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Abstract

We consider a two-component mixture model with one known component.

We develop methods for estimating the mixing proportion and the other un-

known distribution given i.i.d. data from the mixture model. We use ideas

from shape restricted function estimation and develop “tuning parameter

free” estimators that are easily implementable and have good finite sample

performance. We also establish the consistency of our procedures. Honest

finite sample lower confidence bounds are developed for the mixing propor-

tion. We also address issues like identifiability of the model and estimation

of the density of the unknown mixing distribution. Special emphasis is given

to the problem of multiple testing, and our approach is compared to the ex-

isting methods in this area through a simulation study. We also analyze two

data sets, one arising from an application in astronomy and the other from

a microarray experiment.

Keywords: Cramér-von Mises statistic, identifiability, local false discovery rate,

lower bound, microarray experiment, shape restricted function estimation.

1 Introduction

We consider a mixture model with two components, i.e.,

F (x) = αFs(x) + (1− α)Fb(x) (1.1)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357312209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where the cumulative distribution function (CDF) Fb is known, but the mixing

proportion α ∈ (0, 1) and the CDF Fs (6= Fb) are unknown. Given a random

sample from F , we wish to (nonparametrically) estimate Fs and the parameter α.

This model appears in many contexts. In multiple testing problems (microarray

analysis, neuro-imaging) the p-values, obtained from the numerous (independent)

hypotheses tests, are uniformly distributed on [0,1], under H0, while their distri-

bution associated with H1 is unknown; see e.g., [Efr10, RBHDP07]. Translated to

the setting of (1.1), Fb is the uniform distribution and the goal is to estimate the

proportion of false null hypotheses α and the distribution of the p-values under

the alternative. In addition, a reliable estimate of α is important when we want

to assess or control multiple error rates, such as the false discovery rate (FDR) of

[BH95]. We discuss this problem in more detail in Section 3.

In contamination problems the distribution Fb, for which reasonable assump-

tions can be made, maybe contaminated by an arbitrary distribution Fs yielding

a sample drawn from F as in (1.1); see e.g., [MP00]. For example, in astronomy,

such situations arise quite often: when observing some variable(s) of interest (e.g.,

metallicity, radial velocity) of stars in a distant galaxy, foreground stars from the

Milky Way, in the field of view, contaminate the sample; the galaxy (“signal”) stars

can be difficult to distinguish from the foreground stars as we can only observe the

stereographic projections and not the three dimensional positions of the stars (see

[WMO+09]). Known physical models for the foreground stars help us constrain

Fb, and the focus is on estimating the distribution of the variable for the signal

stars, i.e., Fs. This problem also arises in High Energy Physics where often the

signature of new physics is evidence of a significant-looking peak at some position

on top of a rather smooth background distribution; see e.g., [Lyo08].

In this paper we provide a methodology to estimate α and Fs (nonparamet-

rically), without assuming any constraint on the form of Fs. We also provide a

lower confidence bound for α that is distribution-free (i.e., it does not depend on

the particular choice of Fb and Fs). We also propose a nonparametric estimator of

fs, the density of Fs, when fs is assumed to be non-increasing. Our procedure is

completely automated (i.e., tuning parameter free) and easily implementable. We

also establish the consistency of the proposed estimators. To the best of our knowl-

edge this is the first attempt to nonparametrically estimate the CDF Fs under no

further assumptions.

Most of the previous work on this problem assume some constraint on the form

of the unknown distribution Fs, e.g., it is commonly assumed the distributions
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belong to certain parametric models, which lead to techniques based on maximum

likelihood (see e.g., [Coh67] and [Lin83]), minimum chi-square (see e.g., [Day69]),

method of moments (see e.g., [LB93]) and moment generating functions (see e.g.,

[QR78]). Bordes et al. [BMV06] assume that both the components belong to an

unknown symmetric location-shift family. In the multiple testing setup, this prob-

lem has been addressed by various authors and different estimators and confidence

bounds for α have been proposed in the literature under suitable assumptions on

Fs and its density, see e.g., [Sto02, GW04, MR06, MB05, CR10, LLF05]. For the

sake of brevity, we do not discuss the above references here but come back to this

application in Section 3.

The paper is organized as follows. In Section 2 we propose estimators of α

and Fs and fs and investigate their theoretical properties. Connection to the

multiple testing problem is developed in Section 3. In Section 4 we compare the

finite sample performance of our estimators with other estimators available in the

literature through simulation studies. Two real data examples, one arising in

astronomy and the other from a microarray experiment, are analyzed in Section

5. We conclude with a brief discussion of our procedure and some open questions

in Section 6.

2 Estimation

2.1 When α is known

Suppose that we observe an i.i.d. sample X1, X2, . . . , Xn from F as in (1.1). If α

were known, a naive estimator of Fs would be

F̂α
s,n =

Fn − (1− α)Fb
α

, (2.1)

where Fn is the empirical CDF of the observed sample, i.e., Fn(x) =
∑n

i=1 1{Xi ≤
x}. Although this estimator is consistent, it does not satisfy the basic requirements

of a DF: F̂α
s,n need not be non-decreasing or lie between 0 and 1. This naive esti-

mator can be improved by imposing the known shape constraint of monotonicity.

This can be accomplished by minimizing∫
{W (x)− F̂α

s,n(x)}2 dFn(x) ≡ 1

n

n∑
i=1

{W (Xi)− F̂α
s,n(Xi)}2 (2.2)
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over all DFs W . Let F̌α
s,n be a DF that minimizes (2.2). The above optimization

problem is the same as minimizing ‖θ −V‖2 over θ = (θ1, . . . , θn) ∈ Θinc where

Θinc = {θ ∈ Rn : 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θn ≤ 1}, (2.3)

V = (V1, V2, . . . , Vn), Vi := F̂α
s,n(X(i)), i = 1, 2, . . . , n, X(i) being the i-th order

statistic of the sample, and ‖ · ‖ denoting the usual Euclidean norm in Rn. The

estimator θ̂ is uniquely defined by the projection theorem (see e.g., Proposition

2.2.1 in page 88 of [Ber03]); it is the L2 projection of V on a closed convex cone

in Rn. θ̂ is related to the F̌α
s,n via F̌α

s,n(X(i)) = θ̂i, and can be easily computed

using the pool-adjacent-violators algorithm (PAVA); see Section 1.2 of [RWD88].

Thus, F̌α
s,n is uniquely defined at the data points Xi, for all i = 1, . . . , n, and can

be defined on the entire real line by extending it in a piece-wise constant fashion

that is right continuous with possible jumps only at the data points. The following

result, derived easily from Chapter 1 of [RWD88], characterizes F̌α
s,n.

Lemma 2.1. Let F̃α
s,n be the isotonic regression (see e.g, page 4 of Chapter 1 of

[RWD88]) of the set of points {F̂α
s,n(X(i))}ni=1. Then F̃α

s,n is characterized as the

right-hand slope of the greatest convex minorant of the set of points {i/n,
∑i

j=0 F̂
α
s,n(X(j))}ni=0.

The restriction of F̃α
s,n to [0, 1], i.e.,

F̌α
s,n = min{max{F̃α

s,n, 0}, 1}, (2.4)

minimizes (2.2) over all DFs.

Isotonic regression and the PAVA algorithm are very well studied objects in the

statistical literature, with many text-book length treatments; see e.g., [RWD88,

BBBB72]. If skillfully implemented, PAVA has a computational complexity of

O(n) (see [GW84]).

2.2 Identifiability of Fs

When α is unknown, the problem is considerably harder; in fact, it is non-identifiable.

If (1.1) holds for some Fb and α then the mixture distribution can be re-written as

F = (α + γ)

(
α

α + γ
Fs +

γ

α + γ
Fb

)
+ (1− α− γ)Fb,

for 0 ≤ γ ≤ 1 − α, and the term ( α
α+γ

Fs + γ
α+γ

Fb) can be thought of as the

nonparametric component. A trivial solution occurs when we take α + γ = 1, in
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which case (2.2) is minimized when W = Fn. Hence, α is not uniquely defined. To

handle the identifiability issue, we redefine the mixing proportion as

α0 := inf

{
γ ∈ (0, 1) :

F − (1− γ)Fb
γ

is a valid DF

}
. (2.5)

Intuitively, this definition makes sure that the “signal” distribution Fs does not

include any contribution from the known background Fb. In this paper we consider

the estimation of α0 as defined in (2.5).

Suppose that we start with a fixed Fs, Fb and α. As seen from the above

discussion we can only hope to estimate α0, which, from its definition in (2.5), is

smaller than α, i.e., α0 ≤ α. A natural question that arises now is: under what

condition(s) can we guarantee that the problem is identifiable, i.e., α0 = α? The

following results provides an answer and is proved in the Appendix.

Lemma 2.2. Suppose that Fs and Fb are absolutely continuous, i.e., they have

densities fs and fb, respectively. Then α0 < α if and only if there exists c > 0 such

that fs(x) ≥ cfb(x), for all x ∈ R.

The above lemma shows that if there does not exist any c > 0 for which fs(x) ≥
cfb(x), for all x ∈ R, then α0 = α and we can estimate the mixing proportion

correctly. Note that, in particular, if the support of Fs is strictly contained in that

of Fb, then the problem is identifiable and we can estimate α. As in [GW04], we

define any distribution G to be pure if essinft∈R g(t) = 0, where g(t) is the density

corresponding to G and essinft∈R g = inf{a ∈ R : µ({x : g(x) > a}) = 0}, µ being

the Lebesgue measure. They proved that purity of Fs is a sufficient condition for

identifiability of the model when Fb is the uniform distribution. This is indeed an

easy consequence of the above lemma. A few remarks are in order.

Remark 2.3. If Fs is N(µs, σ
2
s) and Fb (6= Fs) is N(µb, σ

2
b ) then it can be easily

shown that the problem is identifiable if and only if σs ≤ σb. Now consider a

mixture of exponentials, i.e., Fs is E(as, σs) and Fb (6= Fs) is E(ab, σb), where

E(a, σ) is the distribution that has the density 1/σ exp(−(x − a)/σ)1(a,∞)(x). In

this case, the problem is identifiable if as > ab, as this implies the support of Fs is

a proper subset of the support of Fb. But when as ≤ ab, the problem is identifiable

if and only if σs ≤ σb.

Remark 2.4. It is also worth pointing out that even in cases where the problem

is not identifiable the difference between the true mixing proportion α and the
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estimand α0 may be very small. Consider the hypothesis test H0 : θ = 0 versus

H1 : θ 6= 0 for the model N(θ, 1) with test statistic X̄. The density of the p-values

under θ is

fθ(p) =
1

2
e−mθ

2/2[e−
√
mθ2Φ−1(1−p/2) + e

√
mθ2Φ−1(1−p/2)],

where m is the sample size for each individual test. Here fθ(1) = e−mθ
2/2 > 0,

so the model is not identifiable. As Fb is uniform, it can be easily verified that

α0 = α − α infp fθ(p). However, since the value of fθ is exponentially small in m,

α0 − α is very small. In many practical situations, where m is not too small, the

difference between α and α0 is negligible. It should be noted that the problem may

actually be identifiable if we have some restrictions on Fs, e.g., if we require Fs to

be normal.

2.3 Estimation of the mixing proportion α0

Note that when γ = 1, F̂ γ
s,n = Fn = F̌ γ

s,n where F̂ γ
s,n and F̌ γ

s,n are defined in (2.1)

and using (2.2), respectively. Whereas, when γ is much smaller than α0 the regu-

larization of F̂ γ
s,n modifies it, and thus F̂ γ

s,n and F̌ γ
s,n are quite different. We would

like to compare the naive and isotonized estimators F̂ γ
s,n and F̌ γ

s,n, respectively,

and choose the smallest γ for which their distance is still small. This leads to the

following estimator of α0:

α̂n = inf

{
γ ∈ (0, 1) : γ dn(F̂ γ

s,n, F̌
γ
s,n) ≤ cn√

n

}
, (2.6)

where cn is a sequence of constants and dn stands for the L2(Fn) distance, i.e., if

g, h : R→ R are two functions, then

dn(g, h) =

√∫
{g(x)− h(x)}2 dFn(x).

It is easy to see that dn(Fn, γF̌ γ
s,n + (1− γ)Fb) = γ dn(F̂ γ

s,n, F̌
γ
s,n).

The choice of cn is important, and in the following we address this issue in

detail. We derive conditions on cn that lead to consistent estimators of α0. We

will also show that particular choices of cn will lead to lower bounds for α0.

2.4 Consistency of α̂n

In this section we prove the consistency of α̂n through a series of elementary results

that are proved in the Appendix.
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Lemma 2.5. For 1 ≥ γ ≥ α0,

γ dn(F̌ γ
s,n, F̂

γ
s,n) ≤ dn(F,Fn).

Lemma 2.6. The set

An :=

{
γ ∈ [0, 1] : γ dn(F̂ γ

s,n, F̌
γ
s,n) ≤ cn√

n

}
is convex. Thus, An = [α̂n, 1].

Lemma 2.7.

dn(F̂ γ
s,n, F̌

γ
s,n)

a.s.→

{
0, γ − α0 ≥ 0,

> 0, γ − α0 < 0.
(2.7)

Theorem 2.1. If cn/
√
n→ 0 and cn →∞, then α̂n

P→ α0.

The above result shows that for a broad range of choices of cn, our estimation

procedure is consistent.

2.5 Lower bound for α0

Our goal in this sub-section is to construct a finite sample lower bound α̂L with

the property

P (α0 ≥ α̂L) ≥ 1− β (2.8)

for a specified confidence level (1 − β) (0 < β < 1), that is valid for any n. Such

a lower bound would allow one to assert, with a specified level of confidence, that

the proportion of “signal” is at least α̂L. It can also be used to test the hypothesis

that there is no “signal” at level β by rejecting when α̂L > 0.

Theorem 2.2. Let Hn be the CDF of
√
ndn(Fn, F ). Let α̂L be defined as in (2.6)

with cn defined as the (1− β)-quantile of Hn. Then (2.8) holds.

Note that Hn is distribution-free (i.e., it does not depend on Fs and Fb) and

can be readily approximated by Monte Carlo simulations using a sample of uni-

forms. For moderately large n (e.g., n ≥ 500) the distribution Hn can be very well

approximated by that of the Cramér-von Mises statistic, defined as

√
nd(Fn, F ) :=

√∫
n{Fn(x)− F (x)}2dF (x).

Letting Gn be the CDF of
√
nd(Fn, F ), we have the following result.
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Theorem 2.3.

sup
x∈R
|Hn(x)−Gn(x)| → 0 as n→∞. (2.9)

Hence, for moderately large n, we can take cn to be (1 − β)-quantile of Gn or

its asymptotic limit, which are readily available (e.g., see [AD52]). Note that the

asymptotic 95% quantile of Gn is 0.6792, and is used in our data analysis.

2.6 A tuning parameter free estimator of α0

Point estimators of α0 can be developed by choosing particular values for cn, e.g.,

in applications we may choose cn to be the median of the asymptotic limit of Hn.

In this sub-section we propose another method to estimate α0 that is completely

automated and has better finite sample performance (see Section 4). We start with

a lemma that describes the shape of our criterion function, and will motivate our

procedure.

Lemma 2.8. γ dn(F̂ γ
s,n, F̌

γ
s,n) is a non-increasing convex function of γ in (0, 1).

Writing

F̂ γ
s,n =

Fn − F
γ

+

{
α0

γ
Fs +

(
1− α0

γ

)
Fb

}
,

we see that for γ ≥ α0, the second term in the RHS is a DF. Thus, for γ ≥ α0, F̂ γ
s,n is

very close to a DF, and hence F̌ γ
s,n should also be close to F̂ γ

s,n. Whereas, for γ < α0,

F̂ γ
s,n is not close to a DF, and thus the distance γ dn(F̂ γ

s,n, F̌
γ
s,n) is appreciably large.

Figure 1 shows two typical such plots of the function γ dn(F̂ γ
s,n, F̌

γ
s,n) where the left

panel corresponds to a mixture of N(2, 1) with N(0, 1) (setting I) and in the right

panel we have a mixture of Beta(1, 10) and U(0, 1) (setting II). Note that in both

the settings we have used α0 = 0.1 and n = 5000. We will use these two settings

to illustrate our methodology in the rest of this section and also in Section 4.1.

Thus at α0, we have a “regime” change: γ dn(F̂ γ
s,n, F̌

γ
s,n) should have a slowly

non-increasing segment to the right of α0 and a steeply non-increasing segment

to the left of α0. Using the above heuristics, we can see that the “elbow” of the

function should provide a good estimate of α0; it is the point that has the maximum

curvature, i.e., the point where the slope of the function changes rapidly.

In the above plots we have used numerical methods to approximate the second

derivative of γ dn(F̂ γ
s,n, F̌

γ
s,n) (using the method of double differencing). We advo-

cate plotting the function γ dn(F̂ γ
s,n, F̌

γ
s,n) as γ varies between 0 and 1. In most

cases, a plot similar to Figure 1a would immediately convey to the practitioner
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Figure 1: Plot of γ dn(F̂ γ
s,n, F̌

γ
s,n) (in solid blue) overlaid with its (scaled) second

derivative (in dashed red) for n = 5000 (in solid blue) for setting I (left panel) and

setting II (right panel).

the most appropriate choice of α̂n. In some cases though, there can be multiple

peaks in the second derivative, in which case some discretion on the part of the

practitioner might be required. It must be noted that the idea of finding the point

where the second derivative is large to detech an “elbow” or “knee” of a function

is not uncommon; see e.g., [SC04]. In our simulation studies we have used this

method to estimate α0.

2.7 Estimation of Fs

Once we have obtained a consistent estimator α̌n (which may or may not be α̂n as

discussed in the previous sections) of α0, a natural nonparametric estimator of Fs

is F̌ α̌n
s,n , defined as the minimizer of (2.2). In the following we show that, indeed,

F̌ α̌n
s,n is consistent (in the sup-norm) for estimating Fs.

Theorem 2.4. Suppose that α̌n
P→ α0. Then, as n→∞,

sup
x∈R
|F̌ α̌n
s,n(x)− Fs(x)| P→ 0.

An immediate consequence of Theorem 2.4 is that dn(F̌ α̌n
n,s , F̂

α̌n
n,s)

P→ 0 as n→∞.

Figure 2 shows our estimator F̌ α̌n
s,n along with the true Fs for the same data sets

used in Figure 1.
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Figure 2: Plot of the estimates F̌ α̌n
s,n(x) (in dotted red), F †s,n(x) (in solid blue) and

Fs (in dashed black) for setting I (left panel) and setting II (right panel).

2.8 Estimating the density of Fs

Suppose now that Fs has a density fs. Obtaining nonparametric estimators of fs

can be difficult, and especially so in our setup, as it requires smoothing and usually

involves the choice of tuning parameter(s) (e.g., smoothing bandwidths).

In this section we describe a tuning parameter free approach to estimating

fs, under the additional assumption that fs is a non-increasing density. Without

loss of generality, we assume that fs is non-increasing on [0,∞). The assumption

that fs is non-increasing, i.e., Fs is concave on its support, is natural in many

situations (see Section 3 for an application in the multiple testing problem) and

has been investigated by several authors, including [Gre56, WS93, LLF05, GW04].

For a bounded function g : [0,∞) → R, let us represent the least concave

majorant (LCM) of g by LCM [g]. Define F †s,n := LCM [F̌ α̌n
s,n ]. Note that F †s,n is

a valid DF. We can now estimate fs by f †s,n, where f †s,n is the piece-wise constant

function obtained by taking the left derivative of F †s,n. In the following we show

that both F †s,n and f †s,n are consistent estimators of their population versions.

Theorem 2.5. Assume that Fs(0) = 0 and that Fs is a concave on [0,∞). If

α̌n
P→ α0, then, as n→∞,

sup
x∈R
|F †s,n(x)− Fs(x)| P→ 0. (2.10)

Further, if for any x > 0, fs(x) is continuous at x, then, as n→∞,

f †s,n(x)
P→ fs(x).
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Figure 3: Plot of the estimate f †s,n(x) (in solid red) and fs (in solid blue) for setting

I (left panel) and setting II (right panel).

Computing F †s,n and f †s,n are straightforward, an application of the PAVA gives

both the estimators; see e.g., [RWD88, GW84]. Figure 2 shows the LCM F †s,n
whereas Figure 3 shows its derivative f †s,n along with the true density fs for the

same data sets as in Figure 1.

Another alternative procedure for estimating Fs and fs, that will again crucially

use estimation under shape constraints, as in (2.1), is provided below, and involves

solving an optimization problem. For a fixed α, consider minimizing (2.2) where W

is now restricted to the class of all DFs with F (0) = 0 that are concave on [0,∞).

The new estimator F̄α
s,n can be taken as the piece-wise linear concave function such

that F̄α
s,n(X(i)) = θ̂i where

θ̂ = (θ̂1, . . . , θ̂n) = arg min
θ∈Θ⊂Rn

‖θ −V‖2 (2.11)

where V = (V1, V2, . . . , Vn), Vi := F̂α
s,n(X(i)), i = 1, 2, . . . , n, Θ = Θinc ∩Θcon, with

Θinc as in (2.3) and

Θcon =

{
θ ∈ Rn :

θ1

X(1)

≥ θ2 − θ1

X(2) −X(1)

≥ θ3 − θ2

X(3) −X(2)

≥ . . . ≥ θn − θn−1

X(n) −X(n−1)

}
.

The estimator θ̂ is uniquely defined as it is the L2 projection of V on a closed

convex cone in Rn and can be easily computed using any standard optimization

toolbox (e.g., the cvx package in MATLAB; see http://cvxr.com/cvx/). Note that

Θcon guarantees that the fitted θ̂ will be the evaluation of a concave function on

[0,∞).
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3 Multiple testing problem

The problem of estimating the proportion, α0, of true null hypotheses is of in-

terest in situations where a large number of hypotheses tests are performed. Re-

cently, various such situations have arisen in applications. One major motivation

is in estimating the proportion of genes that are not differentially expressed in

deoxyribonucleic acid (DNA) microarray experiments. However, estimating the

proportion of true null hypotheses is also of interest, for example, in functional

magnetic resonance imaging (e.g., [TSS01]) and source detection in astrophysics

(e.g., [MGN+01]).

Suppose that we wish to test n null hypothesis H01, H02, . . . , H0n on the basis

of a data set X. Let Hi denote the (unobservable) binary variable that is 0 if H0i is

true, and 1 otherwise, i = 1, . . . , n. We want a decision rule D that will produce a

decision of “null” or “non-null” for each of the n cases. Here X can be a 6033 × 102

matrix of expression values in the prostate data example (see Section 5 for more

details; also see Section 2.1 of [Efr10]) giving rise to n p-values X1, X2, . . . , Xn and

D might be the rule that rejects H0i if Xi < 0.001 and accepts H0i otherwise.

Our estimator of the mixing proportion α0 can also be used to form the decision

rule D. The traditional measure of error in this context is the familywise error

rate (FWER). This is defined as FWER = Prob (# of false rejections ≥ 1), the

probability of committing at least one type I error. But to control FWER i.e., to

guard against any single false positive occurring is often too strict and will lead

to many missed findings. In their seminal work [BH95], Benjamini and Hochberg

argued that a better quantity to control is the false discovery rate (FDR), defined

as the expectation of the proportion of false rejections; more precisely,

FDR = E

{
V

R
1(R > 0)

}
,

where V is the number of false rejections and R is the number of total rejec-

tions. They also described a method to control FDR, at level β, using the follow-

ing strategy: reject the null hypotheses corresponding to the (ordered) p-values

p(1), p(2), ...., p(k̂), where k̂ = max{k : p(k) ≤ βk/m}. In fact, under identifiabil-

ity, it can be shown that the above procedure guarantees FDR ≤ βα0. When

α0 is significantly smaller than 1 an estimate of α0 can be used to yield a pro-

cedure with FDR approximately equal to β and thus will result in an increased

power. This is essentially the idea of the adapted control of FDR (see [BH00]). See

[Sto02, Bla04, LLF05] for a discussion on the importance of efficient estimation of
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α0 and some proposed estimators.

Our method can be directly used to yield a consistent estimator of α0, that does

not require the specification of any tuning parameters, as discussed in Section 2.6.

Note that to formulate the problem of multiple testing in our setting we would

usually take Fb to the uniform distribution and Fs to be the unknown distribution

of interest. Our procedure also gives a completely nonparametric estimator of Fs,

the distribution of the p-values arising from the alternative hypotheses.

Suppose now that Fb has a density fb and Fs has a density fs. To keep the

following discussion more general, we allow fb to be any known density, although

in most applications in the multiple testing setup we will take fb to be the uniform

distribution on (0, 1). For identifiability in this setup, if Fb is taken to be the

uniform distribution on [0, 1], we only need to assume that infx∈[0,1] fs(x) = 0; see

Lemma 2.2. This is indeed the standard assumption made in the literature; see

e.g., [NM11].

The local false discovery rate (LFDR) is defined as the function l : (0, 1) →
[0,∞), where

l(x) = P{Hi = 0|Xi = x} =
(1− α0)fb(x)

f(x)
(3.1)

where f(x) = α0fs(x) + (1 − α0)fb(x) is the density of the observed p-values.

The estimation of the LFDR l is important because it gives the probability that a

particular null hypothesis is true given the observed p-value for the test. The LFDR

method can help us get easily interpretable thresholding methods for reporting the

“interesting” cases (e.g., l(x) ≤ 0.20); see Section 5 of [Efr10]. Obtaining good

estimates of l can be tricky as it involves the estimation of an unknown density,

usually requiring smoothing methods; see Section 5 of [Efr10] for a discussion on

estimation and interpretation of l.

We now describe a tuning parameter free approach to estimating the function l,

under the additional assumption that fs is a non-increasing density on [0,∞). The

assumption that the fs is non-increasing, i.e., Fs is concave, is quite intuitive and

natural and has been investigated by several authors, including [GW04, LLF05].

When the alternative hypothesis is true the p-values are generally small and from

the discussion in Section 2.8 we have a natural tuning parameter free estimator l̂

of the local false discovery rate:

l̂(x) =
(1− α̂n)fb(x)

α̂nf
†
s,n(x) + (1− α̂n)fb(x)

, (3.2)

for x ∈ (0, 1).
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4 Simulation

To investigate the finite sample performance of the estimators discussed in this pa-

per we carry out a few simulation experiments. We also compare the performance

with other existing methods.

4.1 Lower bound for α0

Table 1: Coverage probabilities of nominal 95% lower confidence bounds for the

three methods when n = 1000.

α
Setting I Setting II

α̂0
L α̂GWL α̂MR

L α̂0
L α̂GWL α̂MR

L

0.01 0.973 0.976 0.965 0.975 0.977 0.974

0.03 0.979 0.979 0.976 0.973 0.976 0.972

0.05 0.980 0.980 0.979 0.979 0.977 0.977

0.1 0.991 0.986 0.987 0.987 0.981 0.982

Though there have been some work on the estimating α0 in the multiple testing

setting, [MR06, GW04] are the only papers we found that discuss methodology

to construct a lower confidence bound for α0. These procedures are intellectually

connected and the methods in [MR06] are extensions of those proposed by [GW04].

The lower bound α̂L proposed in both the papers satisfies (2.8) and has the form

α̂L = sup
t∈(0,1)

Fn(t)− t− ηn,βδ(t)
1− t

,

where ηn,β is a bounding sequence for the bounding function δ(t) at level β (see

[MR06]). A constant bounding function, δ(t) = 1, is used in [GW04] with ηn,β =√
1

2n
log 2

β
, whereas [MR06] suggest a class of bounding functions but observe that

standard deviation-proportional bounding function δ(t) =
√
t(1− t) has optimal

properties among a large calls of possible bounding functions. We have used this

bounding function and a bounding sequence suggested by the authors. Note that to

use these methods we have to choose the tuning parameters δ(t) and ηn,β whereas

the procedure suggested in Section 2.5 is completely automated. We denote the

lower bound proposed by [MR06] as α̂MR
L , the bound by [GW04] as α̂GWL and the

lower bound in Section 2.5 by α̂0
L.
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We take α ∈ {0.01, 0.03, 0.05, 0.10} and compare the performance of the three

lower bounds in two different simulation settings mentioned in Section 2.6. For

each setting we have used a sample size (n) of 1000 and 5000. We present the

estimated coverage probabilities, obtained by averaging over 5000 simulations, of

the lower bounds for the different settings. The results are summarized in Tables

1 and 2.

Table 2: Coverage probabilities of nominal 95% lower confidence bounds for the

three methods when n = 5000.

α
Setting I Setting II

α̂0
L α̂GWL α̂MR

L α̂0
L α̂GWL α̂MR

L

0.01 0.977 0.978 0.973 0.977 0.976 0.970

0.03 0.988 0.985 0.981 0.980 0.979 0.979

0.05 0.987 0.983 0.983 0.984 0.982 0.980

0.1 0.994 0.990 0.988 0.990 0.983 0.986

4.2 Performance of the estimate of α0

There has been quite a bit of work on the estimation of α0, as discussed in the

Introduction. Some of them use shape constraint on Fs (see e.g., [LLF05]), while

others do not assume any constraint (see e.g.,[MR06]). In this sub-section we

compare the performance of our estimator, proposed in Section 2.6, with four other

estimators available in the literature. Storey [Sto02] proposed an estimate of α0

which we denote by α̂st0 . Due to space constraints we do not discuss the estimation

procedure of [Sto02], but we would like to mention that he uses bootstrapping to

choose the tuning parameter involved. [LLF05] proposed an estimator which is

tuning parameter free but crucially uses the known shape restriction on fs (convex

and non-increasing); we denote it by α̂L0 . We also use the estimator proposed

in [MR06] for two bounding functions (δ(t) =
√
t(1− t) and δ(t) = 1). For its

implementation we have to choose a sequence {βn} going to zero as n → ∞. In

their paper [MR06] were not specific about the choice of {βn} but required the

sequence to satisfy some conditions. We choose βn = β/
√
n, where β = 0.05. We

denote the estimator proposed by [MR06] by α̂MR
0 when δ(t) =

√
t(1− t) and by

α̂GW0 when δ(t) = 1. We denote our estimator by α̂0
0.

15



0 0.01 0.02 0.03 0.04
0

50

100

150

Plot of densities with α=0.01

α
0

D
e
n

s
it
y

 

 

0 0.02 0.04 0.06 0.08
0

20

40

60

80

Plot of densities with α=0.03

α
0

D
e
n

s
it
y

 

 

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

Plot of densities with α=0.05

α
0

D
e
n
s
it
y

 

 

0.05 0.1 0.15
0

10

20

30

40

50

60

70

Plot of densities with α=0.1

α
0

D
e
n
s
it
y

 

 

Figure 4: Density plots of the estimators of α0 (α ∈ {.01, .03, .05, .10}): α̂0
0 (in

solid red), α̂GW0 (in dash-dotted purple), α̂MR
0 (in dashed black), α̂st0 (in dashed

green) and α̂L0 (in solid blue). The vertical line (in doted black) denotes the true

mixing proportion.

We have used the simulation setting used in [LLF05]. A total of n = 5000

features were simulated for each J = 10 samples. Let these random variables be

denoted by Xij , i = 1, ..., n, j = 1, ..., J , and the corresponding realizations xij.

Let Xj = (X1j, X2j, ..., Xnj), and assume that each Xj ∼ N(µn×1, In×n), and that

X1, X2, ..., XJ are independent. We test H0i : µi = 0 vs H0i : µi 6= 0 for each

i, and calculate a two-sided p-value pi based on a one-sample t-test using pi =

2P (TJ−1 ≥ |x̄i/
√
si/J |). Here x̄i =

∑J
j=1 xij/J and si =

∑J
j=1(xij − x̄i)2/(J − 1)

are the sample mean and variance, respectively, and TJ−1 is a random variable

having the t-distribution with J − 1 degrees of freedom.

As before, four different choices of α are considered, namely 0.01, 0.03, 0.05, 0.10.

The µi’s were set to zero for the true null hypotheses, whereas for the false null

hypotheses they were drawn from symmetric bi-triangular density with parame-

ters a = log2(1.2) = 0.263 and b = log2(4) = 2 (see page 568 of [LLF05]). We

drew N = 5000 sets of independent 5000-dimensional vectors from the multivariate
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Gaussian distribution N(µn×1, In×n), and calculated the corresponding 5000 sets

of vectors of p-values.

The mixing proportion α0 is estimated, using the five different estimates de-

scribed above, for each set of p-values, and the empirical kernel density of the

estimates are shown in Figure 4, for the different choice of α0. In Table 3 we give

the average of the 5000 estimates of the mixing proportion for the five methods

along with their root mean squared errors (RMSE). It is clearly evident that our

procedure has the least RMSE and has the least bias.

Table 3: Average and RMSE of the five estimators discussed in Section 4.2.

α
Average of the estimators RMSE of the estimators

α̂0
0 α̂GW0 α̂MR

0 α̂st0 α̂L0 α̂0
0 α̂GW0 α̂MR

0 α̂st0 α̂L0
0.01 0.013 0.000 0.001 0.033 0.015 0.008 0.010 0.009 0.036 0.010

0.03 0.028 0.002 0.012 0.061 0.037 0.010 0.028 0.018 0.050 0.014

0.05 0.046 0.017 0.026 0.079 0.055 0.010 0.033 0.024 0.045 0.012

0.10 0.093 0.062 0.066 0.121 0.101 0.014 0.039 0.034 0.038 0.013

5 Real data analysis

5.1 Prostate data

Genetic expression levels for n = 6033 genes were obtained for m = 102 men,

m1 = 50 normal control subjects and m2 = 52 prostate cancer patients. Without

going into biological details, the principal goal of the study was to discover a small

number of “interesting” genes, that is, genes whose expression levels differ between

the cancer and control patients. Such genes, once identified, might be further

investigated for a causal link to prostate cancer development. The prostate data is

a 6033× 102 matrix X having entries xij = expression level for gene i on patient j,

i = 1, 2, .., n, and j = 1, 2, ..,m; with j = 1, 2, .., 50, for the normal controls and

j = 51, 52, ..., 102, for the cancer patients. Let x̄i(1) and x̄i(2) be the averages of

xij for the normal controls and for the cancer patients for gene i. The two-sample

t-statistic for testing significance of gene i is

ti =
x̄i(1)− x̄i(2)

si
,

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

p values

F
re

q
u

e
n

c
y

(a) Histogram of the p-values.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

α

(b) Plot of γdn(F̂ γs,n, F̌
γ
s,n) (in solid blue).

Figure 5: The horizontal line (in solid black) in the left panel indicates the U(0, 1)

distribution. The vertical line (in dotted black) in the right panel indicates the

point of maximum curvature (α̂0
L).

where si is an estimate of the standard error of x̄i(1)− x̄i(2), i.e.,

s2
i =

∑50
1 {xij − x̄i(1)}2 +

∑102
51 {xij − x̄i(2)}2

100

(
1

50
+

1

52

)
.
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Figure 6: The left panel shows the estimates F̌ α̌n
s,n(x) (in dotted red) and F †s,n(x)

(in solid blue). The right panel shows the density f †s,n.

If we had only data from gene i to consider, we could use ti in the usual way to

test the null hypothesis H0i: gene i has no effect, i.e., xij has the same distribution

for the normal and cancer patients; rejecting H0i if ti looked too big in absolute

value. The usual 5% rejection criterion, based on normal theory assumptions,
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would reject H0i if |ti| exceeded 1.98, the two-tailed 5% point for a Student-t

random variable with 100 degrees of freedom.

We will work with the p-values instead of the “t-values” as then the distribution

under the alternative will have a non-increasing density which we can estimate

using results from Section 2.8. We have plotted the histogram of the p-values in

Figure 5a. Figure 5b shows the plot of γdn(F̂ γ
s,n, F̌

γ
s,n), as γ varies from 0 to 1,

along with our estimator α̂0
0, which turns out be 0.0877. The lower bound α̂0

L for

this data is found to be 0.0512. The other estimates perform similarly except the

one proposed by [LLF05], which does not detect any “signal”. In Figure 6 we plot

the estimate of the distribution of the p-values under the alternative F̌ α̌n
s,n(x), and

its LCM F †s,n(x), along with the estimate of the density fs, found using theory

developed in Section 2.8.

5.2 An Astronomy Example

In this sub-section we analyze the radial velocity (RV) distribution of stars in

Carina, a dwarf spheroidal (dSph) galaxy. The dSph galaxies are low luminosity

galaxies that are companions of the Milky Way. The data have been obtained by

Magellan and MMT telescopes (see [WOG+07]) and consist of radial (line of sight)

velocity measurements for n = 1215 stars from Carina, contaminated with Milky

Way stars in the field of view. We would like to understand the distribution of the

line of sight velocity. For the contaminating stars from the Milky Way, we assume

a non-Gaussian velocity distribution Fb that we estimate from the Besancon Milky

Way model ([RRDP03]), calculated along the line of sight to Carina.

Our estimator for α0 for this data set turns out to be 0.356, while the lower

bound for α0 is found to be 0.322. Figure 7b shows the plot of γdn(F̂ γ
s,n, F̌

γ
s,n) along

with the estimated α0. The left panel of Figure 7b shows the estimate of Fs and

the closest (in terms of minimizing the L2(F̌ α̂n
s,n) distance) Gaussian distribution.

Astronomers usually assume that the distribution of the radial velocities for these

dSph galaxies is Gaussian in nature. Indeed we see that the estimated Fs is close

to a normal distribution (with mean 222.9 and variance 7.51), although a formal

test of this hypothesis is beyond the scope of the present paper. The right panel

of 8 shows the density of the original data and the known fb, obtained from the

Besancon Milky Way model.
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Figure 7: The left panel shows the plot of the estimate LFDR for p-values less

than 0.05 for the prostate data. The right panel plot of γ dn(F̂ γ
s,n, F̌

γ
s,n) (in solid

blue) overlaid with its (scaled) second derivative (in dashed red).
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Figure 8: In the left panel we have the histogram of the foreground radial velocity

of stars overlaid with the (scaled) kernel density estimator of the Carina dataset.

The right panel shows the nonparametric estimator F̌ α̂n
s,n (in dashed red) overlaid

with the closest Gaussian distribution (in solid blue).

6 Conclusion

In this paper we have developed procedure for estimating the mixing proportion

and the unknown distribution in a two component mixture model using ideas
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from shape restricted statistical inference. Our procedures have good finite sample

performance and is completely tuning parameter free.

It should be noted that although the methods developed in [GW04, MR06,

LLF05] for estimating α0 and fs under the multiple testing setting, can, in fact,

be generalized to handle situations where Fb is not the uniform distribution by

transforming the observed Xi’s to Yi := F−1
b (Xi); the “background” distribution

of Yi becomes uniform on (0, 1). However, apart from the fact that the methods

developed in this paper use different techniques and have better finite sample

performance, the main advantage of our procedures is that we do not have to

choose any tuning parameters in the implementation.

We have established the consistency properties of the estimators developed in

the paper. However nothing is presently known about the rates of convergence of

α̂n and the estimators of Fs. Construction of confidence intervals for α0 can be

carried out if we can find the limiting distribution of α̂n. It must be mentioned

here that investigating such asymptotic properties of these estimators is expected

to be a hard exercise.

As we have observed in the astronomy application, goodness-of-fit tests for Fs

are important as it can help the practitioner to use appropriate parametric models

for further modelling and study.

A Appendix 1

A.1 Proof of Lemma 2.2

Proof. Suppose that α0 < α. Then there exists α∗ ∈ (α0, α) such that [F − (1 −
α∗)Fb]/α

∗ is a valid DF. Using the fact that F = αFs + (1 − α)Fb and letting

η := α/α∗ > 1, we see that Fη := ηFs − (η − 1)Fb must be a valid DF. For Fη to

be non-decreasing, we must have ηfs(x) − (η − 1)fb(x) ≥ 0 for all x ∈ R. This

implies that we must have fs(x) ≥ (1 − 1/η)fb(x) for all x ∈ R, which completes

the argument. Retracing the steps backwards we can see that if for some c > 0

(which necessarily has to be less than 1) fs(x) ≥ cfb(x), for all x ∈ R, then there

exists α∗ := α(1− c) for which [F − (1− α∗)Fb]/α∗ is a valid DF. Now, from the

definition of α0, it follows that α0 < α∗ < α.
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A.2 Proof of Lemma 2.5

Proof. Letting

F γ
s =

F − (1− γ)Fb
γ

, (A.1)

observe that

γ dn(F̂ γ
s,n, F

γ
s ) = dn(F,Fn).

Also note that F γ
s is a valid DF for γ ≥ α0. As F̌ γ

s,n is defined as the function that

minimizes the L2(Fn) distance of F̂ γ
s,n over all DFs,

γ dn(F̌ γ
s,n, F̂

γ
s,n) ≤ γ dn(F̂ γ

s,n, F
γ
s ) = dn(F,Fn).

A.3 Proof of Lemma 2.6

Proof. Assume that γ1 ≤ γ2 and γ1, γ2 ∈ An. If

γ3 = ηγ1 + (1− η)γ2

for 0 ≤ η ≤ 1, it is easy to observe from (2.1) that

η(γ1F̂
γ1
s,n) + (1− η)(γ2F̂

γ2
s,n) = γ3F̂

γ3
s,n. (A.2)

Note that [η(γ1F̌
γ1
s,n)+(1−η)(γ2F̌

γ2
s,n)]/γ3 is a valid DF, and thus from the definition

of F̌ γ3
s,n, we have

dn(F̂ γ3
s,n, F̌

γ3
s,n) ≤ dn

(
F̂ γ3
s,n,

η(γ1F̌
γ1
s,n) + (1− η)(γ2F̌

γ2
s,n)

γ3

)

= dn

(
η(γ1F̂

γ1
s,n) + (1− η)(γ2F̂

γ2
s,n)

γ3

,
η(γ1F̌

γ1
s,n) + (1− η)(γ2F̌

γ2
s,n)

γ3

)

≤ ηγ1

γ3

dn(F̂ γ1
s,n, F̌

γ1
s,n) +

(1− η)γ2

γ3

dn(F̂ γ2
s,n, F̌

γ2
s,n). (A.3)

But as γ1, γ2 ∈ An, the above inequality yields

dn(F̂ γ3
s,n, F̌

γ3
s,n) ≤ ηγ1

γ3

cn√
nγ1

+
(1− η)γ2

γ3

cn√
nγ2

=
cn√
nγ3

.

Thus α3 ∈ An.
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A.4 Proof of Lemma 2.7

Proof. For γ ≥ α0 the result follows from Lemma 2.5 and the fact that dn(F,Fn)
a.s.→

0 as n→∞.

For γ < α0, F γ
s is not a valid DF, by the definition of α0. And as n → ∞,

F̂ γ
s,n

a.s.→ F γ
s point-wise. So for large enough n, F̂ γ

s,n is not a valid DF, whereas F̌ γ
s,n

is always a DF. Thus, dn(F̂ γ
s,n, F̌

γ
s,n) converges to something positive.

A.5 Proof of Theorem 2.1

Proof. We need to show that P (|α̂n − α0| > ε) → 0 for any ε > 0. So let us first

show that

P (α̂n − α0 < −ε)→ 0.

Suppose α̂n − α0 < −ε, i.e., α̂n < α0 − ε. Then by the definition of α̂n and the

convexity of An, we have (α0− ε) ∈ An (as An is a convex set in [0, 1] with 1 ∈ An
and α̂n(< α0 − ε) ∈ An), and thus

dn(F̂α0−ε
s,n , F̌α0−ε

s,n ) ≤ cn√
n(α0 − ε)

. (A.4)

But by (2.7) the L.H.S. of (A.4) goes to a non-zero constant in probability. Hence,

if cn√
n
→ 0,

P (α̂n − α0 < −ε) = P

(
dn(F̂α0−ε

s,n , F̌α0−ε
s,n ) ≤ cn√

n(α0 − ε)

)
→ 0.

This completes the proof of the first part of the claim.

Now suppose that α̂n − α0 > ε. Then,

α̂n − α0 > ε ⇒
√
n dn(F̂α0+ε

s,n , F̌α0+ε
s,n ) ≥ cn

α0 + ε

⇒
√
n dn(Fn, F ) ≥ cn.

The first implication follows from definition of α̂n, while the second implication is

true by Lemma 2.5. The R.H.S. of the last inequality is (asymptotically similar to)

the Cramér–von Mises statistic for which the asymptotic distribution is well-known

and thus if cn →∞ then the result follows.
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A.6 Proof of Theorem 2.2

Proof. Note that

P (α0 < α̂L) = P

(√
n dn(F̂α0

s,n, F̌
α0
s,n) ≥ cn

α0

)
≤ P

(√
n dn(F̂α0

s,n, F
α0
s ) ≥ cn

α0

)
= P

(√
n dn(Fn, F ) ≥ cn

)
= 1−Hn(cn)

= β,

where we have used the fact that dn(F̂α0
s,n, F

α0
s ) = dn(Fn, F )/α0.

A.7 Proof of Theorem 2.3

Proof. It is enough to show that supx |Hn(x) − G(x)| → 0, where G is the limit-

ing distribution of the Cramér-von Mises statistic, a continuous distribution. As

supx |Gn(x)−G(x)| → 0, it is enough to show that

√
ndn(Fn, F )−

√
nd(Fn, F )

P→ 0. (A.5)

We now prove (A.5). Observe that

n(d2
n − d2)(Fn, F ) =

√
n(Pn − P )[ĝn] = νn(ĝn),

where ĝn =
√
n(Fn−F )2, Pn denotes the empirical measure of the data, and νn :=

√
n(Pn − P ) denotes the usual empirical process. We will show that νn(ĝn)

P→ 0,

which will prove (A.6).

For each positive integer n, we introduce the following class of functions

Gc(n) =

{√
n(H − F )2 : H is a valid DF and sup

t∈R
|H(t)− F (t)| < c√

n

}
.

Let us also define

Dn := sup
t∈R

√
n|Fn(t)− F (t)|.

From the definition of ĝn and D2
n, we have ĝn(t) ≤ 1√

n
D2
n, for all t ∈ R. As

Dn = OP (1), for any given ε > 0, there exists c > 0 (depending on ε) such that

P{ĝn /∈ Gc(n)} = P{
√
n sup

t
|ĝn(t)| ≥ c2} = P (D2

n ≥ c2) ≤ ε, (A.6)
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for all sufficiently large n. Therefore, for any δ > 0,

P{|νn(ĝn)| > δ} = P{|νn(ĝn)| > δ, ĝn ∈ Gc(n)}+ P{|νn(ĝn)| > δ, ĝn /∈ Gc(n)}
≤ P{|νn(ĝn)| > δ, ĝn ∈ Gc(n)}+ P{ĝn /∈ Gc(n)}

≤ P

{
sup

g∈Gc(n)

|νn(g)| > δ

}
+ P{ĝn /∈ Gc(n)}

≤ 1

δ
E

{
sup

g∈Gc(n)

|νn(ĝn)|

}
+P{ĝn /∈ Gc(n)}

≤ J
P [G2

c(n)]

δ
+ P{ĝn /∈ Gc(n)}, (A.7)

where Gc(n) := c2√
n

is an envelope for Gc(n) and J is a constant. Note that to

derive the last inequality we have used the maximal inequality in Corollary (4.3)

of Pollard (1989); the class Gc(n) is “manageable” in the sense of [Pol89] (as a

consequence of Eq. (2.5) of [vdG00]).

Therefore, for any given δ > 0 and ε > 0, for large enough n and c > 0 we

can make both Jc4/(δn) and P{ĝn /∈ Gc(n)} less than ε, using (A.6) and (A.7), in

thus, P{|νn(ĝn)| > δ} ≤ 2ε. The result now follows.

A.8 Proof of Lemma 2.8

Proof. Let 0 < γ1 < γ2 < 1. Then,

γ2 dn(F̂ γ2
s,n, F̌

γ2
s,n) ≤ γ2 dn(F̂ γ2

s,n, (γ1/γ2)F̌ γ1
s,n + (1− γ1/γ2)Fb)

= dn(γ1F̂
γ1
s,n + (γ2 − γ1)Fb, γ1F̌

γ1
s,n + (γ2 − γ1)Fb)

≤ γ1 dn(F̂ γ1
s,n, F̌

γ1
s,n),

which shows that γ dn(F̂ γ
s,n, F̌

γ
s,n) is a non-increasing function.

To show that γ dn(F̂ γ
s,n, F̌

γ
s,n) is convex, let 0 < γ1 < γ2 < 1 and γ3 = ηγ1 +

(1− η)γ2, for 0 ≤ η ≤ 1. Then, by (A.3) we have the desired result.

A.9 Proof of Theorem 2.4

Proof. Note that from (2.1),

F̂ α̌n
n,s(x) =

α0

α̌n
Fs(x) +

α̌n − α0

α̌n
Fb(x) +

(Fn − F )(x)

α̌n
,
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for all x ∈ R. Thus we can bound F̂ α̌n
n,s(x) as follows:

α0

α̌n
Fs(x)− |α̌n − α0|

α̌n
− Dn

α̌n
≤ F̂ α̌n

n,s(x) ≤ α0

α̌n
Fs(x) +

|α̌n − α0|
α̌n

+
Dn

α̌n
, (A.8)

where Dn = supx∈R |Fn(x)−F (x)|, and both the upper and lower bounds are non-

decreasing functions in x. Thus, from the characterization of F̌ α̌n
s,n and properties

of isotonic estimators (see e.g., Theorem 1.3.4 of [RWD88]), we know that for all

i = 1, 2, . . . , n,

α0

α̌n
Fs(Xi)−

|α̌n − α0|
α̌n

− Dn

α̌n
≤ F̌ α̌n

n,s(Xi) ≤
α0

α̌n
Fs(Xi) +

|α̌n − α0|
α̌n

+
Dn

α̌n
. (A.9)

Therefore, for all i = 1, 2, . . . , n,

|F̌ α̌n
n,s(Xi)− Fs(Xi)| ≤

|α0 − α̌n|
α̌n

Fs(Xi) +
|α̌n − α0|

α̌n
+
Dn

α̌n

≤ 2
|α0 − α̌n|

α̌n
+
Dn

α̌n

P→ 0,

as n → ∞, using the fact α̌n
P→ α0 ∈ (0, 1). As the Xis are dense in the support

of F , we have the desired result.

A.10 Proof of Theorem 2.5

Proof. Let εn := supx∈R |F̌ α̌n
s,n(x)−Fs(x)|. Then the function Fs + εn is concave on

[0,∞) and majorizes F̌ α̌n
s,n . Hence, for all x ∈ [0,∞), F̌ α̌n

s,n(x) ≤ F †s,n(x) ≤ Fs(x)+εn,

as F †s,n is the LCM of F̌ α̌n
s,n . Thus,

−εn ≤ F̌ α̌n
s,n(x)− Fs(x) ≤ F †s,n(x)− F (x) ≤ εn,

and therefore,

sup
x∈R
|F †s,n(x)− F (x)| ≤ εn.

By Theorem 2.4, as εn
P→ 0, we must also have (2.10).

The second part of the result follows immediately from the lemma is page 330

of [RWD88], and is similar to the result in Theorem 7.2.2 of that book.
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