

International Journal of Algebra, Vol. 4, 2010, no. 17, 827 - 842

Genetic Algorithm for Object Oriented Reducts

Using Rough Set Theory

N. Ravi Shankar1, T. Srikanth2, B. Ravi Kumar 2 and G. Ananda Rao1

1Dept. of Applied Mathematics, GIS, GITAM University, Visakhapatnam, India

2 Dept. of Computer Science, GIS, GITAM University, Visakhapatnam, India

Abstract

 Knowledge reduction is NP-hard problem. Many approaches are proposed to get
the minimal reduction, which is mainly based on the significance of the
attributes. There are some disadvantages of the reduction algorithms at present. In
this paper,. We propose a heuristic algorithm based on C-Tree for object –
oriented reducts and also present a genetic algorithm (GA) for object oriented
reducts based on C-Tree using rough set theory.

Keywords: Condensing Tree, object oriented reduct, rough set, Genetic
algorithm

1. Introduction

Rough set theory ([1,2,3]), proposed by Z. Pawlak in 1982, offered an
effective mathematical method to deal with uncertainty knowledge. Recently,
rough set theory and its application have been developed rapidly, which are
mainly concentrated on the generalization of rough set model, the research on
uncertainty theory in rough set, rough set operations and their connections with
other uncertainty operations, rough set and its contacts with other mathematical
theories and so on.

Rough set theory [1, 2] provides a theoretical foundation of
approximation of objects. Information systems represent characteristics of objects
by attributes and its values, and for any given concepts, that is, any subsets of
objects, lower and upper approximations by indiscernibility relations illustrate
set-theoretic approximations of concepts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357312252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

828 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

Knowledge reduction is one of the most important problems in areas of

data mining, pattern recognition and machine learning. It can remove redundant
properties, and effectively simplify the knowledge and enhance learning
efficiency and lower cost of classification. Minimal reduction that has been
proved is a kind of NP-hard problem [9], so researchers have to propose some
heuristic reduction algorithms which generally make use of attribute's significant
degree as a kind of heuristic information to get the better result.

Genetic algorithm (GA) is a kind of effective searching and optimizing

technique which has the characteristics of implicit parallelism, robust and global
search, and has been applied to many fields. Bjorvand [10] used GA to calculate
minimal reduct, but he didn’t make use of any heuristic information. What’s
more, it is complicated to determine the fitness. In this paper, we introduced a
heuristic strategy into generic algorithm and proposed a heuristic genetic
algorithm to find object oriented reducts using rough set theory. We consider
relative minimal reduct in this paper.

The rest of this paper is organized as follows. In Section2, we briefly

review rough set theory and object oriented paradigm. In Section 3, we
constructed object oriented rough set models with the help of object-oriented
information systems . In Section 4, we define discernibility matrix to generate
condensing tree (C-Tree). In section 5, we developed a heuristic algorithm based
on C-Tree for object oriented reducts using rough set theory. In Section 6, we
presented a genetic algorithm(GA) for object oriented reducts based on C-Tree
using rough set theory.

2. Rough Sets and Information Systems

An information system is a pair S = (U,A) where U and A are finite and
nonempty sets. U is called the universe, and each element x∈U is called an
object, respectively. On the other hand, each element a ∈ A is called an attribute,
which is identified with a function avUa →: that assigns a value to each object
x∈U, where av is the set of values of the function a .

For any subset B ⊆ A of attributes, we construct an indiscernibility
relation RB on U as follows:

xRBy ⇔ a(x) = a(y) , ∀ a∈ B … (1)

where a(x) means the value of the object x∈U at the attribute a. x RB y means
that we can not discern x and y by any combination of attributes in B. It is clear
that the indiscernibility relation RB is an equivalence relation. We denote the
equivalence class by RB that contain x as

BRx][. The class of all equivalence
classes by RB provides a partition U/RB of U.

Genetic algorithm for object oriented reducts 829

For a given information system S=(U,A), a given subset B ⊆ A of
attributes, and any subset X ⊆ U, we construct a lower approximation

)(XRB and an upper approximation)(XRB of X as follows, respectively:

)(XRB = }][/{ XxUx B ⊆∈ … (2)

)(XRB = }][/{ φ≠∩∈ XxUx B … (3)

The lower approximation of X is the set of objects x that the equivalence class

BRx][of x is included to X, and the upper approximation of X is the set of objects
x that

BRx][has a non-empty intersection with X. Note that we have the following

set-inclusion relation:)(XRB ⊆ X ⊆)(XRB .

 A rough set of X is a pair R(X) = ()(XRB ,)(XRB)of the lower approximation
and the upper approximation of X. The rough set R(X) provides an approximation
of the set X in the information system S based on attributes in B. If we have

)(XRB =X=)(XRB ,X is called RB-definable. On the other hand, if we have

)(XRB ⊂ X ⊂)(XRB , X is called RB-rough.
Quality of approximation of X by the rough set RB(X) is numerically

evaluated as follows:

|)(|

|)(|

XR

XR

B

B … (4)

where, for any set S, |S| means the cardinality of S. It is clear that the quality of
approximation is equal to 1 if and only if X is RB-definable.
 Let P and Q be equivalence relations over U, then the positive , negative
and boundary regions are defined as :

)(~)(
/

XQPOS PQUXP ∈
∪= … (5)

)(~)(
/

XUQNEG PQUXP ∈
∪−= … (6)

)(~)(~)(
//

XXQBND PQUXPQUXP ∈∈
∪−∪= … (7)

The positive region comprises all objects of U that can be classified to classes of
U/Q using the information contained within attributes P. The boundary region

)(QBNDP , is the set of objects that can possibly, but not certainly, be classified
in this way. The negative region,)(QNEGP , is the set of objects that can not be
classified to classes of U/Q.

Let S= (U,C,D) be information system where C is set of condition
attributes and D is set of decision attributes. The set of attributes R ⊆ C is called a
reduct of C, if S' = (U,R,D) is independent and POSR(D) = POSC(D).The set of
all the condition attributes indispensable in T is denoted by CORE (C) = ∩ RED
(C) where RED (C) is the set of all reducts of C.

830 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

3. Object-Oriented Rough Set Models

In this section, we propose object-oriented information systems that illustrate
hierarchical structures of object oriented concepts. First, we propose class
structures that represent abstract data forms and hierarchical structures between
classes. Next, we define object structures that illustrate many kinds of objects and
actual dependence among objects by has-a relationship and offers-a relationship.

Moreover, we define name structures that introduce strict constraint to
guarantee consistency of structures. Name structures provide concrete design of
objects, and connect the class structure and the object structure consistently.
Finally, combining these structures, we provide object oriented information
systems as generalization of “traditional “information systems of rough set
theory.

3.1. Class

 Definition 1: A class structure C is the following triple:

 (C, Rc, Sc) --- (6)

 Where C is finite non-empty set, Rc is acyclic binary relation on C that is Rc
satisfies the following property :
∃ c1,c2 ,…cn ∈ C such that c1 Rc c2, c2 Rc c3 ,… cn-1 Rc cn , cn Rc c1

and Sc is a reflexive, transitive, and asymmetric binary relation on C. Moreover,
CR and CS satisfying the following property:
∀ ci, cj, ck ∈ C , ci Sc cj , cj Rc ck ⇒ cj Rc ck …. (7)
Each c ∈ C is called a class that represents an abstract data form. Note that each
class corresponds to a sort in many-sorted logic [4] and order-sorted logic [5].

Two relations Rc and Sc illustrate hierarchical structures among classes.
The relation Rc is called a offers-a relation, which illustrates part / whole
relationship between classes. ci Rc cj means “ci offers a cj”. The relation Sc is
called a has -a relation, and ci Sc cj means that “ ci has a cj” or ci is a part of cj.

Because C is a finite non-empty set, and Rc is acyclic, there is at least one
class c such that c has no other class c′ , that is, c Rc c′ for any c′ ∈ C. We call
such class c an attribute, and denote the set of attributes by AT . Formally,AT is
defined as follows:

 AT = {c ∈ C / c Rc c′ , ∀ c′ ∈ C } … (8)

Example 1:Let = (C, RC,SC) be class structure with

Genetic algorithm for object oriented reducts 831

C={University,College,Department,Faculty,Student,Course,Ncollege,Ndept,Nstu
dents } and have the following relations.

has-a relation: University Sc College,
 College Sc Department,
 University Sc Department,
 …………….

Offers- a relation: College Rc Department
 Department Rc Courses.

Suppose moreover that Ncollege, Ndept and Nstudents are attributes.

These relations illustrate connection between classes, for example , “University
has a College” and “College offers Department “ imply “University offers
department”
 (or)
“University has a Department ” and “Department offers Course” imply
“University offers Course ”

3.2. Object
We define an object structure that illustrates hierarchical structures among
objects.

Definition 2: An object structure O is the following triple:

 (O, Ro ,So) … (9)

 where O is a finite non-empty set, Ro is an acyclic binary relation on O, and So
is a reflexive, transitive, and asymmetric binary relation on O. Moreover, similar
to the definition of class, Rc, and Sc satisfy the following property:
∀ oi ,oj, ok ∈ O, oi So oj , oj Ro ok ⇒ oi Ro ok … (10)
 We intend that every object o ∈ O is an instance of some class c ∈ C. To
represent this intention, we define a class identifier function idC as follows.
Definition 3: Let C=(C, Rc, Sc) be the class structure and O = (O, Ro ,So)
be the object structure. A function idC:O→C is called class identifier iff idc a p-
morphism between O and C(cf.[8],p142) that is, the function idC satisfies the
following conditions:
1. ∀ oi, oj ∈ O , oi Ro oj ⇒ idC (oi) Rc idc(oj) … (11)
2. ∀oi ∈ O,∀cj c C ,idC (oi) Rc cj ⇒∃ oj∈Os.t.oi Ro oj and idc (oj) = cj … (12)
 and the same conditions are also satisfied for So and Sc. idC_(o)=c means that the
object o is an instance of the class c.
For any object x , if idc (x) = a and a ∈ AT, we call such object x a value object
of the attribute a. The value object x is an instance of the attribute a represents a
“value” of the attribute. Thus, if y is another value object of a , it is natural to

832 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

enable us to compare the “value” of x and y. We introduce the concept of
“value” of value objects.
Definition 4: For any object x, if idC(x)= a and a ∈ AT, we call such object x a
value object of the attribute a. We denote the “value” of the value object x by
Val(x).

3.3. Name
We introduce a name structure to provide concrete design of objects, and connect
the class structure and the object structure consistently. The class structure
provides abstract data forms of objects, however, does not provide constraints
about the number of parts and their identification. Suppose we have ci Rc cj and
we intend that any instance oi of the class ci has m objects of cj as parts of oi and
each object of cj should be strictly identified. Direct connection between objects
and classes by the class identifier idC.

Definition 5 : Let C= (C, Rc, Sc) be the class structure. A name structure N for C
is the following triple:
 (N,RN,SN) … (13)

where N is a finite non-empty set such that |C| ≤ |N| , RN is an acyclic binary
relation on N, and SN is a reflexive, transitive, and asymmetric binary relation on
N. Moreover, similar to the definition of class, RN and SN satisfy the following
property :

 ∀ ni , nj, nk ∈ N , ni SN nj , nj RN nk ⇒ ni RN nk … (14)
We call each n ∈ N a name.
We intend that a naming function fn : N→ C provides names to each class. To
introduce the naming function precisely, we define the following notations.

Definition 6: Let C = (C, RC,SC) be the class structure, N = (N,RN,SN) be the
name structure, and f : N → C be a function. For any name n ∈ N, we denote the
set of names that n has by :
HN(n)={nj∈N/nRNnj} … (15)
Moreover, using the function f, we denote the set of names of a class c ∈ C that n
has by
 f

nH (c/n) = {nj∈N/nRNnj, f(nj) = c } … (16)

Definition 7: Let C = (C, RC,SC) be the class structure, N = (N,RN,SN) be the
name structure.A function fn : N → C is called a naming function if and only if
fn is a surjective p-morphism between N and C and satisfies the following name
preservation constraint:
 For any ni , nj ∈ N, if fn(ni) = fn(nj) then

)/()/(j
f

ni
f

n ncHncH nn = (17)
is satisfied for all c ∈ C.

Genetic algorithm for object oriented reducts 833

Example 2: This example is continuation of Example1. Let C = (C, RC,SC) be
the class structure in Example1, N = (N,RN,SN) is a name structure with
N={university,college,department,faculty,student,college2,course,ncollege,ndept,
nstudents} and the following relationships:

Has- a relation: : university SN college,
 college SN department,
 university SN Department,
 ………….

Offers-relation :
 College RN Department
 Department RN Courses.

Moreover, suppose we have a naming function fn : N → C such that
fn (university) = University,
fn (college) = fn (college2) = College,
fn(department) = Department,
fn (faculty) = Faculty,
fn(student) = Student,
fn(course) = Course,
fn(ncollege) = Ncollege,
fn(ndepartment) = Ndepartment,
fn(nstudent) = Nstudent.
Note that we have HN (College/university) = {college, college2}, and
HN (Ndepartment/ college) = HN (Ndepartment/ college2) = {ndepartment}.
Here, to illustrate connection between the classes and names, we use class
diagrams of UML[7] authorized by OMG[8] as in Fig 1. For example, the class
diagram “University” illustrates that University class has two objects of the
College class , called “college” and “college2”, respectively, one object “student”
of the Student class , and one object “faculty” of the Faculty class.

834 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

University College
College college
College college2
Student student

 Department department
Student student
Faculty faculty
Ncollege ncollege

Department Faculty

Course course
Faculty faculty
Student student

 Ndepartment ndepartment

Course Student

Ndepartment ndepartment

 Nstudent nstudent

Fig 1. Class diagrams in example 2

Definition 8 : Let O = (O, Ro, So) be the object structure and N = (N,RN,SN) be
the name structure. A function na : O → N is called a name assignment if and
only if na is a p-morphism between O and N satisfies the following uniqueness
condition :
For any x ∈ O, if HO(x) ≠ φ , the restriction of na into HO(x) :

na /HO(x)=HO(x)→ N … (18)
is injective, where HO(x) = { y ∈ O / x RO y} is the set of objects that x has

na (x) = n means that the name of the object x is n.
Definition 9 : Let C = (C, RC,SC) be the class structure, N = (N,RN,SN) be the
name structure, O = (O, Ro, So) be the object structure. Moreover, let idC : O →
C be the class identifier. We say that C, N and O are well defined if and only if
there exists a naming function fn : N → C and a name assignment na : O → N
such that
 idC = fn o na … (19)
that is, idC (x) = fn (na (x)) for all x ∈ O .
Definition 10 : Let C, N and O be well defined structures. Suppose we have
o1,o2,… ok ∈ O , n1, n2,…nk ∈ N, and c1,c2,…ck ∈ C such that oi RO oi+1 for 1 ≤ i ≤
k-1, and na (oi) = ni , fn(ni) = ci for 1 ≤ i ≤ k. We denote o1.n2…ni instead of oi for
2 ≤ i ≤ k by means of “the instance of ci named ni as a part of the instance of ci-

1…as a part of o1”.
Example 3 : This example is continuous of Example 2. Let C = (C, RC,SC) and
N = (N,RN,SN) are the same class structure and name structure in example 2,

Genetic algorithm for object oriented reducts 835

respectively. Moreover, let O = (O, Ro, So) be an object structure with the offers
– a relationship illustrated in Fig 2 and the following has-a relationship.
x SO x , ∀ x ∈ O and
 university3 SO university1 , university3 SO university2.
Moreover, let na :O → N be the following name assignment :

na (university1) = na (university2) = college,

na (university3) = college2,

na (c1) = na (c2)= na (c3) = college,

na (c4) = college2,

na (s1) = na (s2) = na (s3) = student,

na (f1) = na (f2) = na (f3) = faculty,

na (24) = na (16) = ncollege,

na (150) = na (120) = ndepartment,

na (2400) = na (1200) = nstudent.
We define the class identifier idC : O → C by Eq.(19) using na and fn used in
example 2. It is not hard to check that C, N and O are well defined.

836 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

 university1 university2

c1 d1 s1 c2 d2 s2

24 120 1200 16 100 1500

 university3

c1 d1 s1

15 90 1300

Fig 2. Offers- a relation on objects in example3

Object-Oriented Information System
 Using well defined class, name structure and object structures,
we introduce an object oriented information system that corresponds to the
information in “traditional” roughset theory.
Definition 11: Let C = (C, RC,SC) and N = (N,RN,SN), O = (O, Ro ,So) be well
defined class, name, object structures respectively, An object oriented
information system OOIS(O,C,N) is the following structure:
OOIS(O,C,N)= (O,C,N,o,idc) … (20)

Genetic algorithm for object oriented reducts 837

 where idc = fn o na
 The object oriented information system can be illustrate “traditional”
information system as special case. In particular ,for any information system
IS(U,A) ,we can construct an object oriented information system OOIS(OIS,
CIS,NIS) that corresponds to IS: First, using the information system IS = (U,A),
we construct a name structure.
NIS = (NIS ,

ISIS NN SR ,) as follows :
NIS = A ∪ {IS}

ISNR = {(s,a) / a∈ A}

ISNS = {(n,n) /n ∈ NIS}
Where s is a symbol that doesnot appear in A. We also construct and object
structure
 OIS = (OIS ,

ISIS OO SR ,) as follows :

 OIS = U ∪ (})(,,,/{ vxavvxav a
x
aAa

=∈∃∃∪
∈

)

ISOR = { (x, x
av) /x∈ U}

ISOS = {(o,o) /o ∈ OIS}

Where x
av is a new symbol that corresponds to the value of the object of the

attribute a as a part of the object x , and v (x
av) = v.

We set a class structure CIS = (CIS ,
ISIS CC SR ,) as CIS = NIS , ISCR =

ISNR and

ISCS =
ISNS .

Finally, we construct a name assignment ()
ISNna , a naming function ()

ISCnf , and

a class identifier
ISCid , respectively. Suppose a function () ISISNn NOa

IS
→: by

()
ISNna (o) =

⎩
⎨
⎧

∈∃∈

∈

Uxvoifa
Uoifs

x
a ,

 … (21)

The function ()
ISNna becomes a name assignment : if o∈ U,then we have

HO(o) = { }/ Aavo
a ∈ , that is, the set of value objects about o, and by the

construction of value objects o
av , each o

av and a = ()
ISNna o

av ∈ NS corresponds

one to one. Otherwise, we have o = x
av , and therefore HO(o) = φ. We define the

naming function () ISISCn CNf
IS

→: by ()
ISCnf (n) = n ∈ ISC for all n ∈ NIS.

Using ()
ISNna , we get

ISCid = ()
ISCnf o ()

ISNna .

OOIS (OIS, CIS,NIS) satisfies the following property : a(x) = v ⇔val (x,a) =v ,
∀x ∈ U,
∀a ∈A.

Definition 11 : Let O = (O,RO,SO) be the object structure and D= {d1, d2,…dn} be
set of decision attribute values and d ∉ AT where AT is set of all condition

838 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

attributes. A function gn : O → D is called decision function if and only if gn is a
surjective p-morphism and satisfies the following constraint :
 ii dc ⇒∧ where ci ∈ AT and di ∈ D (i= 1, 2,…|AT|) … (22)

4. Generation of condensing tree (C-Tree)

4.1 Discernibility Matrix

A decision table is denoted by DT = 〈O,AT∪D,V,f〉 where O = {o1,o2 ,…,on} is a
non-empty finite set of objects or cases called Universe, where AT is the set of
conditional attributes and D is the decision attributes, AT∩ D = φ. In this paper,
D = {d} is a singleton set, where D is the class attribute that denotes classes of
objects.
f : O ×(AT∪D) → V is a total function such that f(oi, a) = av for each

)(DATa ∪∈ ,
oi ∈ O , where av is domain of the attribute a . Throughout this paper, φ denotes
empty set, and |X| denotes the function that returns the cardinality of the
argument set X. Given a decision table DT, a discernibility matrix DM [] is
defined as an n × n matrix of DT with the (i,j)th

 entry mij is given by
 mij =)},(),(:{ aofaofATa ji ≠∈ for),(),(DofDof ji ≠
 = φ otherwise … (23)
An attribute subset R of C is an attribute reduction iff R ∩ mij ≠ φ holds for each
mij ∈ DM (mij ≠ φ) , and for every S ⊂ R, ∃ mij ∈ DM (mij ≠ φ) such that S∩ mij
= φ. An attribute subset R of C is an approximate attribute reduction if and only
if ,,*|}/{|,*|}/{| RSNmSmNmRm ijijijij ⊂∀<≠∩≥≠∩ δφδφ where N is
the number of non-empty entries in DM, δ ∈ [0.8,1].

4.2 Construction of Condensing Tree (C-Tree)

For a given disecernibility matrix(DM) , to efficiently compress and not lost
information of DM, the so called C-Tree structure, a compact data structure was
introduced, the information of DM can also be compressed but not lost by C-Tree
structure.

 A Condensing tree is a tree structure defined as given below.
1. It consists of one root labeled as “null” a set of attribute (or attribute index)
prefix subtrees as the children of the root, and an attribute (or attribute index)
header table.
2. Each node in the attribute prefix subtree consists of six fields : attribute-name,
count, stcount, parent, childhead, and node-link, where attribute name registers,
which attribute this node represents, count registers the number of cells of a
discernibility matrix represented by the portion of the path reaching this node,

Genetic algorithm for object oriented reducts 839

stcount registers the sum of all count fields of its child nodes. Parent points to its
parent node, child head points to the head child of all children and node-link to
the next node in the C-Tree carrying the same attribute name, or null if there is
none.
3. Each entry in the attribute header table consists of three fields : attribute-name,
frequency, and head of the node-link, where frequency registers the number of
entries including the attribute represented by attribute-name appears in
corresponding discernibility matrix, head of node-link points to the first node in
the C-Tree carrying the attribute-name.
 According to this definition, the C-Tree generation algorithm is described
as follows.

Algorithm 1 Generating C-Tree (AT,D,O)

Input : AT : Conditional attributes, D: decision attributes O : objects
Output : Its condensing tree, C-Tree T.

1. Set a proper order of attributes R;
2. Create the root of an C-Tree T, and label it as “null”;
3. Create the header table HT[1…|AT|], according to order R, get every attribute f
in turn and set its attribute-name, frequency and head of node-link be f-attribute-
name, O and NULL, respectively.
4. for (i =1;i<=|O|;i++)
 for (j =1 ; j <= i-1;j++)
4.1 generate an element mij of and DM by (1);
4.2 if mij ≠φ then
4.2.1 sort the attributes mi,j according to the order of R. Let the sorted attribute
test in mij be [f/F] , where f is the first attribute and F is the remaining list.
4.2.2 call insert_tree ([f/F] , T);
5 return T.
In algorithm 1, the function insert_tree ([f/F],T) is performed as follows. If T has
a child N such that N.attribute_name=f.attribute_name, then increment N’s count
by 1; else create a new node N, and set its count be 1, its parent link be linked to
T, and its node link be linked to the nodes with the same attribute_name via the
nod-link structure. If F is non-empty, call insert_tree (F,N) recursively. The
order of attributes, R, is usually set the order obtained by choosing attributes from
left to right in a decision table.

5. A heuristic algorithm based on C-Tree for object –oriented
reducts.

Algorithm 2 : OReductBtree (AT,D,O)

Input : AT : Conditional attributes, D: Decision attributes , O : objects.

840 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

Output R : Object oriented reducts R ⊆ AT.

1. R ← φ , A ← AT;
2. T ← Generating C-Tree (AT,D,O);
3. do
4. a ← select highest frequency attribute (T);
5. R← R ∪ {a}
6. I ← locate (a,HT);
/* the position of attribute a in header table HT, that is, HT[i] attribute_name
is the attribute a */
7. p ← HT [i]. head of node-link;
8. HT[i]. frequency ← 0;
9. while p ≠ φ do

 update count and stcount of each node along the parent and childhead;
 update the frequency of the attribute in HT;
 delete each node that its count equals zero;
 p← p → node-link ;

10. A ← A- {a};
11. until T = φ;
12. return R.

OReductBtree can only obtain one attribute subset. To get more useful
approximate object oriented reducts will be introduced in section 4.

6. A genetic algorithm (GA) for object oriented reducts based on

C-Tree.
 Generating algorithms deal with a population of individuals by using
selection, crossover and mutation operators. A population of individuals is
repeatedly evolved over generations by optimizing a fitness function, which
provides a quantitative measure of the fitness of individuals in the pool.
Selection operator chooses better individuals to participate into crossover, i.e.,
those individuals with high fitness values. Cross-over operator is responsible for
creating new individuals from the old ones. Mutation also generate new
individuals, but only in the vicinity of old individuals.
 Generally, solutions are represented by binary strings of length m, where
m is the number of conditional attributes. In the bit representation ‘1’ means that
attribute is present and ‘0’ means that it is not. Here a new fitness function based
on discernibility matrix, for attribute reduction is defined as follows,
 F(v) = (m-Lv)/m + |ATv| /n … (24)
Where v is an individual, i.e., an object oriented reduct candidate, m is the
number of conditional attributes, Lv is the number of 1’s in V, ATv is the set of
non-empty entries in which some attributes hidden in individuals appear, N is the
number of non-empty entries in DM.

Genetic algorithm for object oriented reducts 841

 To obtain potential and more useful individuals, the so-called “Roulette
Wheel’ strategy is employed, this strategy makes those attributes with relatively
low frequencies can also be chosen. Moreover Eq.2 should be divided into two
parts F1 and F2.

m

Lm
F v)(

1
−

= … (25)

n

AT
F v ||

2 = … (26)

A genetic algorithm for object oriented reducts based on C-tree is summarized as
follows :

Algorithm 3. CTBGAOOR(AT,D,O,δ)
/* A Novel Condensing tree based genetic algorithm for object oriented reducts*/
Input : AT : Conditional attributes, D: Decision attribute, O: objects, δ : pre-set
thresholds:
Output : More useful approximate object oriented reducts.
1. parameter initialization :
 pc ← crossover probability ;
 pm ← Mutation probability ;
 T ← Maximum number of iterations;
 K ← 0;
2. T← Generating C-Tree (AT,D,O);
3. getting the frequency of each attribute that appears in T;
4. p ← A random population of size pop_size is generated by using the principle
of ‘Roulette Wheel’ according to the frequency of each attribute;
5. computing three fitness values of each individuals: t ← all individuals that
their fitness values F2 ≥δ ;
6. while (k <T) and |t| < 0.9 * |P|) do
6.1 select individuals using ‘Roulette wheel’ strategy;
6.2 crossover with pc ;
6.3 Mutation with pm ;
6.4 some uninteresting individuals are replaced and offspring individuals p are
created;
6.5 The two fitness values for each individuals is repeated by calculate d;
6.6 k←k+1;
7 Choose some sub optimal individuals.

Conclusion

 We have proposed a heuristic algorithm based on C-Tree for object –oriented
reducts. We have presented a genetic algorithm (GA) for object oriented reducts
based on C-Tree using rough set theory.

842 N. Ravi Shankar, T. Srikanth, B. Ravi Kumar and G. Ananda Rao

References

[1] Z.Pawlak, “Rough sets”, International Journal of Computer and Information
 Sciences 11,1982, 341-356.

[2] Z.Pawlak, Rough sets : Theoretical Aspects of Reasoning about Data, vol.9,
 kluwer Academic Publishers, Dorderecht, The Netherlands, 1991.

[3] Z.Pawlak, A. Skowron, “Rudiments of rough sets”, Information Sciences ,1,
 2007,3- 27.

[4] R. Socher-Ambrosius and P. Johann, “Deduction Systems,” Springer, 1996.

[5] K. Kaneiwa, “Order-Sorted Logic Programming with Predicate
 Hierarchy,”Artificial Intelligence, Vol.158, pp. 155-188, 2004.

[6] S. Popkorn, “First Steps in Modal Logic,” Cambridge University Press, 1994.

[7] http://www.uml.org/

[8] http://www.omg.org/

[9] Wong S K M, Ziarko W. "On optimal decision rules in decision tables",
 Bulletin of the Polish Academy of Sciences: Mathematics, 1985, 33(11-22):
 693-696.

[10] Bojrvand, And ers Torvill. Times Series and Rough Sets : [Master’s
 Thesis]. The Norwegian Institute of Technology, Department of Computer
 Systems, Trondheim, Norway, 1996.

Received: March, 2010

