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Abstract

A new spherically-symmetric solution is determined in a noncompactified
Kaluza-Klein theory in which a time character is ascribed to the fifth coor-
dinate. This solution contains two independent parameters which are re-
lated with mass and electric charge. The solution exhibits a Schwarzschild
radius and represents a generalization of the Schwarzschild solution in
four dimensions. The parameter of the solution connected with the elec-
tric charge depends on the derivative of the fifth (second time) coordinate
with respect to the ordinary time coordinate. It is shown that the perihelic
motion in four-dimensional relativity has a counterpart in five dimensions
in the perinucleic motion of a negatively-charged particle. If the quanti-
zation conditions of the older quantum theory are applied to that motion,
an analogue of the fine-structure formula of atomic spectra is obtained.

1 Introduction

The notion of a second time variable is not alien to physics. In the papers
of Horwitz and his coworkers [1, 2, 3, 4], a five-dimensional theory of electro-
magnetism was presented. In that theory the system develops on the four-
dimensional space-time manifold (~x, t), according to an evolution parameter,
”universal time” τ . The signatures (4, 1) and (3, 2) of the five-dimensional met-
ric are considered, and the reasons for preference of the metric with signature
(3, 2) are explained. The five-dimensional field equations derived in [2] are called
”pre-Maxwell” equations, and the respective fields which obey those equations
are called ”pre-Maxwell” fields. The ”pre-Maxwell” equations, when referred
to the Cartesian system of axes, formally represent a counterpart of Maxwell-
Nordström equations (see Section 4 in [2] and [5]), with imaginary fifth coor-
dinate, although Nordström’s paper is not quoted in [2]. A possible physical
meaning of the evolution parameter τ was not discussed in [2, 3, 4].

In general relativity a second time variable was introduced and discussed in
the quality of a universal parametric ”historical time” by Horwitz and Piron
[1]. That idea was developed by Burakovsky and Horwitz [6] in their study of
a five-dimensional cosmological model of Kaluza-Klein type.
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In the Kaluza-Klein theory three objections were formulated against the
timelike signature of the fifth coordinate [7, 8, 9]: (1) When in the five-dimensional
action the integration over the fifth coordinate is performed, provided that all
derivatives with respect to the fifth coordinate are omitted and the cylinder
condition is accepted, the Maxwell action comes out with an opposite sign to
that of the Einstein action. This is considered to be incorrect. (2) The existence
of tachyons follows from the accepted cylinder condition. (3) There would ap-
pear closed time curves. The problem of closed time curves in four-dimensional
gravity was investigated in a series of papers of Friedman, Thorne and their
coworkers [10, 11, 12]. A particular attention was paid to the question whether
closed time curves violate the causality principle. The available answer does not
seem to be conclusive in that respect. In the case of the five-dimensional gravity
with two time coordinates, an analogous investigation has not been undertaken.
It is an open question whether the second objection concerning the existence
of tachyons is relevant for noncompactified Kaluza-Klein theories. As to the
first objection, it seems that the relative sign of Einstein and Maxwell actions
should be the outcome of a five- or higher-dimensional relativity theory, and
that an answer to the question which relative sign is correct is not yet finally
settled. The attitude towards a timelike signature of the fifth coordinate is less
restrained in the book of Wesson [13], in which a spacelike or a timelike signa-
ture of the fifth coordinate is admitted, depending on the physical problem in
question.

The idea of two times in a physical theory is a leit-motiv in the investiga-
tions of I. Bars and his coworkers [14], [15], [16]. They have shown that two-time
physics provides a new perspective for the understanding of the one-time dy-
namics, from a higher-dimensional point of view; from a single action formula
of two-time physics, with the application of gauge theory, diverse one-time dy-
namical systems can be obtained.

We observe that the second time variable was employed in [5] in a discussion
of the consequences following from Maxwell-Nordström equations with two time
variables. These equations then describe electromagnetic phenomena together
with hypothetical gravitomagnetic phenomena, in particular, gravitomagnetic
waves as a counterpart of electromagnetic waves. The main results of this paper
were presented in [17].

In Section 2 we touch upon the controversy concerning the relative sign of
Einstein and Maxwell actions.

In Section 3 we start from the line element which formally is identical with
that of Chodos and Detweiler [18]. The difference consists in the spatial charac-
ter of the fifth coordinate x5 in [18] and the time character ascribed to this co-
ordinate in the present case. We determine a static five-dimensional spherically-
symmetric solution on the basis of the line element in which there are two time
coordinates. This solution exhibits a Schwarzschild radius and represents a
generalization of the four-dimensional Schwarzschild solution. The solution de-
pends on four parameters of which two are independent and can be related with
gravitational mass and electric charge. This is accomplished in Section 3 where
we discuss the geodesic equation in a nearly flat space. From the geodesic equa-
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tion there follows a linear relation between the ordinary time t and the second
time variable u.

In Section 4 we solve the problem of the perinucleic motion of a negatively
charged test particle (electron) moving in the field of the central positively
charged mass. Including into the five-dimensional geometry the quantization
conditions of the older quantum theory [19] we derive an analogue of Sommer-
feld’s relativistic energy-level formula [19]. The adiabatic invariance principle of
Ehrenfest with which Bohr-Sommerfeld quantization rules are related, already
played an important role in the determination of the mass spectrum of black
holes [20, 21, 22, 23]. The present application of Bohr-Sommerfeld quantization
rules yields another example of the role of Ehrenfest’s principle in bridging the
gap between general relativity and quantum theory.

2 The five-dimensional line element in the Ka-
luza-Klein theory

In the Kaluza-Klein theory the five-dimensional line element is split into the
four-dimensional part and the term depending on the fifth dimension. Referring
to [24] we write the line element in the five-dimensional Riemann space

dS2 = γab dx
adxb a, b = 0, 1, 2, 3, 4 (1)

where the indices a, b = 0, 1, 2, 3 refer to four dimensions, the label 0 refers to
the time dimension, and the label 4 refers to the fifth dimension. Spacelike
or timelike character of the fifth coordinate is admitted. The signature of the
metric tensor therefore is (+,−,−,−, ε) with ε = +1 for timelike and ε = −1
for spacelike fifth coordinate.

A new metric tensor is defined by

gab = γab − γ4aγ4b

γ44
(2)

with the property

g44 = g4a = 0 (3)

We refer to [24] for this transformation, while an analogous transformation for
the case of four dimensions appears with Jordan [25].

The original metric tensor can now be rewritten in the form

γab = gab +
γ4aγ4b

γ44
(4)

Since gab 6= 0 only for a, b = 0, 1, 2, 3 the line element in Eq. (1) takes the form

dS2 = gµν dx
µdxν + γ44

(
dx4 +

γ4α

γ44
dxα

)2

µ, ν, α = 0, 1, 2, 3 (5)

We next define the electromagnetic four-potential
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Aµ =
γµ4

γ44
(6)

and the Brans-Dicke scalar field

Φ2 = ε γ44 (7)

where ε = +1 for timelike signature and ε = −1 for spacelike signature. The
line element now takes the form

dS2 = ds2 + εΦ2
(
dx4 +Aµdx

µ
)2 (8)

where

ds2 = gµν dx
µdxν , µ, ν = 0, 1, 2, 3 (9)

A calculation of the components of the Riemann tensor Rabcd in five dimen-
sions on the basis of the metric defined in Eq. (8) is largely facilitated when the
calculus of exterior forms is applied. This was done by Thiry [26, 27]. The five
dimensional line element in [26] is written in the form

dσ2 = γµν dx
µdxν =

4∑
α=0

(σα)2 (10)

where µ, ν = 0, 1, 2, 3, 4 and the index 0 labels the fifth dimension. Thiry intro-
duces the new metric gab in Eq. (2) in which index 4 is replaced by index 0. In
this metric the line element is written in the form

dσ2 = gijdx
idxj + V 2(dx0 + βϕidx

i)2 , i, j = 1, 2, 3, 4 (11)

where

ϕi =
γi0

βV 2
, V 2 = γ00 (12)

These quantities correspond to those in Eq. (6) and (7), where β is a constant.
This expression for the line element is the expression in Eq. (8) in the case when
ε = +1, which means timelike fifth dimension. In [26] Thiry directly refers to
the Kaluza-Klein theory, hence the spatial character of the fifth coordinate is
implicit. In [27] the spatial character of the fifth coordinate in [26] is explicitly
asserted. On the basis of the preceding argument we conclude that the spatial
character assigned to the fifth coordinate in [26] and [27] is incompatible with
the expression for the line element in Eq. (11) which appears in [26].

4



3 A spherically-symmetric solution for a two-
time line element

We consider the line element in Eq. (1), in which, however, we change the
meaning of the indices a, b. We define a, b = 1, . . . , 5, where 1, 2, 3 label the space
coordinates, 4 labels the ordinary time coordinate, and 5 labels the second-time
coordinate.

In a flat space we introduce the Cartesian coordinates x1, x2, x3 = x, y, z,
x4 = ct, x5 = cu where c denotes the speed of light in the vacuum while t and
u are expressed in the units of time. The non-zero components of the metric
tensor are: γ11 = γ22 = γ33 = −1, γ44 = 1 and γ55 = 1 since time character is
ascribed to the fifth coordinate.

With

(x1, x2, x3, x4, x5) = (r, θ, ϕ, ct, cu) (13)

the spherically-symmetric line element in a flat space has the form

dS2 = −dr2 − r2(dθ2 + sin2θ dϕ2) + c2dt2 + c2du2 (14)

A general form of the spherically symmetric line element in a curved space is
the following:

dS2 = A(r, t, u) c2dt2 +B(r, t, u) dr2 + C(r, t, u) cdrdt+
+D(r, t, u) (dθ2 + sin2θ dϕ2) + E(r, t, u) c2du2

+F (r, t, u) cdrdu+G(r, t, u) c2dudt (15)

In an appropriate coordinate system r′, t′, u′ we can assume that

C(r′, t′, u′) = F (r′, t′, u′) = 0 (16)

and

D(r′, t′, u′) = −r′2 (17)

In the following we shall omit the ”prime” of the new coordinates r′, t′ and u′

and we assume that the functions A, B, E, and G in Eq. (4) are of the form:

A(r, t, u) = eν(r) B(r, t, u) = −eλ(r)

E(r, t, u) = eµ(r) G(r, t, u) = σ(r) (18)

with µ, ν, λ, σ → 0 when r → ∞. The line element in Eq. (15) now takes the
form:

dS2 = −eλdr2 − r2(dθ2 + sin2 θ dϕ2) + eνc2dt2 + eµc2du2 + σc2dudt (19)
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With the speed of light in the vacuum c absorbed by the variables t and u, the
respective metric tensor components are

γ11 = −eλ , γ22 = −r2 , γ33 = −r2 sin2θ ,
γ44 = eν , γ55 = eµ , γ45 = γ54 = σ

(20)

The determinant γ of this metric tensor is given by

γ = r4 eλ sin2θ
(
σ2 − eµ+ν

)
(21)

The line element in Eq. (19) is analogous to that considered by Chodos and
Detweiler in Eq. (17) of [18], however, in that paper the fifth coordinate is a
space coordinate, while we assign a time character to the fifth coordinate. Con-
sequently, the spherically symmetric solution connected with the line element
in Eq. (19) will be of a different form that in [18].

When all derivatives with respect to the times t and u are omitted, denoting
by a ”prime”, the derivative d/dr we obtain the following non-zero components
of the contracted Riemann tensor

R11 =
1

4 r (σ2 − eµ+ν)2

{
2 r

(−σ2 − eµ+ν
)
σ′ 2

− (
σ2 − eµ+ν

)
λ′

(
4σ2 − 4 eµ+ν − eµ+ν r µ′ − eµ+ν r ν′

)

−2σ r σ′
[(
σ2 − eµ+ν

)
λ′ − 2 eµ+ν (µ′ + ν′)

]

+r
[
eµ+ν(eµ+ν − 2σ2)(µ′2 + ν′2)− 2 eµ+ν σ2 µ′ ν′

+4σ3 σ′′ − 4 eµ+ν σ σ′′ + 2eµ+ν(eµ+ν − σ2)(µ′′ + ν′′)
]}

(22)

R22 = − e−λ

2 (σ2 − 2eµ+ν )

[
− 2σ r σ′ + σ2

(−2 + 2 eλ + r λ′
)

− eµ+ν
(−2 + 2 eλ + r λ′ − r µ′ − r ν′

) ]
(23)

R33 = R22 sin2θ (24)

R44 =
−e−λ+ν

4 r (σ2 − eµ+ν)

[
2 r σ′2 − 2σ r σ′ ν′

+
[
4σ2 − 4 eµ+ν − σ2 r λ′ + eµ+ν r (λ′ − µ′)

]
ν′

+r
(
2σ2 − eµ+ν

)
ν′2 + 2 r

(
σ2 − eµ+ν

)
ν′′

]
(25)
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R45 = R54 =
1

4 eλ r (σ2 − eµ+ν)

[
σ2 σ′ (−4 + r λ′)

− eµ+ν σ′ (−4 + r λ′ + r µ′ + r ν′)

+2 r
(
eµ+ν σ µ′ ν′ − σ2 σ′′ + eµ+ν σ′′

) ]
(26)

R55 =
−e−λ+µ

4 r (σ2 − eµ+ν)

[
2 r σ′2 − 2σ r σ′ µ′ + r

(
2σ2 − eµ+ν

)
µ′2

+µ′
(
4σ2 − 4 eµ+ν − σ2 r λ′ + eµ+ν r λ′ − eµ+ν r ν′

)

+2 r
(
σ2 − eµ+ν

)
µ′′

]
(27)

These are equated to zero, yielding five equations for the four unknown functions
µ, ν, λ, σ in Eq. (18).

It can be verified that a solution of the equations

R11 = R22 = R44 = R55 = R45 = 0 (28)

is given by the following functions:

eν = 1− G
r
, eµ = 1− C

r
, eλ =

(
1− R

r

)−1

, σ =
P
r

(29)

where the real parameters G, C,R and P satisfy the conditions

R = G + C , P2 = GC (30)

The parameters G and C will be related with gravitational mass and electric
charge, respectively, on the basis of the linearized form of the geodesic equation.

4 The parameters in the sperically-symmetric
solution

We consider the two-time-independent metric tensor of the form:

γab = γ
(5)
ab + ηab , a, b = 1, . . . , 5 (31)

where γ(5)
ab is the five-dimensional flat-space metric tensor specified as at the

beginning of Section 3, and ηab represents a small perturbation, due to the pres-
ence of a gravitating body with an electric charge. The perturbation vanishes
very far from the body. To show that the ηab terms are the agents of gravita-
tional and electrostatic forces we consider the geodesic equation of motion in
the Riemann space with the above metric. We assume that the velocity of a test
particle (with mass and electric charge) along the geodesic line is much smaller
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than the speed of light c. Using the nearly flat-space metric tensor in Eq. (31)
we then obtain the line element

dS2 = −(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2 + (dx5)2 + ηabdx
adxb (32)

from which we obtain:

(dS
dt

)2

= c2
[
1− v2

c2
+

(du
dt

)2

+
1
c2
ηab

dxa

dt

dxb

dt

]
(33)

where vj = dxj/dt, j = 1, 2, 3. Retaining in Eq. (33) the terms of the first order
in v/c we obtain:

(dS
dt

)2

≈ c2
[
1 +

(du
dt

)2

(1 + η55) + η44 + 2η45
du

dt

]
(34)

We had to assume that v2/c2 ¿ (du/dt)2, since otherwise we would have to
omit (du/dt)2 together with v2/c2.

We next apply the same approximations to the geodesic equation

d2xa

dS2
+ Γa

bc

dxb

dS

dxc

dS
= 0 (35)

From the form of the metric in Eq. (32) follows that each Christoffel symbol
linearly depends on the perturbation ηab. With the accuracy to terms of order
v/c we obtain the equality

Γa
bc

dxb

dS

dxc

dS
= c2

[
Γa

44 + 2
du

dt
Γa

45 +
(du
dt

)2

Γa
55

]( dt
dS

)2

(36)

From Eq. (35) and (36) follows the equation

d2xa

dt2
= c2

[
Γa

44 + 2
du

dt
Γa

45 +
(du
dt

)2

Γa
55

]
(37)

Since ηab are independent of t and u the Christoffel symbols in Eq. (37) vanish
for a = 4, 5. For a = 1, 2, 3 we have

Γa
44 =

1
2
∂η44
∂xa

, Γa
45 =

1
2
∂η45
∂xa

, Γa
55 =

−1
2
∂η55
∂xa

(38)

and from Eq. (37), for a = 5 we find that d2u/dt2 = 0, hence

u = wt+ u0 (39)

where w and u0 are constants. With u0 = 0, w > 0, considering Eqs. (38), and
with w = du/dt we obtain from Eq. (37) the equation

d2xa

dt2
= −c

2

2

[∂η44
∂xa

+ 2w
∂η45
∂xa

+ w2 ∂η55
∂xa

]
(40)

On the basis of this equation we will determine the parameters G and C in
Eqs. (29) and (30).
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We assume that the test particle is an electron with mass m. Multiplying
both sides of Eq. (40) with m, we can identify the first term on the r.h.s. with
the gravitational force acting on the electron mass m, and to one of the two
remaining terms we can ascribe the meaning of the Coulomb force acting on the
electron charge e. It will appear that we have to relate the third term on the
r.h.s. of Eq. (40) with the Coulomb force.

We begin with the first term on the r.h.s. of Eq. (40) and write:

(
m
d2xa

dt2

)
mechanical

= −mc2

2
∂η44
∂xa

= −m ∂ψ

∂xa
(41)

with ψ denoting the gravitational potential of the mass M , where κ is the
gravitational constant,

ψ = −κM
r

(42)

thus obtaining the equality

η44 =
2
c2
ψ (43)

and from this and from Eq. (32), the equality

γ44 = 1 + η44 (44)

From the first of Eqs. (29) and from Eqs. (42), (43) and (44) we then find that

G =
2κM
c2

(45)

as in the case of the Schwarzschild solution in 4 dimensions.
We next consider the third term on the r.h.s of Eq. (40). Let M denote the

proton mass and let ϕ denote the electrostatic potential of the proton charge Q

ϕ =
Q

4πε0r
(46)

where ε0 denotes the vacuum electric permeability. On the basis of Eq. (40) we
write

(
m
d2xa

dt2

)
electrical

= −1
2
mc2w2 ∂η55

∂xa
= −e ∂ϕ

∂xa
(47)

for the electrostatic force acting on the electric charge e connected with the
mass m. From Eq. (47) and (48) we obtain

1
2
c2w2η55 =

e

m
ϕ =

Qe

4πε0rm
(48)

and hence

η55 =
2eQ

4πε0mc2w2r
(49)
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On the other hand from the second of Eqs. (29) and from Eq. (32) we obtain

γ55 = 1 + η55 = 1− C
r

(50)

From Eqs. (49) and (50) we find that

C =
−2eQ

4πε0mc2w2
(51)

From the second of Eqs. (30) and from Eq. (46) follows that C must be positive.
This implies that when the charge Q is assumed positive, the charge e must
be negative and vice versa. When e and Q are of the same sign the second
condition in Eq. (30) cannot be fulfilled. This formula depends on the parameter
w2 = (du/dt)2, which in connection with Eq. (34) has to be much larger than
v2/c2.

We now can determine the parameter P in Eq. (30). Owing to Eq. (51) we
obtain

P =
√GC =

1
wc2

√
κM |eQ|
πε0m

(52)

where −eQ in Eq. (51) has been replaced by |eQ|, since e and Q must have
opposite signs. With the gravitational constant κ = 6.673 × 10−11 N ·M2 · K,
the vacuum electric permeability ε0 = 0.885× 10−11 Q ·V−1 ·M−1, with e/m =
1.76× 1011 Q ·K, and the absolute value of electron charge |e| = 1.6× 10−19 Q,
where N=newton, M=meter, K=kilogram, Q=coulomb, V=volt [28] identifying
the mass M in Eq. (45) with the proton mass we find from Eq. (45) that

G ≈ 2.4× 10−54 M (53)

With Q denoting the proton charge, from Eq. (51) we find that

C ≈ 5.6w−2 × 10−15 M (54)

and then with Q = |e| from Eq. (52) we obtain

P ≈ 1.2w−1 × 10−34 M (55)

We now can answer the question for the Schwarzschild radius. From Eqs. (30),
(45) and (51) we find that in Eq. (19)

R = G + C = 2.4× 10−54 M + 5.6w−2 × 10−15 M (56)

If w−2 is not extremely small, the Schwarzschild radius is determined by the
parameter C connected with the electric charge of the proton.

We now explain why it is not possible to relate the term P/r with the
Coulomb potential. If P/r were related with the Coulomb potential, from
Eq. (40) we then would obtain:

(
m
d2xa

dt2

)
electrical

= −mc2w∂η45
∂xa

= −e ∂ϕ
∂xa

(57)
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with ϕ defined in Eq. (46). From Eqs. (46) and (57) we would obtain:

η45 =
eQ

4πε0rmc2w
(58)

and since from Eqs. (19) and (32) we have

γ45 = η45 =
P
r

(59)

we would find

P =
eQ

4πε0mc2w
(60)

The parameter C now is obtained from Eq. (30)

C = P2G−1 (61)

The parameter R is determined in Eq. (30). Inserting into Eq. (61) the nu-
merical values for P and G given in Eqs. (55) and (53) we find that C ≈
3w−2× 1024 M, hence, unless w−2 is extremely small, the respective R = G+ C
is unacceptable as a candidate for the Schwarzschild radius of the proton. This
seems to indicate that we cannot identify the force connected with η45 with the
Coulomb force between the central charge Q and the charge e of a test particle.

5 The relativistic energy-level formula

We set up the variational problem for the square of the interval in Eq. (19) (see
for example [29]) in the form

δ

∫ [(
1− G

r

)
c2 ṫ2 +

(
1− C

r

)
c2 u̇2 +

√GC
r

c2 ṫu̇−
(
1− G + C

r

)−1

ṙ2 − r2(θ̇2 + ϕ̇2 sin2 θ)
]
dS = 0 (62)

where the ”dot” denotes d/dS. The Euler-Lagrange equations for θ, ϕ, t and u
yield the equalities:

d

dS
(r2 θ̇)− r2ϕ̇2 sin θ cos θ = 0 (63)

d

dS
(r2ϕ̇ sin2 θ) = 0 (64)

d

dS

[
2
(
1− G

r

)
ṫ+

√GC
r

u̇
]

= 0 (65)

d

dS

[
2
(
1− C

r

)
u̇+

√GC
r

ṫ
]

= 0 (66)
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Dividing the expression for the interval in Eq. (19) by dS2 we obtain the equation
for ṙ

1 =
(
1− G

r

)
c2ṫ2 +

(
1− C

r

)
c2u̇2 +

√GC
r

c2ṫu̇−
(
1− G + C

r

)−1

ṙ2 − r2(θ̇2 + ϕ̇2 sin2 θ) (67)

We assign the charge Z|e| to the central mass and will determine the per-
inucleic motion of an electron in the Coulomb field. We observe that the term
with

√GC determines the main influence of the gravitational field, connected
with the central singularity, on the energy levels. This influence is very small in
comparison with the influence of the Coulomb field represented by the parame-
ter C. In Eqs. (65), (66), and (67) we omit the terms containing the factors G/r
or
√GC/r, since they are small in comparison with the terms containing C/r,

thus obtaining from Eq. (67) the equation

1 = c2ṫ2 +
(
1− C

r

)
c2u̇2 −

(
1− C

r

)−1

ṙ2 − r2(θ̇2 + ϕ̇2 sin2 θ) (68)

By an appropriate orientation of the coordinate axes we can make θ = π/2
and dθ/dS = θ̇ = 0, for some initial value of S. From Eq. (63) then follows that
for all values of S we have θ = π/2. Substituting this value of θ into Eq. (64)
we obtain

r2
dϕ

dS
= k = const (69)

while from Eqs. (65) and (66) we obtain

dt

dS
= τ = const (70)

and

du

dS

(
1− C

r

)
= ρ = const (71)

Substituting the expressions in Eqs. (69), (70) and (71) into Eq. (68) we obtain
the equation for r = r(S)

( dr
dS

)2

= [c2(τ2 + ρ2)− 1] + (1− c2τ2)
C
r
− k2

r2
+
Ck2

r3
(72)

From this equation in the new variable v = 1/r, in the customary way [29] we
obtain the equation

v′′ + v = A+
β

Av
2 (73)

where
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A =
(1− c2τ2) C

2k2
and β =

3
2
AC (74)

Eq. (73) determines the perinucleic motion.
We now intend to determine a formula for the energy levels of the test

particle. From Eq. (72) we obtain the expression

dr

dS
=
dr

dt

dt

dS
= τ

dr

dt
=

√
[c2(τ2 + ρ2)− 1] + (1− c2τ2)

C
r
− k2

r2
+
Ck2

r3
(75)

We take over from Sommerfeld (p. 277 in [19]) the quantization conditions
∮
m
dr

dt
dr = nrh , nr = 0, 1, 2, . . . (76)

2π∫

0

mr2
dϕ

dt
dϕ = nϕh , nϕ = 1, 2, 3, . . . (77)

where m denotes the electron mass, and h is Planck’s constant. From Eq. (75)
we find that

m
dr

dt
=

√
m2

τ2

{
[c2(τ2 + ρ2)− 1] + (1− c2τ2)

C
r
− k2

r2
+
Ck2

r3

}
(78)

From Eqs. (69) and (70) and from Eq. (77) we find that

k =
τ

m
nϕh̄ (79)

where h̄ = h/2π. The integral in Eq. (76) with the integrand given in Eq. (78)
was calculated in [19]. It has the value

I =
∮ √

A0 + 2
A1

r
+
A2

r2
+
A3

r3
dr =

−2πi
(√

A2 − A1√
A0

− A1A3

2A2

√
A2

)
(80)

where
√
A2 is negative imaginary. Comparing Eq. (78) with the integrand on

the l.h.s. of Eq. (80) we find that

A0 =
m2

τ2

[
c2(τ2 + ρ2)− 1

]
A1 =

m2

2τ2
(1− c2τ2) C

A2 = −m
2k2

τ2
= −n2

ϕh̄
2 A3 =

m2

τ2
Ck2 = Cn2

ϕh̄
2 (81)

13



The three terms on the r.h.s. of Eq. (80) take the form

−2πi
√
A2 = −2πnϕh̄ (82)

2πi
A1√
A0

= 2πi
m(1− c2τ2) C

2τ
√
c2(τ2 + ρ2)− 1

(83)

πi
A1A3

A2

√
A2

= 2π
(1− c2τ2) C2m2

4nϕh̄τ2
(84)

From Eqs. (75), (78), (80) and (82) through (84), introducing the expression for
C given in Eq. (51), with α = e2/4πε0h̄c we obtain the equality

−iZα(1− c2τ2)
τc

√
c2(τ2 + ρ2)− 1

( dt
du

)2

= nr + nϕ −
[

1− c2τ2

c2τ2

( dt
du

)4
]
α2Z2

nϕ
(85)

Writing du/dt = w we find from Eqs. (33), (70) and (71) with v2/c2 ¿ w2, as
it was assumed in Section 4, that

c2τ2 ≈ 1
1 + w2

(86)

and

c2ρ2 ≈ w2

1 + w2

(
1− C

r

)
(87)

Hence w2 is approximately expressed through the constant of motion τ .
Utilizing these equalities we can rewrite Eq. (85) in the form

1 + w2
(
2
C
r
− C2

r2

)
= 1 +

α2Z2

(
nr + nϕ − α2Z2

w2nϕ

)2 (88)

and compare it with Sommerfeld’s formula for energy levels of an electron in
the relativistic Kepler motion in a flat space in Eq. (26) on p. 278 of [19] which
is

(
1 +

W

m0c2

)
=

[
1 +

α2Z2

(
nr +

√
n2

ϕ − α2Z2
)2

]− 1
2

(89)

where W = E − m0c
2 and E = total energy. The inverse square root of the

l.h.s. of Eq. (88) can be equalized to the total energy E. On the r.h.s. of
Eq. (89) the first two terms of a series expansion of the square root are equal
to the respective two terms in Eq. (88), when we put w2 = 2. This means
that for α2Z2/2n2

ϕ ¿ 1 and w2 = 2 the r.h.s. of Sommerfeld’s formula in Eq.
(89) coincides with the inverse square root of the r.h.s. of Eq. (88). Eq. (88)
therefore represents an analogue of Sommerfeld’s formula for energy levels of a
hydrogen-like atom for sufficiently small values of Z.
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6 Conclusions and discussion

There exists an extensive literature concerning spherically-symmetric solutions
in the Kaluza-Klein theory. We only name the five-dimensional spherically
symmetric solutions determined by Chodos and Detweiler [18], by Ponce de
Leon and Wesson [30] and by Wesson [13]. Those solutions are based on the
assumption of a spatial character of the fifth coordinate. A thorough discussion
of those solutions is given in Overduin and Wesson [9] and in Wesson [13].

Assuming that in a non-compactified Kaluza-Klein theory the fifth coordi-
nate x5 has time character, we have determined a Schwarzschild type solution
of the five-dimensional Einstein equations in the vacuum. The two independent
parameters of that solution have been related with mass and electric charge,
respectively. The solution exhibits a Schwarzschild radius whose magnitude is
predominantly determined by the electric-charge parameter.

The perihelic motion in four-dimensional relativity has a counterpart in the
perinucleic motion of an electron in a Kaluza-Klein theory with two times. If
the quantization conditions of the older quantum theory are included into the
five-dimensional geometry, the perinucleic motion of an electron leads to the
fine structure of line spectra, which in the limit of Z2α2/n2

ϕ ¿ 1 is analogous
to that determined by Sommerfeld’s formula for hydrogen-like atoms.

The parameter C which determines the Schwarzschild radius and the param-
eter P connected with a new force depend on the derivative du/dt of the second
time coordinate u with respect to the ordinary time coordinate t. Their numer-
ical values therefore hinge on the magnitude of that quantity. The indicated
physical meaning of those parameters, however, is not impaired by the lack of
knowledge of the magnitude of the quantity du/dt as long as it is not extremely
large or extremely small in comparison with 1.
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