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Abstract: Elliptic Curve Cryptography (ECC) is one of the most 

interesting systems for protecting sensitive information nowadays. The 

latest versions of the Java Platform include classes and interfaces making 

ECC available to programmers, but due to the nature of Java it is still 

necessary to employ additional third party packages in order to use 

cryptographic operations and procedures related to ECC. In the present 

work, an extensive review of the most important ECC implementations in 

Java is presented. 
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1. INTRODUCTION 

1.1. Public key cryptography 

Since the development of public key cryptography by Whitfield Diffie and 

Martin Hellman in 1976 [1], several cryptosystems have been proposed. The most 

important features to be requested to a cryptosystem are security and efficiency, 

and in general, both characteristics depend on the mathematical problem on which 

it is based. The list of problems that are considered computationally infeasible to 

solve includes the integer factorization problem (IFP), the discrete logarithm 

problem (DLP), and the elliptic curve discrete logarithm problem (ECDLP).  

In 1985, Victor Miller [2] and Neal Koblitz [3] independently proposed a 

cryptosystem based on elliptic curves, whose security relies on the ECDLP 

problem. Elliptic Curve Cryptography (ECC) can be applied to data encryption and 

decryption, as well as to the creation and verification of digital signatures. 
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As in the case of IFP and DLP, no algorithm is known that solves the ECDLP 

in an efficient way. Moreover, the ECDLP is regarded by some authors as the 

hardest of these three problems. Although some operations take more time in the 

ECC system compared to other public key systems, as the key size is smaller in 

ECC, some studies suggest that there are no practical differences in performance 

between ECC and RSA. A comparison among the RSA/DSA/ECC cryptosystems 

and their key lengths is shown in Table 1. 

Table 1. Key length comparison of RSA/DSA and ECC cryptosystems 

MIPS year RSA/DSA key 

length 

ECC key length Ratio 

10
4 

10
8 

10
11 

10
20 

512 

768 

1024 

2048 

106 

132 

160 

210 

5:1 

6:1 

7:1 

10:1 

 

1.2. Elliptic curve cryptography 

An elliptic curve E over the finite field (or Galois Field) GF is defined by the 

following equation known as a Weierstrass equation [4]:  
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where a1, a2, a3, a4, a6  GF and 0 , being   the discriminant of E that 

can be calculated in the following way [5]: 
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 (2)   

Condition 0  assures the curve is “smooth”, i.e., there are no curve points 

with two or more different tangent lines.  

However, the Weierstrass equation is not used in practice. Instead of it, 

depending on the characteristic of GF and the value of a1, it is possible to work 

with the following simplified equations: 
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Two types of finite fields GF(q) (with q = p
m
 elements) are used in ECC: 

prime finite fields GF(p) (where p is an odd prime and m = 1) and binary finite 

fields GF(2
m
) (where p = 2 and m can be any integer higher than 1). A comparison 



among the bit length of some cryptosystems and the size of the related finite field 

for elliptic curves is shown in Table 2, where |p| represents the bit length of the 

integer p. 

Table 2. Key length according to FIPS 186-2 

Key Length Example Algorithm |p| M 

80
 

112
 

128
 

192 

256
 

SKIPJACK 

Triple-DES 

AES-Small 

AES-Medium 

AES-Large 

192 

224 

256 

384 

521 

163 

233 

283 

409 

571 

1.3. Related standards 

Either in the environment of RSA or ECC, any theoretical finding cannot be 

used directly, as it is necessary to define data structures and procedures to manage 

the information. Currently there are three immediate applications for ECC in 

cryptography, as it is described in next paragraphs. 

Elliptic Curve Digital Signature Algorithm 

FIPS 186-2 [6] describes all the algorithms and digital signature schemes that 

can be used by any agency of the U.S. government. Currently those algorithms are 

DSA, RSA and ECDSA. ECDSA is the elliptic curve variant of the Digital 

Signature Algorithm (DSA). 

NIST and ANSI X9.62 state a minimum key size of 1024 bits for RSA and 

DSA and 160 bits for ECC, which provide an equivalent security to a symmetric 

block cipher with a key size of 80 bits. NIST has published a list of recommended 

elliptic curves for protection with different symmetric key sizes (80, 112, 128, 192, 

and 256 bits). In general, ECC over a binary field requires a key size twice that of 

the corresponding symmetric key. ECDSA scheme is also included in IEEE 1363 

and SEC 1 standards. 

As a comparison, texts signed with a 1024 bits RSA key produce a digital 

signature of 128 bytes, whilst the same text signed with a 192 bits ECDSA key 

generates a digital signature of 48 bytes. 

Elliptic Curve Integrated Encryption Scheme 

The most extended encryption/decryption scheme based on ECC is ECIES  

[7], being a variant of the ElGamal scheme. ECIES can be found at ANSI X9.63, 

IEEE 1363a and SEC 1 [8] standards.  

ISO/IEC 18033-2 [9] includes an enhanced version identified as ECIES-KEM, 

which includes modifications in order to prevent “benign malleability” issues. 

As an example, a symmetric key encrypted with a 1024 bits RSA key produces 

an output of 128 bytes compared with the output of 84 bytes if the encryption is 

performed with ECIES. 



 

Elliptic Curve Diffie-Hellman 

The main objective of key exchange protocols is to put in contact two or more 

entities communicating through an open and insecure channel, sharing a secret key 

that will provide data confidentiality and integrity to any information exchanged.  

ECDH denotes the generic key exchange scheme based on the Diffie-Hellman 

mechanism applied to elliptic curves. Some practical implementations can be found 

at ANSI X9.63, IEEE 1363, NIST SP 800-56A and SEC 1 documents. 

1.4. Commercial adoption 

On February 16th 2005, the NSA (National Security Agency) announced that 

it had decided to adopt ECC as part of a U.S. government standard in order to 

improve the secure management of sensitive-but-unclassified information. The 

NSA has recommended a group of algorithms called Suite B, including ECMQV, 

ECDH, and ECDSA.  

2. PROBLEM  DEFINITION 

Since its appearance in the mid-1990s, the Java language has experienced a 

constant growth regarding the number of programmers and commercial 

deployments, being massively used in web and corporate applications. As a result 

of its continuous evolution, several versions targeting specific platforms have 

appeared: Java Platform Standard Edition (Java SE) for desktop computers, Java 

Platform Enterprise Edition (Java EE) for advanced servers, Java Platform Micro 

Edition (Java ME) for handsets and PDAs and Java Card (JC) for smart cards. 

Regarding Java SE, as the naming syntax has changed during the last years, its 

version history is included hereafter in order to avoid mistakes when referencing 

the proper version: 
 JDK 1.0 (1996)  J2SE 1.4 (2002) 

 JDK 1.1 (1997)  J2SE 5.0 (2004) 

 J2SE 1.2 (1998)  Java SE 6 (2006) 

 J2SE 1.3 (2000)  

 

In the Java architecture, the Security API (built around the java.security 

package) is one of the most important interfaces of the language. The first version 

of the Security API for the JDK (Java Development Kit) 1.1 introduced the Java 

Cryptography Architecture (JCA), which allows the management of digital 

signatures and message digests.  

In the following versions, Java SE extended the JCA functionality, including a 

provider architecture which allows multiple and interoperable cryptographic 

implementations. More specifically, Java Cryptography Extension (JCE) provides 

implementations for MAC algorithms and for encryption, key agreement and key 

generation methods. JCE was originally an optional package, but since J2SE 1.4 it 

is included in the core Java SE distribution. Algorithm independence is achieved 

by means of specific “engines” or cryptographic services that implement the 

security functionality.  



Before J2SE 5.0, the JCA/JCE environment did not include specific classes for 

ECC. Users willing to use those algorithms were forced to use software from third 

parties that was not compatible with software from other vendors. From J2SE 5.0 

release onwards, some classes and interfaces have been included in order to 

facilitate a standard ECC support. Those additions can be found at the java.security 

package. However, it is still necessary to use third party engines in order to access 

all the power that ECC can provide to Java applications. Therefore, the main 

problem now consists in selecting the proper third party module. 

3. PROBLEM  SOLUTION 

There are several libraries and cryptographic modules in the market that can be 

used for the development of cryptosystems. Due to native code performance, most 

of the implementations are developed in C/C++ or directly in assembly language. 

However, as far as the aim of this paper is to review the state of the art of current 

(i.e. not abandoned projects) ECC implementations using the Java language, we 

will focus in two libraries: Bouncy Castle and IAIK. 

3.1. Bouncy Castle 

Legion of the Bouncy Castle, a group of volunteers and cryptography 

enthusiasts, has developed several Java implementations. Its latest release (1.43) 

includes a lightweight cryptographic API for Java and C#, a provider for the JCE 

and JCA, a clean room implementation of the JCE 1.2.1, a library for reading and 

writing encoded ASN.1 objects, and different generators/processors for X.509 

certificates, S/MIME and CMS, OpenPGP, etc. The lightweight API is a vendor-

specific set of APIs that implement all the underlying cryptographic algorithms, 

and it is intended to be used in memory constrained devices or when easy access to 

the JCE libraries is not possible. 

Regarding ECC, Bouncy Castle  supports both  ECDSA and  ECDH, creation 

of ECDSA certificate requests, encoding of public and private keys in accordance 

with SEC 1 and  a draft implementation of ECIES. As a drawback, this version still 

does not include the ECIES-KEM variant. Two versions of key agreement 

protocols using ECC are supported, standard Diffie-Hellman key agreement and 

standard key agreement with co-factors. 

The BouncyCastle package org.bouncycastle.math.ec consists of the following 

four classes: 

1. The class ECConstants, which provides the numbers 0 to 4 as BigIntegers. 

2. The abstract class ECCurve, which represents an elliptic curve in the 

Weierstrass normal form. 

3. The abstract class ECFieldElements, which represents an element in the 

Galois field that is used. 

4. The abstract class ECPoint, which represents the points on the elliptic 

curve and implements the arithmetic of this curve. 

All the abstract classes are implemented by two subclasses derived from them, 

Fp and F2m, representing curves defined over GF(p) (p > 2) and over fields of 

characteristic 2, respectively. 

http://en.wikipedia.org/wiki/JCE


 

At the beginning of 2008 a study was made public [10] exposing a 

vulnerability in the implementation of the ECPoint class, which could be used in 

real attacks, for example against the ECIES scheme. It must be noted that this 

vulnerability was solved in Bouncy Castle v 1.33, being the open review process 

one of the benefits of open source. 

The reader can find an example of signature creation and verification using the 

Bouncy Castle ECC library at http://www.bouncycastle.org. 

Evaluating the level of support both in terms of encryption and signature 

operations and of supported programming platforms, and given its continuous 

evolution, Bouncy Castle is one of the best cryptographic packages developed as 

open source, not only for ECC but also for other algorithms as RSA, AES, etc. 

3.2. IAIK 

The Institute for Applied Information Processing and Communications of the 

Graz University has developed a set of cryptographic tools based on Java. Among 

those tools are IAIK-JCE (main module including RSA, DES, AES, Blowfish and 

other algorithms), IAIK-iSaSiLk (TLS 1.0 and SSL 3.0 implementations) and 

IAIK-ECC, to name only a few. 

Release 2.18 of the IAIK Elliptic Curve Cryptography (ECC) Library, 

available since December 2008, presents the following features: 

 It is compliant with ANSI X9.62 and IEEE 1363 standards. 

 It allows creating and verifying ECDSA signatures and supports the ECDH 

key agreement scheme. 

 ECDSA with SHA-2 support according to ANSI X9.62:2005 and BSI TR-

03111 v1.0. 

 Arithmetic over prime and binary finite fields. The prime field arithmetic is 

based on the BigInteger class. 

 The binary field arithmetic uses polynomial base representation and includes 

a very generic implementation of the field operations.  

 Elliptic curve arithmetic with affine and projective coordinates.  

 ECDSA integration into the JCE/JCA architecture.  

 ECDH/ECDSA integration into the JCE/JCA architecture with and without 

cofactor multiplication.  

 ASN.1 encoding of signatures, public and private keys for usage with X.509 

and PKCS#8. 

Examples of a simple ECDSA signature and the ECDH protocol using the 

IAIK-ECC library can be found at http://jce.iaik.tugraz.at.  

The IAIK-ECC library allows several customization options: 

 Pre-computation of points: It is possible to first pre-compute and store a 

number of points to improve further key pair and signature generations. Pre-

computation has no influence on signature verification and should be used if many 

key pairs or signature generations are performed on a given curve. By default no 

pre-computation is used. 

 Encoding: The standards offer two variants on how to encode domain 

parameters. It is possible either to specify the object identifier OID (if it exists) or 



encode the parameters explicitly. IAIK’s ECC library supports both methods, but 

the default setting encodes the parameters explicitly. 

 Point verification: If a certificate or any other ASN.1 encoded public key is 

parsed, the default implementation can optionally check if the decoded point is on 

the elliptic curve.  

Evaluation and beta versions of the IAIK software can be downloaded, which 

makes it another good option for the development of cryptographic Java 

applications. 

4. CONCLUSION 

The main conclusions derived from the previous report can be summarized as 

follows: 

 During the last years, Java has been one of the technologies with a 

fastest growth. Cryptographic capabilities were added first to the Java SE platform 

and then extended to other platforms such as Java Card. 

 In Java SE, it is possible to use ECC implementations adapted to the 

JCA/JCE framework from version 5.0. However, it is also possible to use 

lightweight APIs provided by different suppliers, which can be a good option if the 

developer must work with Java SE versions prior to the 5.0 release. 

 Among the independent implementations developed outside the Java 

standardization bodies, Bouncy Castle and IAIK outstand above the rest.  

 Both of them provide high quality implementations and can be used not 

only in ECC applications but also in other types of cryptographic deployments. 
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