in Table 1 shows
the Quality-Properties related to each component, representing the HIS-DQM; CC,
representing the RA functionality, requires Quality-Properties, and non functional
variants provide these quality properties, with the exception of d1-Internet which
is a CC and its Quality-Properties are satisfied directly by network protocols. In
column 5, Constraints among components are presented; they are also used by AE
for the derivation of the consistency rules.

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 103

Table 1. Constraints Table (CT); source: HIS-RA Ontology

Components Variants Consistency Rules Quality Properties Constraints

a5-UI a1-WebPage
(Browser)

a4-GUI (stand
alone)

XOR {a1, a4}; - AvailabilityPers, Authenticity,
Confidentiality, Integrity,
TimeBehavior, AdaptabilityScal,
Interoperability
(a1)

 - AvailabilityPers, Modifiability,
Modularity, Authenticity,
Confidentiality, Integrity,
TimeBehavior
(a4)

a1, a4 cannot be present together in an
Architectural Configuration (AC); one of
them is mandatory FR;
modif. and modul. are solved by
MVC in a4 and b5; time-behavior,
authenticity, confidentiality, integrity,
are solved by internet protocols (HTTP,
HTTPS); availability depends on network
connectivity for a1 and a4. However all
other quality properties will be considered
in Process and Data Layers. Usability does
not depend on the architecture or style,
it has not been considered in this context
and it is not part of the HIS-DQM

a2-Patient
Portal,
a3-Reports

a2 AND a3; - TimeBehavior , Modularity,
Modifiability, Usability (a2)
- TimeBehavior, Modularity
Modifiability, Usability (a3)

a2, a3 are CC mandatory FR; they are
UI push buttons, they are part of a1 and
a4, and the same quality properties for a1
and a4 hold

Components Variants Consistency Rules Quality Properties Constraints

b1-Patient

b2-HERMang

b3-Report
System

- b1 AND b3 => b6;
- b1 AND b2 AND b3
AND c1 => XOR {{c8,
b7-HTTP}, {c8, HTTPS},
{c8, b7-HTTPS}};
- b1 AND b2 AND b3
AND c1 => XOR {{c7,
c9a}, {c7, c9b}};

- b1 AND b3 AND
c1 =>XOR {{c4, c5},
{c4, c6}};

- b2 => XOR {b4, {b4,
c2}, {b4, c3}};

- b1 AND b2 AND b3
AND c1 => XOR {{c7,
c9a}, {c7, c9b}};
- b1 AND b2 AND b3
AND c1 =>
XOR {{c8, b7-HTTP},
{c8, HTTPS}, {c8, b7-
HTTPS}};

- b1 AND b3 AND
c1 =>XOR {{c4, c5},
{c4, c6}};

- b1 AND b2 AND b3
AND c1=>
XOR {{c8, b7-HTTP},
{c8, HTTPS}, {c8, b7-
HTTPS}};
- b1 AND b2 AND b3
AND c1 => XOR {{c7,
c9a}, {c7, c9b}};

- b1 AND b3 => b6;

- CorrectPrecision (b1)
- Authenticity, Confidentiality,
Integrity (b1)
- AvailabilityPers (b1)

- AdaptabilityScal (b1)

- Interoperability (b2)

- AvailabilityPers (b2)

- Authenticity, Confidentiality,
Integrity (b2)

- AdaptabilityScal (b3)

- Authenticity, Confidentiality,
Integrity (b3)

- AvailabilityPers (b3)

- CorrectPrecision (b3)

b1, b2, b3 are CC mandatory FR
- satisfied by b6, which is a mandatory
NFR
- only one of the three alternatives holds in
AC; c8 is mandatory NFR for database

- only one of the two alternatives holds in
AC; c7 is mandatory for database; c9a,
c9b optional, only one can be present
in AC
- only one of the two alternatives holds
in AC;
c5 or c6 are mandatory NFR for
database; but only one of them can be
present in AC;
- only one of the three alternatives holds
in AC; c2 or c3 are optional, but b4 is
mandatory HIS NFR
- only one of the two alternatives holds in
AC; c7 is mandatory NFR;
- only one of the three alternatives holds
in AC; c8 is mandatory NFR for database;

- only one of the two alternatives holds in
AC; c4 is CR; c5 or c6 is mandatory NFR
for database
- only one of the two alternatives holds in
AC; c8 is mandatory for database

- only one of the three alternatives holds in
AC; c7 is mandatory NFR for database
- satisfied by b6; b6 is mandatory NFR

Continúa...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870104

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

b10-HL7
InteropEng

b4-MirthEng - b2 => XOR {b4, {b4,
c2}, {b4, c3}};

- Interoperability (b4) - only one of the three alternatives holds
in AC; but components in one of the
alternatives are mandatory HIS NFR

b11-GUIServer b5-GUI
ServerSide

b5 <=> a4; - Modifiability (b5), Modularity
(b5), TimeBehavior (b5)

- satisfied by MVC

b8-CompMod b6-Algor b1 AND b3 => b6; - CorrectPrecision (b6) - satisfied by b6, mandatory NFR

b9-Security Mod - b7-HTTP
- HTTPS
- b7-HTTPS

b1 AND b2 AND b3
AND c1 => XOR {{c8,
b7-HTTP}, {c8, HTTPS},
{c8, b7-HTTPS}};

- Authenticity, Confidentiality,
- Integrity
(b7-HTTP, HTTPS, b7-HTTPS)

- only one of the three alternatives
holds in AC and it is mandatory; b9
solves security (auth., confid., integ.);
combined with protocols HTTP/HTTPS,
in Transmission Layer; c8 is mandatory
NFR for database

Components Variants Consistency Rules Quality Properties Constraints

c1-DB
- b1 AND b3 AND
c1 =>XOR {{c4, c5},
{c4, c6}};
- b1 AND b2 AND b3
AND c1 => XOR {{c7,
c9a}, {c7, c9b}};
- b1 AND b2 AND b3
AND c1 =>
XOR {{c8, b7-HTTP},
{c8, HTTPS}, {c8, b7-
HTTPS}};

- AdaptabilityScal (c4, c5, c6)

- AvailabilityPersistency (c7,
c9a, c9b)
- Integrity (c8)

c1 is mandatory FR; c5 or c6 are
mandatory NFR
- only one of the two alternatives holds
in AC, c4 is CR, c5 or c6 are mandatory
NFR
- satisfied by c7, c9a or c9b; c7
mandatory for database
- satisfied by c8, mandatory for database

c15-HL7DM c2-HL7Eng
c3-HXPeng

=> b2 => XOR {b4,
{b4, c2}, {b4, c3}};

- Interoperability (c2, c3) - only one of the three alternatives holds in
AC; c2, c3 optional

c10-AddMed
Stds

c4-NewMed
Stds *

- b1 AND b3 AND c1
=> XOR {{c4, c5},
{c4, c6}}.

- AdaptabilityScal (c4) - only one of the two alternatives holds in
AC; c4 optional, c5 or c6 mandatory NFR
for database

c14-DBAPIs c5-JDBC
c6-ODBC

- b1 AND b3 AND
c1 =>XOR {{c4, c5},
{c4, c6}};

- AdaptabilityScal (c5, c6) - only one of the two alternatives holds in
AC; ; c4 optional, c5 or c6 mandatory
NFR for database APIs provide portability
to Oracle, MySQL, PostgreSQL;

c13-DataPers c7- Hibernate - b1 AND b2 AND b3
AND c1 => XOR {{c7,
c9a}, {c7, c9b}};

- AvailabilityPers (c7) - only one of the two alternatives holds in
AC; c7 is mandatory for database

c11-DataInteg c8-IntegMech
*

- b1 AND b2 AND b3
AND c1=>
XOR {{c8, b7-HTTP},
{c8, HTTPS}, {c8, b7-
HTTPS}};

- Integrity (c8) c8 is mandatory for database; it does not
guarantee authenticity and confidentiality,
it must be used with b9 security solutions;
only one of the three alternatives holds in
AC, and it is mandatory;

c12-DataAvail c9a-Mirror
c9b.
MirrorReplic.

- b1 AND b2 AND b3
AND c1 => XOR {{c7,
c9a}, {c7, c9b}};

- AvailabilityPers (c9a, c9b) - only one of the two alternatives holds
in AC; c9a, c9b optional; c7 mandatory
for database

d3-Network d1-Internet

d2-Satellite

XOR {d1, {d1, d2}}; - TimeBehavior, AvailabilityPers,
AdaptabilityScal, Authenticity,
Confidentiality, Integrity
(d1)
- TimeBehavior, AvailabilityPers,
AdaptabilityScal, Authenticity,
Confidentiality, Integrity
(d2)

d1 is mandatory FR, d2 is optional
FR; AdaptabilityScal depends on web
services; availability depends on network
connectivity; HTTP/HTTPS protocols
solve limited security; HTTP alone is not
possible due to HIS security requirements;
these protocols are not considered here
separately, they are used in Process Layer
to increase security level

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 105

IV. Process to find Feasible Solutions (FFSP)

Two basic steps are involved in this semiautomatic process:
A. Derive consistency rules;
B. Construct FS

HIS-RA Ontology, is the main input to FFSP; interaction with AE is involved. All
the consistency rules described in Table 1 are implemented by queries on the HIS-RA
Ontology. Queries are written in Protegé DL query; however SPARQL,4 the standard
query language of the semantic Web, can be used as well. Each step is described in
separate sub-sections in what follows, using an informal algorithmic notation.
A. Derive consistency rules
Input: HIS-RA Ontology
begin
1. Construction of the consistency rules
Rules are of the form P => Q; examples are given to illustrate the procedure;

for each quality property, AE queries the ontology to look for components
requiring/providing the property, in what follows; two alternative cases are
considered:

case 1: only one component requires the quality property
query example:
Components and requires_Interop some {true} => b2-EHRMang
Components and provides_Interop some {true} => b4-MirthEng, c2-HL7Eng,

 c3-HXPeng
where
P = b2-EHRMang and Q=XOR{b4,{b4,c2},{b4,c3}} or
Q = XOR{b4,c2,c3,{b4,c2},{b4,c3}}
Are boolean expressions reflecting that both <<vp>> or just one, namely,
b10-InteroperabilityEng={b4-MirthEng} and / or c15-HL7DM={c2-HL7Eng,c3-

 HXPeng} can be instantiated to provide Interoperability,

case 2: several components require the quality property;
query example:
Components and requires_AvailPers some{true} => b1-Patient, b2-EHRMang,

 b3-ReportSystem, c1-DB
Components and provides_AvailPers some {true} => c7-Hibernate, c9a-Mirror,

 c9b MirrorReplic

4 protegewiki.stanford.edu/wiki/SWRLTab

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870106

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

for each component requiring AvailPers in the above query, AE queries again the
ontology, to determine exactly which variant providing AvailPers is connected
to the component, as follows:

query example:
Variation-Points and connected_to some
{b1-Pat} and provides_AvailPers some
{true} => c7-Hibernate, c9a-Mirror, c9b-MirrorReplic
showing that component b1-Patient is connected to three variants providing
AvailPers, namely c7-Hibernate, c9a-Mirror, and c9b-MirrorReplic; the query
is repeated for b2-EHRMang, b3-ReportSystem, and c1-DB;
AE conforms Pi => Qi, where P1 = b1-Patient, P2 = b2-EHRMang, P3 = b3-
ReportSystem, P4 = c1-DB and Qi is conformed as in case 1. AE groups those
components in Pi having the same Qi with an “AND” operator, taking into
account that <<vp>> c13-DataPers = c7-Hibernate, and c12-DataAvail = {c9a-
Mirror, c9b MirrorReplic}; two rules are obtained: b1 AND b2 AND b3 AND c1
=> XOR {{c7, c9a}, {c7, c9b}} and b1 AND b2 AND b3 AND c1 => XOR {c7,
{c7, c9a}, {c7, c9b}};

end for;
end for;
Note: transitivity of the connected_to object property is used in this query;

end;
Output: Consistency Rules in CT, column 3, table 1.

B. Construct FS
Recall that FS are sets of RA components, and they should be connected, consistent
and working; these properties will be verified by construction. Consistency is
verified because FS are constructed applying consistency rules; the verification of
the working property is two folded:
- verify functional compliance with FS components (CC and functional CR, see
Section V.2), and – verify non functional compliance with quality properties
required by FS components. Connectivity is verified by construction.

Input: Consistency Rules from CT, HIS-RA Ontology, Customer Requirements (CR),
see Section V.2;
begin
1. Construct Initial B set:
Conformed by CC and those functional components explicitly stated in CR; the
following query is used to confirm that Initial B is connected, since it shows that

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 107

any Initial B component is directly connected to some other initial B component:
begin

for each component of Initial B, saying a1-
WebPage do:
InitialB and directly some {a1-WebPage}
=> a2-PatentPortal, a3-Reports, d1-Internet
shows that component a1 is directly connected
to components a2, a3 and d1, all present in
Initial B set.

end for:
end;

2. Construct B set:
Using the r.h.s. of the Consistency Rules, variants are being added to Initial B set
to satisfy quality properties required by its component, as follows:

begin
for each Consistency Rule P => Q

if its r.h.s. Q holds only one variant
then

it is added to the initial B set
else

it must be checked
if some of those variants are CR

then
variants are added to the initial B set

end if;
end if;

end for;
Initial B set is updated as the new set B;

end;

B set is the “core” of components that will be present in all the FS derived from it;
the presence of CC assures the functional aspect of the working property required
by FS. Moreover, Initial B contains functionalities that require quality properties
provided by some variant, implying that this variant is connected to Initial B, and
since Initial B is connected then B is also connected.

3. Analyze B
begin

- AE analyzes all B components checking for the HIS-DQM quality properties

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870108

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

that can be missing, assuring the non functional aspect of the working property;
- since each consistency rule corresponds to a HIS-DQM quality property, see
CT, table 1, let T1,T2 … Ts be sets expressing the multiple variants’ alternatives
of the r.h.s. of the consistency rule for missing quality properties;

end;

4. Generate alternatives
begin

The process continues with T1,T2 … Ts; the alternatives to derive FS from set
B are achieved using the Δ operator, as follows:

{FS(1), FS(2) … FS(|T1|…|Ts|)} = B Δ T1 Δ T2 Δ … Δ Ts

where Δ is defined as follows:

Let X, Y sets, then X Δ Y = {X ∪ y : y∈Y}. If X = {FS(1), … , FS(q)} then FS(1) ,...,
FS(q)} Δ Y = {FS(i) ∪ y:y∈Y, 1 ≤ i ≤ q};

Δ is similar to a “concat” operator. For example, let us take the
Interoperability consistency rule: b2 => XOR {b4, {b4, c2}, {b4, c3}}; the r.h.s
has three alternatives; then the expression B Δ {b4, {b4, c2}, {b4, c3}} indicates
that three new architectural configurations are derived from B, not necessarily
FS, that are

B ∪ b4, B ∪ {b4,c2}, B ∪ {b4,c3}.
Note: Δ “translates” the XOR expression used in the rules.

end;
end;
Output: consistent, connected, and working FS

V. Application of FFSP to a HIS case study

V.1 Applying FFSP step by step to derive FS for HIS concrete products
according to customer requirements

The complete FFSP process will be now applied and validated on a case study
considering explicit customer requirements (CR) for a concrete HIS product,
described in Section V.2. More examples on rules’ derivation and FS construction
are included following the FFSP steps; components names in queries are abridged
to shorten the presentation.

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 109

A. Derive Consistency Rules
1. Construction of the consistency rules
- Case 1: only one component requires a quality property; recall the Interoperability
example in Section IV:

Components and requires_Interop some {true}
=> b2
Components and provides_Interop some {true}
=> b4, c2, c3

Interoperability is required by b2-HERMang and it is provided either by b4-MirthEng
or by two alternative solutions c2-HL7Eng, c3-HXPeng; then two rules are derived: b2
=> XOR {b4, {b4, c2}, {b4, c3}} and b2 => XOR {b4, c2, c3, {b4, c2}, {b4, c3}}. AE
decides for the first rule, because b4 assures the property which is mandatory for HIS,
and can be combined with optional c2 or c3, at database level, see figure 7.
- Case 2: more than one component require a quality property, for example Integrity;
from queries:

 Components and requires_Integrity some {true}
 => b1, b2, b3, c1
 Components and provides_Integrity some {true}
 => c8, b7-HTTP, b7-HTTPS, HTTPS

four CC require Integrity, namely b1-Patient, b2-HERMang, b3-ReportSystem, and
c1-DB; another query can be performed for each CC to determine exactly which
one of the variants providing the property is connected to each CC;
from queries:

Variation-Points and connected_to some {b1-Pat} and provides_Integrity
some {true}
=> c8, b7-HTTP, b7-HTTPS, HTTPS
Variation-Points and connected_to some {b2-EHRM} and provides_Integrity
some {true}
=> c8, b7-HTTP, b7-HTTPS, HTTPS
Variation-Points and connected_to some {b3-RS} and provides_Integrity some
{true}
=> c8, b7-HTTP, b7-HTTPS, HTTPS
Variation-Points and connected_to some {c1-db} and provides_Integrity some {true}
=> c8, b7-HTTP, b7-HTTPS, HTTPS

indicating that each CC can require the four solutions resulting from the query;
hence we have rule b1 AND b2 AND b3 AND c1 => XOR {{c8, b7-HTTP}, {c8,
b7-HTTPS}, {c8, HTTPS}}; moreover, c8-IntegMech is mandatory for c1-db, see
figure 7; hence rule b1 AND b2 AND b3 AND c1 => XOR {c8, {c8, b7-HTTP},
{c8, b7-HTTPS}, {c8, HTTPS}} is also considered.

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870110

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

B. Construct FS.
1. Construct the Initial B set
Conformed by CC and functionalities explicitly required in CR, a1-WebPage, then
we have:

Initial B = {a1, a2, a3, b1. b2, b3, c1, d1}
The following queries confirm that Initial B is connected:

InitialB and directly some {a1-WebPage} => a2, a3, d1
InitialB and directly some {b1-Pat} => c1, d1 ,…, etc.

However, Initial B is not an FS because consistency and working properties are
still missing:

Connectivity: it is verified for Initial B and all sets derived from it.
Working: it is verified only for the functional part w.r.t. CC
Consistency: it will be verified in the next step

2. Construct the B set
There are multiple variants’ alternatives required by Initial B functionalities to
satisfy Interoperability, Security (Authenticity, Confidentiality, Integrity) and
AvailbilityPers, and these properties are not CR (see Section V.2), they will be
treated in step 3; AdaptabilityScal has also multiple alternatives c4-NewMedStds
and c5-JDBC, which are explicit CR, hence they are included in B; CorrectPrecision
required by b1-Patient and b3-ReportSystem, is satisfied by b6-Algor that is included
for being the unique alternative; then we have:

B = Initial B = {a1, a2, a3, b1. b2, b3, b6, c1, c4, c5, d1}
Set B is connected and consistent, but it is not an FS because the working property
is not complete:

Consistency: it is verified with rules in CT, table 1;
Working: it is functionally suitable but it is not compliant with the non functional
part of the property, because quality properties of the HIS-DQM are still missing.

3. Analyze B
Missing quality properties are: Interoperability, Authenticity, Confidentiality, and
Integrity

4. Generate alternatives
The Δ operator is used to satisfy Interoperability :

B Δ {b4, {b4, c2}, {b4, c3}} = {{a1, a2, a3, b1. b2, b3, b6, c1, c4, c5, d1} Δ {b4,
{b4, c2}, {b4, c3}}} = {{a1, a2, a3, b1. b2, b3, b6, c1, c4, c5, d1, b4}, {a1, a2, a3,
b1. b2, b3, b6, c1, c4, c5, d1, b4, c2}, {a1, a2, a3, b1. b2, b3, b6, c1, c4, c5, d1, b4,
c3}} = { FS(1), FS(2), FS(3)};

These 3 new FS (numbered 1 to 3, and outlined in light grey in the first column

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 111

of Table 2) derived from B are not yet working FS, because Authenticity and
Confidentiality are missing; components involved in each FS are outlined in dark
grey in the rows ofTable 2, and the “core” of FS components can be appreciated;
the same notation FS(i) is maintained for legibility.

Using again the Δ operator to have Authenticity and Confidentiality that are solved
in Process Layer, and Integrity, which is implicitly solved in Transmission Layer
with HTTP/HTTPS protocols, rule b1 AND b2 AND b3 AND c1 => XOR {{c8,
b7-HTTP}, {c8, b7-HTTPS}, {c8, HTTPS}} is applied because c8 is mandatory for
c1-db, to obtain:

FS(4), FS(5), …, FS(12) = {FS(1), FS(2), FS(3)} Δ {{c8, b7-HTTP}, {c8, b7-
HTTPS}, {c8, HTTPS}}.

These new 9 FS (numbered 4 to 12, and outlined in light grey in the first column
of Table 2, are still not working FS, because AvailabilityPers is still missing.
According to rule b1 AND b2 AND b3 AND c1 => XOR {{c7, c9a}, {c7, c9b}}, the
next alternatives are considered to have AvailabilityPers:

FS(13), … FS(30) = {FS(4), FS(5) ,…, FS(12)} {{c7, c9a}, {c7, c9b}}.

These last 18 FS (numbered 13 to 30, and outlined in grey in the first column of
Table 2, are now connected, consistent and working; each one of them represent a
feasible concrete product architectural configuration.
In total 30 architectural configurations have been found considering domain FR,
NFR and CR. FFSP is being automatized by a support tool now under construction.

CR that have been used in FFSP to configure a concrete HIS product, are outlined
in the next section.

V.2 Customer Requirements for a concrete product

CR must be “feasible”, in the sense that they should be satisfied with the present
SPL RA. CR that are not present in RA will not be considered in this work, however
they could be included modifying RA.

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870112

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Table 2. FS obtained applying FFSP

FS

Components

Set B – Core of FS Components FS Variants

a1 a2 a3 b1 b2 b3 b6 c1 c4 c5 d1 b4 c2 c3 c8
b7-
HTTP

b7-
HTTPS

HTTPS c7 c9a c9b

FS(1)

FS(2)

FS(3)

FS(4)

FS(5)

FS(6)

FS(7)

FS(8)

FS(9)

FS(10)

FS(11)

FS(12)

FS(13)

FS(14)

FS(15)

FS(16)

FS(17)

FS(18)

FS(19)

FS(20)

FS(21)

FS(22)

FS(23)

FS(24)

FS(25)

FS(26)

FS(27)

FS(28)

FS(29)

FS(30)

In consequence, CR FR must be compliant with CC and each CR must be
“binded” to the RA variant components [5] to satisfy required quality properties;
inherent quality properties (they can change if software changes) are not necessarily

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 113

explicitly specified by customer in CR; they must be identified from CR and
binded to each FR and NFR by the AE; assigned properties (they can change even
if software does not change), such as cost (low, medium, high, undetermined) are
also specified by the AE, for each variant.

Assigned software properties, are not considered quality properties [15],
however they are involved in decision-making for product derivation. For this
case study, the CR considered to derive a concrete HIS product are: low cost HIS,
with basic functionalities, namely a Web-based system with a Web-page interface
(running on a commercial browser), the facility to handle patient data for scheduling
appointments and capture demographic data, EHR management services to handle
and share EHR on-line, and the facility of medical reports including some additional
administrative features. With respect to NFR, the facility for medical data evolution,
such as the addition of new medical standards, is explicitly required, as well as
portability to a Java platform for an Oracle database.

AE must study the feasibility of these explicit CR w.r.t. the present HIS-RA,
and “translate” them in terms of HIS-RA ontology elements, i.e., a1-WebPage, b1-
Patient, b2, EHRMang, b3-Reports, c1-DB (Oracle) with variants c5-JDBC API for
portability to Java platform, and c4-AddNewMedStds for AdaptabilityScal to new
medical standards. Quality properties required by FR, such as Interoperability, and
mandatory domain NFR, such as Security, are obtained from the HIS-RA Ontology.
The low-cost requirement is not used in this example, however it can be considered
to evaluate the 18 FS obtained; an heuristic weight-based approach can be used
to associate a weight to each FS, as objective to determine an optimal FS set, and
study options with lowest cost FS [39].

VI. Related works

In general, the management of NFR variability in the SPL context to derive
“convenient” product configurations meeting SPL and CR FR is not an easy task,
as can be appreciated from the works discussed in this section. Ontologies have
been widely used in different stages of SPL development approaches to capture
domain knowledge and provide support to check consistence of the SPL models
with their built-in reasoning engines; of particular interest for this work are the
following topics:

 - consistency of feature and variability modeling of NFR using constraints
programming techniques and/or ontological approaches. A simple example
of a feature model is shown in Figure 8, often found in the literature, where
security is a NFR that is required by other FR, however in this context it is
treated as another functionality; notice that if the credit card option, which

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870114

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

can be mandatory, is selected, a high security level must be assured, hence
in a product configuration, the rule “CreditCard implies High” should be
verified. It can be appreciated that a feature model has nothing to do with an
architectural configuration in the sense of [3], as it was shown in Figure 3;

 - domain quality modeling;
 - derivation of architectural configurations for concrete products from the
SPL RA.

Fig. 8. Feature model representing an electronic shop [6].

VI.1 Consistency of feature and variability modeling of NFR using
constraints programming techniques and/or ontological approaches

On these topics a lot of research work has been accomplished through a decade; a
total of 24 papers have been reviewed, following a literature review inspired from [37].

a. Search: “software product line” + “configuration” + “constraint
programming”

In this search, 9 interesting works were found, and 3 were selected, mainly
dedicated to the configuration problem in feature models involving consistency
checking, without considering the ontological approach:

Paper [26] deals with the problem of validating the consistency of feature
models. It describes how to reason on feature models using constraint programming,
providing three contributions to debugging feature model configurations: (1) a
technique for transforming a flawed feature model configuration into a constraint
satisfaction problem (CSP) and show how a constraint solver can derive the
minimal set of feature selection changes to fix an invalid configuration, (2) it

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 115

is shown how this diagnosis CSP can automatically resolve conflicts between
configuration participant decisions, and (3) experiment results that evaluate the
technique are presented. They describe how to reason on feature models using
constraint programming.

In [27] Collaborative Product Configuration (CPC) is focused. SPL configuration
is in general carried out by a single person that is in charge of representing the
interests of all stakeholders and managing decision conflicts on their own, conducing
to errors and a time-consuming process. First, they treat CPC by describing and
validating collaborative configuration scenarios. They discuss how collaborative
configuration can be described in terms of workflows that safely guides stakeholders
during the configuration process. Second, a preliminary set of reasoning algorithms
tailored to the feature modeling domain to provide automated support for product
configuration, is proposed. In addition, they compare empirically the performance
of the proposed algorithms to that of a general-purpose solution.

In [28] constraint programming, and in particular Boolean constraint
programming, has been used to support analysis of variability models such as FODA
[6]. Constraint programming is used here also to specify product lines. The focus on
variability, variation points or dependencies is switched to the concept of constraints
that apply to variables. It is claimed that this approach is richer than the one based on
dependencies. For instance, many constraints cannot be specified only with feature
models dependencies (optionality, mandatory, etc., see Figure 8). The approach
was implemented by a prototype tool, and its scalability explored with industry
case studies. These experiments show that constraint programming encompasses
existing SPL models such as FODA or the Orthogonal Variability Model (OVM) [4]
and opens way to new possibilities such as reasoning simultaneously with different
models during domain or application engineering.

However, a common point of these 3 works is that they do no handle explicitly
NFR in the variability model which is included into or orthogonal to the feature
model. However they are interesting and relevant works from a theoretical point
of view, but not for NFR variability management.

b. Search: "software product line" + “configuration” + “ontology” + “web
services“

In this search Web services were included to analyze also aspects of dynamic
configuration; a total of 12 works were found interesting, and from these, 8 were
selected for a more detailed discussion for their relevance to the topic:

 The early work in [38] claimed that the lack of a formal semantics of feature
models has hindered the development of this area. This paper presents a Semantic
Web environment for modeling and verifying feature models using ontologies.

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870116

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

They use OWL DL (a decidable dialect of OWL) to precisely capture the
relationships among features in feature diagrams and configurations. They use the
ontology reasoning engines, like the OWL RACER, to check automatically for the
inconsistencies of feature configurations. As part of the environment, they develop
a CASE tool to facilitate the visual development, interchange and reasoning of
feature diagrams represented as ontologies.

The work of Czarnecky et al. [8] explores the relation between feature models [6]
and ontologies, such as OWL5 (Ontology Web Language), an ontology representation
language developed by W3C; basic feature models are thought of as a hierarchy plus
a propositional formula; the notational spectrum is analyzed considering also UML
to establish a boundary between ontologies and feature modeling; this synergy is
considered promising for the use of reasoning-based support tools.

In paper [29] authors state that current mobile middleware is designed
according to a 'one-size-fits-all' paradigm, which lacks the flexibility for
customization and adaptation to different situations, and does not support
user-centered application scenarios well. They describe an ongoing intelligent
mobile middleware research project called PLIMM that focuses on user-centered
application scenarios. PLIMM design is based on SPL ideas which make it
possible for specialized customization and optimization for different purposes
and hardware/software platforms. To enable intelligence, the middleware needs
access to a range of context models. These contexts are modeled with OWL,
focusing on user-centered concepts. The basic building block of PLIMM, where
OWL context ontology logic reasoning is used. Their approach also addresses
the handling of ontology evolutions resulting from the adaptation of ontology to
changes and the consistent propagation of these changes to all related artifacts,
using frame-based SPL configuration techniques.

Product configuration is discussed in [30] as a crucial mean to implement the
mass customization paradigm claimed by SPL, assembling a set of customizable
components to satisfy both customers’ needs and technical constraints. With the
aim of enabling efficient and effective development of product configurations by
reusing configuration knowledge, an ontology-based approach to model product
configuration knowledge is presented. The ontology-based product configuration
models are hierarchically organized. At the lower level, a configuration meta-model
is defined. Based on this meta-model, domain-specific configuration knowledge
can be derived by reusing or inheriting the classes or relations in the meta-model.
Configuration models are formalized using OWL. As a result, configuration
models have well-defined semantics due to the logic semantics of OWL, making it
possible to automatically detect inconsistencies of configuration knowledge bases.

5 http://www.w3.org/TR/owl-features/.

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 117

Furthermore, configuration constraints are represented in SWRL, a rule language
based on OWL. Finally, actual configuration processes are carried out using JESS,
a rule engine for the Java platform, by mapping OWL-based configuration facts and
SWRL-based configuration constraints into JESS facts and JESS rules, respectively.

The difficulty in designing SPL RA for service-based systems of ubiquitous
computing, with highly dynamic evolutionary environment is discussed in [9]; it is
claimed that feature models are incapable of capturing NFR and their fast changes
at runtime; annotation of the feature model with an ontology to treat NFR, including
also QoS values for product configuration, is proposed to increase flexibility and
adaptability; a different ontology is used to specify the “device” (concrete product
configuration features) matching NFR. Every configuration instance generated from
the feature model also instantiates the ontology attributes with values specifying the
set of capabilities that a NFR should satisfy. During the process of validating the
configuration, these attributes are checked against the capabilities of the requested
device. Once the feature model ontology is fully annotated with the device ontology,
they proceed to runtime analysis and reasoning over both ontologies to ensure the
validity of configured products for the target device.

In [10] this subject is treated again, claiming that feature models are not suitable
to support adaptive engineering of service-oriented systems due to their highly
dynamic environment; they state that ontology languages can be easily used to
express feature models, enriching them with NFR treatment, adding inference and
reasoning over constraints for product derivation of the SPL family, thus creating
more adaptive service composition.

Also in the context of dynamic SPL environments [11] states that features models
have limitations and must have a more formal representation in order to be dynamically
reconfigured at runtime. The OntoSPL ontology is proposed to model ontology-based
feature models, and a set of SPARQL queries is presented in different scenarios, that
can be executed to automatically reconfigure SPL products specified in OntoSPL.

On the specific topic of variability modeling, Kumbang is proposed in [21]
as a domain ontology to model the SPL variability, including a model for NFR,
the Quality Attribute (QA) profile. Each ontology in QA represent a quality
property or attribute, for example security, including metrics. It has been provided
with formal semantics by implementing a translation into a general-purpose
knowledge representation language with formal semantics and inference support.
The modeling concepts include components and features with compositional
structure and attributes, the interfaces of components and connections between
them, and constraints. The semantics of Kumbang is rigorously described using
natural language and a UML profile. A prototype tool for solving variability has
been implemented. The tool however is not interoperable and cannot transform
automatically different models.

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870118

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

c. Conclusion on the topic: consistency of feature and variability modeling
of NFR, constraints programming techniques and/or ontological approaches

 - Feature models do not handle properly NFR and even less in modern dynamic
Web services environments; an extensive survey on NFR variability modeling
techniques is presented in [25].

 - Ontological approaches help formalization and reasoning, and are used to verify
and specify feature models; the OWL ontology language is generally used.

 - None of the reviewed works consider modeling the RA with an ontology,
nor a bottom-up approach.

 - The concrete product configuration (based on features, which must be
converted into components or modules to obtain code) is directly derived
from the feature model, which must be verified for consistency using
different techniques based on classic problem solvers tools, or using ad-hoc
or ontology built-in reasoning engines, to obtain runtime coded modules
without considering RA, which is claimed to be the major SPL asset in most
SPL development approaches; connections between modules have to be
established according to their interfaces; this step becomes very complex
without considering RA as an intermediate abstraction level, and this
issue complicates the whole derivation stage, since the structure of feature
models, represented by feature trees, are not architectural configurations
(see Figures 3 and 8).

VI.2 Domain Quality Modeling using standards and ontological approach

Quality modeling refers to model the quality of a software product [15]. In the
SPL context, this quality must be captured for the domain, where the SPL products
portfolio is specified [5]; it is a key issue for the SPL RA design since qualities
properties drive the RA design process, being the main responsible for the SPL
variability model; in the context of our work, they drive the process of identifying
architectural configurations based on the HIS-RA Ontology. In the SPL product
configuration context, a quality property, solved or satisfied by a component
which is a concrete architectural solution, is always related to FR or NFR and its
traceability is crucial to determine which RA component is requiring/providing
the quality property, in order to check the global completeness and correctness of
the derived product configuration. Another problem is the terminology used in the
quality properties definitions, which are domain specific.

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 119

a. Search: “quality standards” + “ontology” + “web services”

Semantic Web Services are one of the most promising research directions to
improve the integration of applications within and across enterprise boundaries, and
now SPL are being designed also for these kind of interoperable, loosely coupled
and distributed systems. The following works concern the capture of knowledge
on Web Services (WS) domain and the handling of different quality standards, to
unify quality terminology, using an ontological approach.

In this search 13 works were found interesting, and 5 were selected from these
for a detailed discussion:

In [31] some of the main issues related to the semantic modeling of Web Services
were outlined; it provides an overview of the Web Service Modeling Ontology
(WSMO) - an ontology for Semantic Web Services. The design principles of this
ontology are highlighted and a short description of the top-level elements is given.
WSMO is presented as an ontology for semantically describing Semantic Web
Services. Taking the Web Service Modeling Framework (WSMF) [35] as a starting
point, WSMO refines and extends this framework, and develops a formal ontology and
language. WSMF consists of four different main elements for describing semantic Web
Services: (1) ontologies which provide the concepts and relationships used by other
elements, (2) goals that define the users' objectives, i.e. the (potential) problems that
should be solved by Web Services, (3) Web Services descriptions that define various
aspects of a Web Service, and (4) mediators which bypass interoperability problems.
With respect to quality modeling and standards, W3C standards were considered, but
not other standards for QoS as in [20]; moreover, SPL are not mentioned.

An ontology for Semantic Web Services is proposed in [32] to enrich Web
Services description. Distinguish from the existing ontologies [31], the proposed
ontology is based on both functionalities and performances, and it is organized as
a layered construction. The discovery related with the proposed ontology is also
discussed. Based on the Service Oriented Architecture, the proposed ontology is
helpful for requesters to find their suitable services according to their own preference
(see [22]). Besides, as an example, an ontology for the learning resource is provided.
However, quality modeling seems to be limited to performance.

In [33] Web Services are considered a new way of building software applications
based on services that are available through the Internet. However, Web Services still
face many problems that are limiting their adoption. One of the causes of this problem
is the lack of metadata about the quality attributes of Web Services, which make
Service Requesters reluctant to integrate Web Service with their applications. This
paper proposes a novel ontology that describes a model of the requester-oriented Web
Services' quality attributes. The ontology is based on previous quality models which
have been refined and modified specifically to address the quality issues as they relate

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870120

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

to the requester of Web Services. Also an analysis will describe how some of the quality
attributes in the previous model can be evaluated using different types of test cases.

Paper [36] outlines the importance of standard quality modeling, stating that growing
Web Service usage, design and composition methods require precise and reliable
information about Web Services quality. Such quality description has to be compatible
with universal software quality models, so designers will be able to gather and
decompose quality requirements addressing them to different Information Technology
solution components, including used Web Services. This article proposes Web Services
Quality Model based on the ISO/IEC Software product Quality Requirements and
Evaluation (SQuaRE) model [15]. Prior to model definitions the authors present
extended search on quality related issues in literature regarding Web Services and
software in general. Authors refer to general need for measuring and publication of Web
Service Quality measures considering limited trust and temporal character of measures.
This article does not include technical solutions, but focuses on quality model showing
its relevance to business needs. However, ontological approaches are not mentioned.

In [20] an ontology is proposed to specify domain knowledge on software product
quality; on one hand to integrate different standards on software product quality at
different abstraction levels, to unify terminology and characterize reusable domain
knowledge; on the other hand, to facilitate WS identification based on their quality
properties and the retrieval of the corresponding metrics. This characterization can be
integrated in a more global approach for SPL product configuration, considering the
HIS-RA Ontology defined in this work, to specify also metrics. This work has been
applied to WS discovery in [22]; in general, standards on software quality and the
relationships established between them are not considered, yet these standards could
be used as a shared understanding between service providers and customers, easing the
WS discovery process. An extension of OWL-S6 is defined to describe QoS according
to these quality standards. Then, an approach based on this extension of OWL-S to
improve the discovery process is developed, with an extension of SPARQL to simplify
expressions of WS discovery queries. Relationships between different standards are
used to return WS even if they are described with quality properties defined by a
different standard. Finally, NFR can be expressed as user preferences and are used to
rank WS fulfilling FR during the discovery process.

b. Conclusion on the topic Domain Quality Modeling, standards and
ontological approach

The use of standards is one of the major “best practices” claimed in Software
Engineering to facilitate understanding among software development teams;

6 www.w3.org/Submission/OWL-S

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 121

however software community frequently states that the use of standards reduce
flexibility, thus avoiding widespread usage. With respect to quality standards, the
terminology is different depending on the domain and Web services standards
provide different definition according to the abstraction level they are describing,
such as ISO/IEC 25010 for quality model, ISO/IEC 13236 for QoS general metrics,
and W3C standards [20] [22]. Ontological approaches are found useful tools to unify
standard terminology. However, our general opinion is that software community
should pay more attention to this issue; software interoperability, for example is
difficult to be achieved without the appropriate use of standards.

VI.3 Product Configuration from RA

Search: “software product line” + “configuration” + “reference architecture”
The search provided many results about SPL development methodologies, which

include the RA design and configuration steps, but they were general frameworks
that did not precise specific technics or models to direct configuration of products
from RA; only 3 works were found really relevant to be discussed for our topic:

Paper [34] is an early work, previous to FODA [6], pointing out that there are
few guidelines or methodologies available to develop and deploy SPL beyond
existing domain engineering approaches, which is still happening today. They
developed the PuLSE (Product Line Software Engineering) methodology to
enable the conception and deployment of SPL within a large variety of enterprise
contexts. It is centered on the incremental construction of the RA, where, besides
FR, also quality issues are considered. The RA instantiation for specific products
is performed in the PuLSE Usage phase, validating a single product against CR,
by elaborating a product specification and a configuration model; implementation-
specific decisions are collected that will have to be resolved during reference
instantiation; these decisions and their possible resolutions are captured in the
configuration model that extends a decision model. Driven by the configuration
model and the product specification, the architecture for the instance is defined.
The architecture is then validated against the product specification. The validated
architecture is part of the product and is entered into the product configuration
history. However, reasoning engines, problem solving or constrains technics used
to validate the concrete instance, were not specified. PuLSE is the result of a
bottom-up effort: the methodology captures the lessons learned from technology
transfer activities with industrial customers.

Results on the generation of product architectural configurations directly
from RA are presented in [23], following ontology-based feature modeling
and MDD (Model Driven Development). It is claimed that the ontological
approach to model features has more expressive power, it is shorter, more

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870122

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

formal and provides less complex descriptions. The ontology is used to capture
features, constraints and semantic relations between features and architectural
elements, such as components and variation points. Ontology reasoning engines
are used to determine architectural elements of a feature selection (introduced
by queries) and drive the generation of transformation rules that perform the
concrete product derivation from the SPL RA. The ontology, written in Protegé,
translates the feature tree, and a reasoning engine is constructed to capture the
concrete product requirements introduced as queries, which are validated for
consistency against the ontology, and translated into rules; these rules are used to
generate the RA instance corresponding to the queries for the concrete product,
using an architecture description language (ADL); the RA instance is written in
another ADL (subset of the first one) to be translated into the concrete product
architecture, using the transformation rules. The support tool is OntoAD. This
work share common points with our approach, since product configurations are
derived directly from RA using an ontology. However, main differences are
the following: - their ontology specifies the feature tree and not RA, which is
specified by an ADL; moreover, the concrete product configuration is obtained
by translating the RA instance into another ADL using transformation rules, due
to the MDD approach; - NFR are not mentioned, being this the main weakness of
this approach. In our approach, RA is directly specified by the HIS-RA Ontology,
containing explicit information on functional and non functional variation points,
components which are solutions to NFR, constraints, mandatory/optional, etc.
present also in feature models. The rules used to derive concrete architectural
configurations are verified by the ontology, and clear traceability between
components requiring/providing quality to satisfy FR and NFR is established
using these rules. In consequence, all FR and NFR are satisfied in the concrete
architectural configurations (FS) that are derived from RA, thus guaranteeing
the overall quality of the concrete products of the SPL family. However, we
were not able to compare the number of FS obtained by FFSP with results from
other works, since similar approaches were not found; nevertheless, FFSP can
be validated with different customer requirements using the present HIS-RA.

Finally, our recent work appears in the search performed [39], and it is the
basis of the present work, as it was outlined in the Introduction section. It defines
the product configuration and derivation process, called ASSPRO, directly from
the RA, which has been built by a bottom-up process studying existing market
products; the use of ontological approaches to derive and validate the consistency
rules for products’ configuration was planned as future work and main results of
this ongoing research are shown in the present paper.

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 123

VII. Conclusion

A process to verify connected, consistent and working architectural
configurations or FS has been presented and validated on a case study in the
Healthcare Integrated Information System domain. HIS-RA Ontology has been
developed to represent the HIS domain knowledge imbedded into the SPL HIS-
RA; this ontology has been used to verify connectivity, consistency and working
properties of the FS found. A more sophisticated reasoner, such as the SWRL plug-in
for Protegé,7 SWRLTab, could be used to produce more elegant queries, however
the built-in DL Query engine satisfied the derivation of our consistency rules. The
HIS application example may appear naïve, because HIS-RA has few components,
however it shows the complete RA instantiation process, and it can be didactically
useful to present this kind of development that in general is only partially shown
the literature. The semiautomatic process to find convenient FS will be included as
the first step of the Assessment Process (ASSPRO) [39], considering steps Finding
an optimal set of FS, Configuration of the Concrete Product Architecture, and
Documentation of Optimal FS, still under development. ASSPRO will offer a set
of optimal FS to customer, computed considering a weight-based heuristic, and an
assessment documentation to help deciding about the most convenient product to
be derived from RA, compliant with customer requirements. A first draft of this
process can be found in [24], and the last version in [39]. The approach presented for
FFSP guarantees complete satisfaction of quality requirements in FS architectural
configurations for the concrete product. This issue is not deeply considered in usual
proactive or top-down SPL approaches, which are mostly feature model-based, and
where in general NFR are given limited attention.

Aknowledgment

This research has been partially funded by the Consejo de Desarrollo Científico
y Humanístico (CDCH), Universidad Central de Venezuela, DARGRAF (Diseño
Arquitectónico Reactivo de software modelado por GRAFos) PG 03-8730-2013-
2 project.

7 protegewiki.stanford.edu/wiki/

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870124

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

References

[1] Clements P. and Northrop L. (2001). SPL: practices and patterns, 3rd ed.
Readings, MA, Addison Wesley.

[2] Nakagawa E. Y., Antonio P. O. and Becker M. (2011). RA and PLA: a subtle
but critical difference, ECSA 2011, LNCS 6903, pp. 207-211, Springer-
Verlag, Berlin, Heidelberg.

[3] Shaw M., Garlan D. (1996). Software Architecture. Perspectives of an
emerging discipline, Prentice-Hall.

[4] Pohl K., Böckle G., van der Linden F. (2005). SPL engineering - foundations,
principles, and techniques. Springer IXXVI, pp. 1-467

[5] ISO/IEC NP 26550 (2013) Software and Systems Engineering – Ref. Model
for Software and Systems PL. ISO/IEC JTC1/SC7 WG4.

[6] Lee, K., Kang, K. and Lee, J. (2002). Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering. Proceedings of the 7th.
Int. Conf. on Software Reuse: Methods, Techniques, and Tools, ISBN:
3-540-43483-6, pp 62-77.

[7] Matinlassi M. (2004). Comparison of software product line architecture
design Methods: COPA, FAST, FORM, KobrA and QADA, ICSE’04.

[8] Czarnecki K., Hwan C., Kim P.,Trygve K. (2006) Feature Models are Views
on Ontologies, SPIC 2006.

[9] Kaviani N., Mohabbati B., Gasevic D., Finke M. (2008) Semantic
Annotations of Feature Models for Dynamic Product Configuration in
Ubiquitous Environments 4th Int. Workshop on Semantic Web Enabled
Software Engineering, 7th Int. Semantic Web Conference.

[10] Mohabbati B., Nima Kaviani N., Dragan Gašević D. (2009) Semantic
Variability Modeling for Multi-staged Service Composition, Proceedings of
the 13th Software Product Lines Conf., Vol 2., 2009.

[11] Tenorio T., Dermeval D., Bittencourt I. (2014) On the Use of Ontology
for Dynamic Reconfiguring Software Product Line Products, Conference
Paper January 2014, ResearchGate, at: http://www.researchgate.net/
publication/275771587

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 125

[12] Losavio F. Ordaz O., Levy N., Baiotto. A. (2012). Graph Modeling of a
Refactoring Process for Product Line Architecture Design, JLDP, Lille, 47-
58, 7-11 November.

[13] Losavio F., Ordaz O., Esteller V. (2015). Quality-Based Bottom-up Design
of Reference Architecture applied to HIS, RCIS 2015, pp. 76-81, IEEE, May,
Athens, Greece.

[14] Gruber T. (1993) Toward Principles for the Design of Ontologies Used for
KnowledgeSharing. Available as Technical Report KSL 93-04, Knowledge
Systems Laboratory, Stanford University. 1993.

[15] ISO/IEC 25010 (2011). Systems and software engineering -- Systems and
software Quality Requirements and Evaluation (SQuaRE) -- System and
software quality models, ISO/IEC JTC1/SC7/WG6.

[16] Elsner C. (2012). Automating Staged Product Derivation for Heterogeneous
Multi–Product-Lines, Doctoral Thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany.

[17] Siegmund N., Rosenmuller M., Kuhlemann M., Kastner C., Apel S., Saake G.
(2012). SPL Conqueror: Towords Optimization of Non-functional Properties
in SPL, Soft. Qual. Jour., Vol. 20, No. 3-4, Sept, pp. 487-517(31).

[18] Samilovich S. (2010). OpenEMR – Historia Clínica Electrónica de codigo
abierto y distribuición gratuita, apta para su uso en el sistema de salud
Argentina, JAIIO CAIS. http://www.39jaiio.org.ar/sites/default/files/
Programa_CAIS_39AIIO_v8.pdf

[19] Losavio, F., Ordaz O., Santos I. (2015) Proceso de análisis del dominio
ágil de sistemas integrados de salud en un contexto venezolano, Revista
Venezolana de Información, Tecnología y Conocimiento, ENL@CE, Vol.
12, No. 1, pp.101-134 , Enero-Abril 2015, ISSN: 1690-7515, http://www.
produccioncientifica.luz.edu.ve/index.php/enlace/index

[20] Losavio F., Matteo A., Levy N. (2009) Web Services Domain Knowledge
with an Ontology on Software Quality Standards 3rd Int. Conf. on Internet
Technologies and Applications (ITA’09), UK, pp.74-85, CAIR (Center for
Applied Internet Research), Glyndwr University, 8-11 September.

[21] Asikainen T., Mannisto T., Soininen T. (2007) Kumbang: A domain ontology
for modelling variability in software product families Advanced Engineering
Informatics 21, pp 23–40. Elsevier.

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870126

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

[22] Jean S., Losavio F., Matteo A., Leyv N. (2010) An extension of Owl-S with
Quality Standards, 4th Inter. Conf. on Research Challenges in Information
Science (RCIS 2010), pp 483-494, IEEE (Print Version ISBN #978-1-4244-
4840-1), Niza, France, May 10-21.

[23] Hector A. Duran-Limon, F. Castillo-Barrera E., Lopez-Herrejon R. (2011)
Towards an Ontology-Based Approach for Deriving Product Architectures,
15th Intern. Software Product Line Conference SPLC '11, Volume 2 Article
No. 29, ACM August 21-26, Munich, Germany New York, NY, USA ©2011.

[24] Losavio F., Ordaz O. (2015) Quality-Based Heuristic for Optimal Product
Derivation in Software Product Lines, 6th Inter. Conf. On Internet Technology
& Applications (ITA’15), pp. 113-129, Glyndwr, North Wales, U.K. 8-11
September.

[25] Esteller V., Losavio F., Matteo A., Ordaz O. Modelos de Variabilidad con
Requisitos no Funcionales en un Contexto de Producción Industrial de
Software, Revista Venezolana de Computación (ReVeCom), ISSN: 2244-
7040, Vol. 1, No. 2, pp. 12-22, Diciembre 2014, Selección de los Mejores
Artículos de CoNCISa 2014

[26] http://www.svc.net.ve/revecom

[27] White J., Schmidt D.C., Benavides D., ; Trinidad P. (2008) Automated
Diagnosis of Product-Line Configuration Errors in Feature Models, Software
Product Line Conference, 2008. SPLC '08. 12th International, pp. 225 – 234,
8-12 September.

[28] Mendonca M., Cowan D. (2010) Decision-making coordination and efficient
reasoning techniques for feature-based configuration, Science of Computer
Programming 75, pp. 311–332, Elsevier

[29] Salinesi C., Mazo R., Djebbi O., Dia D. (2011) Constraints: The core of
product line engineering, Research Challenges in Information Science
(RCIS), Fifth International Conference on, 19-21 May 2011, pages 1-10.

[30] Zhang W., Kunz T., Hansen K.M. (2007) Engineering Complex Computer
Systems ‘07. 12th IEEE International Conference on, pp. 148 – 160

[31] Yang D., Dong M., Miao R. (2008) Development of a product configuration
system with an ontology-based approach, Computer Aided Design, Volume
40, Issue 8, August, pp. 863–878, Elsevier

[32] WSMO Working Group, co-chair: Christoph Bussler, John Domingue, and
Dieter Fensel, Web Service Modeling Ontology (WSMO) - An Ontology for

Losavio, Ordaz y Jean Ontological approach to derive product configurations from a Software...

Ciencia y Tecnología, Nº 16, 2016, pp. 91-127 ISSN 1850-0870 127

Semantic Web Services, Position paper at the W3C Workshop on Frameworks
for Semantics in Web Services, June 9-10, 2005, Innsbruck, Austria

[33] Qiu Q., and Xiong Q. (2007) An Ontology for Semantic Web Services

[34] R. Perrott et al. (Eds.): HPCC, LNCS 4782, pp. 776–784, 2007. © Springer-
Verlag Berlin Heidelberg

[35] Hanna S., and Alawneh A. (2010) An Approach of Web Service Quality
Attributes Specification, IBIMA Publishing Communications of the IBIMA,
Vol. 2010, Article ID 552843, 13 pages, http://www.ibimapublishing.com/
journals/CIBIMA/cibima.html

[36] Bayer J., Flege O., Knauber P., Laqua R., Muthig D., Schmid K.,Widen T.,
DeBaud JM (1999) PuLSE: A Methodology to Develop Software Product
Lines, Best Paper Award at the Symposium on Software Reusability‘99
(SSR’99), Los Angeles, May

[37] Fensel, D. Bussler, C. (2002) The Web Service Modeling Framework WSMF,
Electronic Commerce Research and Applications, 1(2).

[38] Abramowicz W., Hofman R., Suryn W., Zyskowski D. (2008) SQuaRE
based Web Services Quality Model, Proceedings of the International
MultiConference of Engineers and Computer, Vol I IMECS 2008, 19-21
March, Hong Kong.

[39] Kitchenham, B y Charters, S. (2007). Guidelines for Performing Systematic
Literature Reviews In Software Engineering. Keele University and University
of Durham, Technical report EBSE-2007-01.

[40] Wang H., Li YF, Sun J.,, Zhang H., Pan J. (2005) A Semantic Web Approach
to Feature Modeling and Verification, Workshop on Semantic Web

[41] Losavio F., Ordaz O, Márquez H. (2015) Assessment for quality product
derivation from a software product line reference architecture, Revista
Antioqueña de las Ciencias Computacionales y la Ingeniería de Software
(RACCIS) 5(2), pp. 48-59.

