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Abstract. Collimation is widely used for X-ray examinations to reduce
the overall radiation exposure to the patient and improve the contrast
resolution in the region of interest (ROI), that has been exposed directly
to X-rays. It is desirable to detect the region of interest and exclude the
unexposed area to optimize the image display. Although we only focus
on the X-ray images generated with a rectangular collimator, it remains
a challenging task because of the large variability of collimated images.
In this study, we detect the region of interest as an optimal quadrilat-
eral, which is the intersection of the optimal group of four half-planes.
Each half-plane is defined as the positive side of a directed straight line.
We develop an extended Hough transform for directed straight lines on
a model-aware gray level edge-map, which is estimated with random
forests [1] on features of pairs of superpixels. Experiments show that
our algorithm can extract the region of interest quickly and accurately,
despite variations in size, shape and orientation, and incompleteness of
boundaries.

1 Introduction

In medical X-ray examinations, radiographers often adopt collimation to avoid
unnecessary exposure to patients and improve the image quality. It is impor-
tant to detect the non-collimated region for improving the visual quality in the
diagnosis environment and for the processing of the image, e.g. image compres-
sion. Nevertheless, collimation detection remains a challenging problem due to
the large variability in shape and appearance across collimated images. In this
study, the region of interest (ROI) is the non-collimated region in the X-ray
image, which is a quadrilateral caused by rectangle collimators.

There have been many works using 2D boundary detection technique for
collimation detection [2,3]. However, all these methods used an unsupervised
model for edge detection. Because of the large variability of the collimated images
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(a) (b) (c) (d)

Fig. 1. An example of our algorithm: (a) Input image; (b) Edge map; (c) The optimal
group of four directed straight lines; (d) Detected ROI.

and the overlap of the pixel-level feature distribution between the ROI and the
collimation field, these method are not reliable. In Kawashita et al. [4], the
authors detect the ROI with a plane detection Hough transform. But this method
works only when the ROI is a rectangle and is not as large as the whole image.
In Mao et al. [5], the authors proposed a multi-view learning-based method
combining region and corner detection. The accuracy of this method highly
depends on the region detection with a pixel-level two-class classification. As
this method makes a classification on each pixel, the accuracy is also limited
and compromises efficiency. In this paper, we develop our method based on two
simple observations. First, if two pixels are near to each other, one is in the
ROI and one is not, the difference of their intensity is often relatively large.
Second, along a piece of boundary between the ROI and the collimation field,
the directions of gradient vectors are often from the collimation field to the ROI.

The first observation indicates that, if we over-segment the image with both
location and appearance information, e.g. SLIC [6], most pixels of the boundary
of the ROI would be on the boundaries of superpixels. The second observation
indicates that, compared with undirected straight lines, straight lines with posi-
tive normal directions specified can make stricter shape constraints for the ROI
detection in X-ray images.

Hence, we proposed a novel algorithm based on superpixel-level learning-
based edge estimation and a directed Hough transform. We estimate the edge
strength for pixels with a random forests approach on pairs of neighbouring
superpixels (Fig. 1b). As the edge map is estimated with the training data, it
is robust and accurate. By computing the edge map on the superpixel level, we
decrease the number of samples for learning-based classification, take advantage
of superpixel-level features and decrease the number of pixels visited in the
Hough transform. In Andrews and Hamarneh’s work [7], the authors also used
learning-based method for boundary detection. However, their method makes
classifications for each boundary candidates on the pixel-level and our method
only makes classifications on pairs of neighboring superpixels, which should be
more efficient.

We define directed straight lines by specifying their normal vector, and extend
the classical Hough transform to detect directed straight lines with the gradient
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vector field and the learning-based edge map. We define positive and negative
half-planes for directed straight lines. And we regard the quadrilateral ROI as
the intersection of four positive half-planes of the optimal group of four directed
lines, as shown in Fig. 1c and d. By setting special values in the edge map and
the vector field for the pixels on the four sides of the image, our method works
even if the ROI is the whole image.

2 Learning-Based Edge Estimation

Given an X-ray image I, we compute its edge map Ie with the following four
steps (Fig. 2).

1. We make an over-segmentation on the image with SLIC [6], resulting in a set
of superpixels, S.

2. For each pair of neighbouring superpixels, we compute its probability of
belonging to each of the three given classes with random forests (See Sect. 2.1
for details).

3. For each superpixel, we compute its probability of being in the ROI.
4. For each pixel p ∈ I, we compute its edge strength Ie(p) based the computed

superpixel-level probabilities.

As our algorithm is based on the assumption that most pixels on the boundary
of the ROI are on the boundaries of some superpixels in S, we use the algorithm
SLIC (Simple Linear Iterative Clustering) [6] to make the over-segmentation with
pixel-level features, including intensity and texture information, which efficiently
produces smooth regular-sized superpixels. We select this algorithm to guarantee
our assumption above and make the features of different superpixels comparable.

(a) (b) (c) (d) (e)

Fig. 2. An example of our edge estimation algorithm: (a) Input image; (b) superpixels;
(c) Edge map with our method; (d) Canny edge map [8]; (e) gradient magnitude

2.1 Superpixel-Level Probability

We use a three-class random forests classifier to estimate the probability of
each pair of neighbouring superpixels. The set of classes is {�L0, �L1, �L2}, which
represents that 0, 1 or 2 superpixels of this pair are in the ROI, respectively.
Let Pr(P,Q)(�L) be the probability of the pair of superpixels, (P,Q), belonging
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to the class �L. The features used in the classifier include the averages and the
standard deviation of pixel-level features, such as intensity and gradients, of
the pixels contained by either of the two superpixel, and properties of shape.
By comparing the average of the intensity of P and Q, and rearranging their
features, we guarantee that (P,Q) and (Q,P ) have the same feature value for
the random forests classifier and Pr(P,Q)(�L) = Pr(Q,P )(�L), �L = �L0, �L1, �L2.

Let Pr(P ) be the probability for the superpixel P of being in the ROI, which

is defined as: Pr(P ) =
∑

Q∈N(P ) Pr(P,Q)(�L2)

|N(P )| , where N(·) is the neighbourhood of
a superpixel, | · | is the size of a set.

2.2 Pixel-Level Probability

Let B(P,Q) be the common boundary of a pair to superpixels (P,Q), lfour be
the set of pixels on the four sides of the image, such that lfour = {p‖px = 1|px =
M |py = 1|py = N}, where M × N is the size of I.

Note that, given a perfect over-segmentation S of I, such that each superpixel
P is either exactly in the ROI or exactly not, a pixel p is on the boundary of
the ROI if and only if it is in one of the following two situations:

– p ∈ B(P,Q), one of P and Q is in the ROI, the other is not.
– p ∈ lfour, p ∈ P , P is in the ROI

Hence we estimate the strength of edge Ie(p) with the probability of pixel p
being on the boundary:

Ie(p) =

⎧
⎪⎨

⎪⎩

αPr(P ) if p ∈ P and p ∈ lfour

Pr(P,Q)(�L1) if p ∈ B(P,Q) and p �∈ lfour

0 otherwise
(1)

where, α is positive constant parameter.

3 Directed Hough Transform

3.1 Classical Hough Transform

Applying the classical Hough transform (HT) to the non-negative edge map
I ′
e of an image I results in an 2D accumulator array C(ρk, θl), that represents

the sum of edge strength (I ′
e) of points satisfying the linear equation ρk =

px cos θl + py sin θl, where p is a pixel in the image and (px, py) is its coordinate.
Local maxima of C can be used to detect straight lines in the image. C(·) is
defined as: C(ρk, θl) =

∑
p: px cos θl+py sin θl−ρk=0 I ′

e(p). Where, I ′
e can be binary,

e.g. Canny edges, or grey-level, e.g. gradient magnitude. To compute C(·), for
each pixel p, such that I ′

e(p) > 0, the Hough transform algorithm calculates the
parameters (ρ, θ) of lines at p, and increments the value of the corresponding
bins in C(·) by I ′

e(p) [9].
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3.2 Directed Straight Line

Given the coordinate (p0x, p0y) of a pixel p0 and a normal vector n0, a straight
line passing through p0 is defined with a linear equation:

px cos θ0 + py sin θ0 − ρ0 = 0 (2)

where θ0 is the angle between n0 and the positive X-axis, ρ0 is defined as
p0x cos θ0 + p0y sin θ0. In this definition, θ0 ∈ [0, π).

In this paper, we use the same equation (Eq. 2) to define a directed straight
line lp0,n0 by measuring the angle θ0 counter-clockwise from the positive X-axis
to n0. In this way, a point with two opposite normal vectors define two different
directed lines passing through the same points. θ0 ∈ [0, 2π), and θ0 is in one-to-
one correspondence to normal vectors n0, n0 = (cos θ0, sin θ0).

We define the positive and negative half-plane of lp0,n0 with two linear
inequalities, respectively:

H+(lp0,n0) : px cos θ0 + py sin θ0 − ρ0 > 0 (3)

H−(lp0,n0) : px cos θ0 + py sin θ0 − ρ0 < 0 (4)

Given a vector field W = (U, V ) for the image I, a pixel q is a support-
ing pixel of the directed line lp0,n0 , if and only if (qx, qy) satisfies Eq. 2 and
|∠(W (q),n0)| < π/2. It is easy to see, the directions of the vectors of support-
ing pixels are from the negative half-plane to the positive half-plane. We define
W as the supporting vector field of the image I and estimate the strength of
directed straight lines with its supporting pixels in Sect. 3.3.

3.3 Directed Hough Transform with Gradient Vectors

Given the image I, its edge map Ie and its supporting vector field W , we define
an 2D accumulator array Cd(·) for the directed Hough transform as:

Cd(ρk, θl) =
∑

p: |∠(W (p),nl )|<π/2
px cos θl+py sin θl−ρk=0

Ie(p) (5)

where nl = (cos θl, sin θl).
Our goal is to guarantee that each directed line l passing through pixels on

the boundary of the ROI, such that the ROI is in its positive half-plane H+(l),
has a correspondent local maxima in Cd. Hence we need to define a proper
supporting vector field and a good edge map.

With the observation that, along the boundary of the ROI in a X-ray image,
the directions of intensity gradient vectors are often from the shadow region
(non-ROI) to the ROI, we define the supporting vector field (U, V ) with the
estimated gradient vector ∇I = (Ix, Iy). Special values are set in the four sides
of the image. As in some cases, parts of the boundary of the ROI are on the
sides of the image and there is no shadow region near it.
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W (p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1, 0) if px = 1
(−1, 0) if px = M

(0, 1) if py = 1, 1 < px < M

(0,−1) if py = N, 1 < px < M

(Ix(p), Iy(p)) otherwise

(6)

where, M × N is the size of the image I. And we estimate the edge map Ie with
a learning-based method to take advantage of the training data (see Sect. 2 for
details). The complete directed Hough transform algorithm for the ROI bound-
ary is shown in Algorithm1.

Algorithm 1. Directed Hough Transform
Input: Image I
1: Compute the supporting vector field W . (Eq. 6)
2: Compute the edge map Ie. (Sect. 2)
3: for each pixel p ∈ I do
4: if Ie(p) > 0 then
5: for θ ∈ [0, 2π) do
6: set n = (cos θ, sin θ).
7: set ρ = px cos θ + py sin θ.
8: if |∠(n,W (p))| < π/2 then
9: Cd(ρ, θ) = Cd(ρ, θ) + Ie(p)

10: end if
11: end for
12: end if
13: end for

4 Optimal Quadrilateral Detection

To detect the optimal quadrilateral, we need to find the optimal group of four
directed straight lines cropping the ROI.

Firstly, we detect a list of directed lines li, denoted as Llist = {li, i = 1 . . . k},
using the directed Hough transform. li is in correspondence with local maxima
(ρi, θi) in Cd(·), and Cd(ρi, θi) > τ1, where τ1 is a positive threshold. θi ≤ θj , if
i < j. As the optimal quadrilateral can also be regarded as the intersection of the
positive half-plane of the four lines cropping it, li should also guarantee that its
positive half-plane H+(l) contains the ROI. Let Rτ2 = ∪Pr(P )>τ2(P ) be a region
that pixels in it have high probability in the ROI, where τ2 is set to 0.96 in this

study. Hence, each directed line li in Llist satisfies: |Rtau2∩H+(l1)|
|Rtau2 | > τ3, where

0 < τ3 < 1.
Secondly, we detect a group of four directed lines l i = (li1 , li2 , li3 , li4) in Llist,

such that i1 < i2 < i3 < i4, satisfying that
∣
∣θij+1 − θij − π/2

∣
∣ < τθ, j = 1, 2, 3,
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|θi1 − θi4 + 3π/2| < τθ,
∣
∣θij+2 − θij − π

∣
∣ < τθ, j = 1, 2, ρij+2 + ρij < −τρ, j =

1, 2, to maximize the function f :

fl i = β

4∑

j=1

Cd(ρijθij ) −
3∑

j=1

(θij+1 − θij − π/2)2 − (θi1 − θi4 + 3π/2)2 (7)

where, τθ, τρ and β are positive constant parameters.
We optimize Eq. 7 with a constrained exhaustive search. For li ∈ Llist, let

s(i) = min{j|θj > θi + π/2 − τθ}, e(i) = max{j|θj < θi + π/2 + τθ}, it is easy
to see that, in the optimal group of (li1 , li2 , li3 , li4), s(ij) ≤ ij+1 ≤ e(ij), for
j = 1, 2, 3. We compute s(·) and e(·) beforehand to speed up the exhaustive
search.

With the optimal group of (li1 , li2 , li3 , li4), we can generate the optimal
quadrilateral as the detected region of the interest (ROI), as in Fig. 1c.

Table 1. Comparative success rate: our method (s∗), proposed directed Hough trans-
form with gradient magnitude map (s1), undirected Hough transform with proposed
learning-based edge map (s2), and the method in Mao et al. [5] (sA). D′

1 and D′
2 are

the sets of testing images in D1 and D2, respectively. The success rate is computed
with expert identification. The running time of the method in [5] is about 15 s per case
in average, and ours is about 1.8 s.

Success rate s∗ s1 s2 sA Number of images

D′
1 95% 90 % 82 % 80% 1598

D′
2 99% 96 % 94 % 85% 705

5 Experiments

To show the robustness of our proposed method and the impact of the two
components, we evaluate our algorithm on two data sets, D1 and D2, acquired
by X-ray machines. We randomly select 100 images from the union of the two
data sets for training, and evaluate our method on the remaining images. We also
evaluate another learning based method [5] with the same training and testing
images for comparison, in Table 1. D1 and D2 are from different sites and the
difference of the success rate between D′

1 and D′
2 is due to larger variability of

orientation and size of images in D1.
For each image, our algorithm takes 1.807 s in average to detect the ROI, on

an Intel Core i5-3470, 3.2 GHz processor and 4 GB memory system. The average
size of input images is 350 × 350. The training of the selected images takes about
2 h, in which the training data are labeled as ROI or not in pixel-level. In Fig. 3,
we show some results of our method, including a failure case Fig. 3e, in which,
almost all the right side of the ROI is very weak.
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(a) (b) (c) (d) (e)

Fig. 3. Some results of our methods, (e) is a failure case

6 Discussion

In this paper, we propose a novel automatic algorithm to detect the region of
interest in a X-ray image quickly and accurately. Learning-based edge maps
are much more accurate than unsupervised methods, and the directed Hough
transform add strict shape constraints for the quadrilateral detection. However,
although we use a learning-based edge estimation, our method still cannot work
if parts of the boundary are too weak, which makes the basic assumption of our
method no longer hold.
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