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Abstract. In this paper, we deal with the semi-infinite complementarity problems (SICP),

in which several important issues are covered, such as solvability, semismoothness of

residual functions, and error bounds. In particular, we characterize the solution set by

investigating the relationship between SICP and the classical complementarity problem.
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Furthermore, we show that the SICP can be equivalently reformulated as a typical semi-

infinite min-max programming problem by employing NCP functions. Finally, we study

the concept of error bounds and introduce its two variants, ε-error bounds and weak error

bounds, where the concept of weak error bounds is highly desirable in that the solution

set is not restricted to be nonempty.

Key words. semi-infinite complementarity problem, semidifferentiable and semismooth,

error bounds, weak error bounds.
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1 Introduction

The classical nonlinear complementarity problem (NCP) is to find an x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

where F is a mapping from Rn into itself. Extensive references to the developments in

this subject and their historical backgrounds can be found in Facchinei and Pang [12]

and Harker and Pang [15].

Roughly speaking, the classical complementarity problem has been extended in two

ways. The first one is generalizing the nonnegative orthant Rn
+ to various other con-

vex cone, such as second-order cone [1], semi-definiteness cone [16], or more generally,

symmetric cone [27, 28]. An implicit assumption shared by these problems is that the

data of the problem, such as the mapping F and the cone involved, are all fixed and

completely independent of other parameters. Unfortunately, this is not always the case

in reality. For example, in optimal control or engineering design fields [5], the data of

the problem involves a time parameter; in non-cooperative games (e.g., generalized Nash

equilibrium [11]), the strategy of each player is dependent on those of others. To address

the problem of this type, we need to consider another generalized form as follows: find a

vector x ∈ Rn such that

x ≥ 0, F (x,w) ≥ 0, xTF (x,w) = 0, w ∈ Ω, (1.1)

where Ω is a set in Rm and F is a mapping from Rn × Ω into Rn. As the parameter w

is a random variable with certain probability distribution, the above problem is said to

be stochastic complementarity problem. Results of this type were first treated by Chen

and Fukushima [6], and subsequent investigations were carried out by other authors; see

[8, 14, 17, 18, 19]. By using stochastic approach, they could obtain a solution in the

probability sense, which, however, is not a real solution to the original problem (1.1).

Two most natural questions to ask are: (a) How to deal with the case in which the

parameter w is not a random variable; (b) Under which conditions can we find an exact

solution of (1.1).
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Depending on the role played by the parameter w, the problem (1.1) is divided into

two classes and the corresponding techniques are completely different. One, as mentioned

above, is the stochastic complementarity problem, provided that w is regarded as a

random variable. Otherwise, to avoid the confusion, it is preferable to refer to the

problem (1.1) as a semi-infinite complementarity problem (SICP for short), because it

shares the characterizations of semi-infinite programming and complementarity problem,

i.e., the design vector x is finite-dimensional, but the number of the complementarity

problems involved in (1.1) is infinite. In addition, if F (·, ·) is an affine function with

respect to x, i.e., F (x,w) = M(w)x + q(w), where M(w) ∈ Rn×n and q(w) ∈ Rn, then

problem (1.1) is called a semi-infinite linear complementarity problem, abbreviated as

SILCP(q(w),M(w),Ω). Similarly, denote by SINCP(F (·, w),Ω) for the case where F

is nonlinear with respect to x. Here it is worth mentioning that the relation between

SICP and NCP is a different with that between SIP (semi-infinite programming) and

NLP (nonlinear programming). In fact, SIP can reduce to NLP when the number of

constraint functions is finite, but this is not shared by SICP and NCP except for Ω

consisting of a single point.

In this paper, we begin with developing the solvability and feasibility of the semi-

infinite complementarity problem. In particular, for the nonlinear case, we show that the

solution set S∗ coincides precisely with the intersection of the solution sets of two classical

nonlinear complementarity problems NCP(Fmax) and NCP(Fmin), i.e., S∗ = SOL(Fmax)∩
SOL(Fmin). However, for the linear case, the equation will fail if we only replace Fmax(x)

by Mmaxx + qmax and Fmin(x) by Mminx + qmin. In other words, for the semi-infinite

linear complementarity problem, we have S∗ ⊆ SOL(qmax,Mmax)∩ SOL(qmin,Mmin), and

the inclusion can be strict unless some assumptions are made on the structure of the

expansive matrix (M(w), q(w)), as will be illustrated by Theorem 2.3 and Example 2.4.

Furthermore, we transform the semi-infinite complementarity problem into an equivalent

semi-infinite min-max programming problem by utilizing NCP functions. This offers

another explanation of why we call the problem (1.1) as semi-infinite complementarity

problem. The semismoothness of residual functions are discussed as well.

The theory of error bounds provides a useful aid for understanding the connection

between a residual function and the actual distance to the solution set, and hence plays an

important role in convergence analysis and stopping criteria for many iterative algorithms;

for comprehensive surveys of this topic, please refer to [23] and references therein. In

the latter part of this paper, we discuss error bounds and introduce its two variants, ε-

error bounds and weak error bounds. Specifically, we show that the ε-error bounds can be

obtained by using the well-known error bounds for the classical complementarity problem

LCP(q(w),M(w)), where the parameter ε represents the degree of the approximation

between S∗ and SOL(q(w),M(w)). Nevertheless, it should be realized that the existence

of a vector x satisfying the complementarity conditions for all w ∈ Ω may be more

restrictive, that is, the solution set S∗ may be empty. This makes the utility of error

bounds be somewhat limited, because in many situations it is possible to find a vector x
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such that the complementarity condition holds true for some w but not for others. As

a remedy of this difficulty, we introduce the concept of weak error bounds, which makes

sense even if the solution set is empty. Example 5.4 illustrates that the weak error bounds

can be readily derived from error bounds, but the converse is not necessarily true.

The paper is organized as follows. In Section 2, we characterize the solution set and

provide criteria for the feasibility of the SICP. In Section 3, we reformulate the SICP as

typical semi-infinite min-max programming problems and address the semismoothness of

residual functions. The concept of error bounds and its one variant, ε-error bounds, are

treated in Section 4, whereas another variant, weak error bound, is discussed in Section

5. Some conclusions are drawn in Section 6.

A few words about our notations. All vectors are column vectors and superscript

T denotes transpose. We denote by Rn the n-dimensional real vector space, by Rn×n

the space of n × n real matrices, and by B the unit ball. For a vector x ∈ Rn, x+

will denote the orthogonal projection on the nonnegative orthant Rn
+, that is, (x+)i =

max{xi, 0} for all i = 1, 2, · · · , n. The diameter of a set A, denoted by diam(A), is defined

as the maximum distance between any pair of points in this set, that is, diam(A) =

max
x,y∈A

‖x − y‖. Let S∗ be the solution of the problem (1.1). For any fixed w ∈ Ω,

we denote by SOL(F (·, w)) the solution set of the classic nonlinear complementarity

problem NCP(F (·, w)), and by SOL(q(w),M(w)) the solution set of the classic linear

complementarity problem LCP(q(w),M(w)). It is well known that various matrix classes

have played a key role in all aspects of the classical linear complementarity problem; see

[10] for the details. For example, a matrix M is called (i) an S-matrix if there exists a

vector z > 0 such that Mz > 0; (ii) a copositive matrix if x ≥ 0 implies that xTMx ≥ 0;

(iii) an R0-matrix if

x ≥ 0, Mx ≥ 0, xTMx = 0 =⇒ x = 0.

A function f : Rn → R is said to be semismooth at x if f is locally Lipschitzian at x and

the limit

lim
V ∈∂f(x+th′)

h′→h,t↓0

{V h′}

exists for any h ∈ Rn, where ∂f denotes the generalized Jacobian defined by Clarke [9].

Recall also that f is said to be semidifferentiable at x if the limit

lim
h′→h
t↓0

f(x+ th′)− f(x)

t

exists for any h ∈ Rn; see [26, Chapter 7] for more details.

4



2 Solution Properties

The main aim of this section is to present the characterization of the solution set and

provide criteria for the feasibility of SICP. Our analysis is based on relating SICP to two

classical complementarity problems as defined, respectively, in (2.2) for the nonlinear

case and in (2.4) for the linear case.

Theorem 2.1. Consider the SILCP(q(w),M(w),Ω). Then

S∗ =
⋂
w∈Ω

SOL(q(w),M(w)). (2.1)

Moreover, if M(w0) is an R0-Matrix for some w0 ∈ Ω, then S∗ 6= ∅ if and only if
p⋂
i=1

SOL(q(wi),M(wi)) 6= ∅ for any finite many points w1, · · · , wp ∈ Ω. Furthermore, if

M(w) is a column sufficient matrix for each w ∈ Ω, then at most n+1 points are needed

to consider.

Proof. First, from definition, (2.1) is trivial. If M(w0) is an R0-matrix, then the

set SOL(q(w0),M(w0)) is bounded [10, Proposition 3.9.23], which in turn implies the

boundedness of S∗. On the other hand, since SOL(q(w),M(w)) is closed for each w, so

is S∗. Thus S∗ is compact. Applying the finite intersection theorem of compact sets,

we obtain the first part of the theorem. The column sufficiency of M(w) implies that

SOL(q(w),M(w)) is convex by [10, Theorem 3.5.8]. Hence, the second part follows from

Helly’s Theorem [25, Corollary 21.3.2]. 2

It is easy to see that the identity S∗ =
⋂
w∈Ω

SOL(F (·, w)) remains true for the nonlinear

case SINCP(F (·, w),Ω). However, it is not suggested the ripe possibilities, because we

have to solve all of the classical complementarity problems one by one. To overcome this

drawback, we assume that the set Ω is compact and the mapping F is continuous on

Rn × Ω, which ensure the well-definedness of the following function

Fmax(x) =


max
w∈Ω

F1(x,w)

...

max
w∈Ω

Fn(x,w)

 and Fmin(x) =


min
w∈Ω

F1(x,w)

...

min
w∈Ω

Fn(x,w)

 . (2.2)

The following result shows that the solution set S∗ coincides with the intersection of

the solution sets of two classical nonlinear complementarity problems NCP(Fmax) and

NCP(Fmin).

Theorem 2.2. Consider the SINCP(F (·, w),Ω). If Ω is compact and F is continuous

on Rn × Ω, then S∗ = SOL(Fmax) ∩ SOL(Fmin).
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Proof. Suppose x∗ ∈ S∗. Then Fmax(x∗) ≥ 0 by definition. Note that (x∗)TF (x∗, w) = 0

is equivalent to x∗iFi(x
∗, w) = 0 for all i = 1, 2, · · · , n. Taking the pointwise supremum

yields that x∗i (Fmax(x∗))i = 0. Hence, x∗ ∈ SOL(Fmax). Similarly, we can argue that

x∗ ∈ SOL(Fmin), which says S∗ ⊆ SOL(Fmax) ∩ SOL(Fmin). Now we show the reverse

inclusion. Let x∗ ∈ SOL(Fmax)∩ SOL(Fmin). Because Fmin(x∗) ≥ 0 and x∗ ≥ 0, we know

for any w ∈ Ω and i = 1, 2, · · · , n that

Fi(x
∗, w) ≥ 0 and x∗iFi(x

∗, w) ≥ 0. (2.3)

On the other hand, since x∗ ∈ SOL(Fmax), we have x∗i (Fmax(x∗))i = 0, which in turn

implies that x∗iFi(x
∗, w) ≤ 0. Combing this and (2.3) yields x∗iFi(x

∗, w) = 0 for any

w ∈ Ω and i = 1, 2, · · · , n. This completes the proof. 2

The above result makes it possible to characterize the solution of semi-infinite com-

plementarity problem by checking two classical complementarity problems. We now turn

our attention to the linear case SILCP(q(w),M(w),Ω). Let aij(w) denote the (i, j)-entry

of a matrix M(w). Define

Mmax =


max
w∈Ω

a11(w) · · · max
w∈Ω

a1n(w)

...

max
w∈Ω

an1(w) · · · max
w∈Ω

ann(w)

 ,Mmin =


min
w∈Ω

a11(w) · · · min
w∈Ω

a1n(w)

...

min
w∈Ω

an1(w) · · · min
w∈Ω

ann(w)

 ,

(2.4)

and

qmax =


max
w∈Ω

q1(w)

...

max
w∈Ω

qn(w)

 , qmin =


min
w∈Ω

q1(w)

...

min
w∈Ω

qn(w)

 .

Motivated by Theorem 2.2, it is natural to speculate whether S∗ = SOL(Fmax) ∩
SOL(Fmin) remains true if we replace Fmax(x) by Mmaxx+ qmax and Fmin(x) by Mminx+

qmin, i.e., does S∗ equal SOL(qmax,Mmax) ∩ SOL(qmin,Mmin)? Unfortunately, the equal-

ity may fail unless some additional assumptions are made. The following theorem and

example will elaborate more about this point.

Theorem 2.3. Consider the SILCP(q(w),M(w),Ω). If Ω is compact and M(w) and

q(w) are continuous on Ω, then

S∗ ⊇ SOL(qmax,Mmax) ∩ SOL(qmin,Mmin).

Furthermore, suppose in each row of the expansive matrix (M(w), q(w)), the minimum

(and maximum) is attained by a common ŵ (and w̄), i.e., for each i = 1, 2, . . . , n,

there exist ŵi, w̄i ∈ Ω such that (Mmin, qmin)i =
(
M(ŵi), q(ŵi)

)
i

and (Mmax, qmax)i =
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(
M(w̄i), q(w̄i)

)
i

where the subscript i denotes the i-th row vector. Then the equality

holds, i.e.,

S∗ = SOL(qmax,Mmax) ∩ SOL(qmin,Mmin).

Proof. According to the rules of calculation dealing with maximization and minimization

[26, Exercise 1.36], we have

max
w∈Ω

(M(w)x+ q(w)) ≤Mmaxx+ qmax and min
w∈Ω

(M(w)x+ q(w)) ≥Mminx+ qmin, (2.5)

for all x ≥ 0. By applying (2.5) and following an argument similar to that for Theorem

2.2, we obtain the first part of the theorem. Noting that (2.5) holds as equality by

invoking the hypothesis, the second part follows readily. 2

Example 2.4. Consider the SILCP(q(w),M(w),Ω) with

M(w) =

(
1− 2w − 1

0 − w

)
, q(w) =

(
1

w

)
, and Ω = [0, 1].

From a simple calculation, we have S∗ = {(0, 0)T , (0, 1)T}. On the other hand,

Mmax =

(
1 − 1

0 0

)
, qmax =

(
1

1

)
;

and

Mmin =

(
−1 − 1

0 − 1

)
, qmin =

(
1

0

)
.

Then, SOL(qmax,Mmax) = {(0, 0)T} and SOL(qmin,Mmin) = {(0, 0)T , (1, 0)T}. Thus,

S∗ ! SOL(qmax,Mmax) ∩ SOL(qmin,Mmin), i.e., the inclusion is strict. Now we show that

the equality holds true if q(w) is replaced by a constant vector q̃ = (1, 1)T , i.e., q(w) = q̃

for all w ∈ Ω. Actually, in this case, only one entry in every row of the expansive matrix

(M(w), q) is dependent on w, and hence the hypothesis in Theorem 2.3 holds. By direct

calculation again, we have S∗ = {(0, 0)}, SOL(q,Mmax) = {(0, 0)T}, and SOL(q,Mmin) =

{(0, 0)T , (1, 0)T , (0, 1)T} under this case. Therefore, S∗ = SOL(q,Mmax) ∩ SOL(q,Mmin).

Along the same lines as that in Theorems 2.2 and 2.3, we present a set of descriptions

of the solution set S∗.

Corollary 2.5. The following statements hold.

(a) Consider the SINCP(F (·, w),Ω). If Ω is compact and F (x, ·) is continuous on Ω for

each x, then

S∗ = SOL(αFmin + βFmax) ∩ {x|Fmin(x) ≥ 0}
= SOL(Fmin) ∩ {x|xTFmax(x) ≤ 0}

where α ≥ 0 and β > 0.
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(b) Consider the SILCP(q(w),M(w),Ω). If Ω is compact and M(w) and q(w) are con-

tinuous on Ω, then

S∗ ⊇ SOL(αqmin + βqmax, αMmin + βMmax) ∩ {x|Mminx+ qmin ≥ 0}
= SOL(qmin,Mmin) ∩ {x|xT (Mmaxx+ qmax) ≤ 0}

where α ≥ 0 and β > 0. Furthermore, if in each row of the expansive matrix

(M(w), q(w)), the minimum (and maximum) is attained by a common ŵ (and w̄),

then the equality holds.

Proof. As mentioned, the arguments are similar to those for Theorems 2.2 and 2.3. In

view of this, we only provide sketch proof. To see part(a), we only need to check whether

S∗ ⊇ SOL(αFmin + βFmax) ∩ {x|Fmin(x) ≥ 0} =: A

because the reverse inclusion is clear. Suppose x∗ ∈ A which says Fmin(x∗) ≥ 0 and

αFmin(x∗) + βFmax(x∗) ≥ 0, x∗ ≥ 0,
(
αFmin(x∗) + βFmax(x∗)

)T
x∗ = 0.

Then, we have

0 =
(
αFmin(x∗) + βFmax(x∗)

)T
x∗ ≥ (α + β)Fmin(x∗)Tx∗ ≥ 0

which implies Fmin(x∗)Tx∗ = 0. Plugging it into the first equality above yields Fmax(x∗)Tx∗ =

0. This means x∗ ∈ SOL(Fmin) ∩ SOL(Fmax) = S∗ by Theorem 2.2.

The proof for part (b) is not repeated here. 2

We next turn our attention to the feasibility of SICP. The feasibility issue for the

complementarity problem is always important because in some real life applications,

such as in engineering design and economy, the data are restricted in domain region not

whole space. Before proceeding, let us introduce the following concept, which reduces

to that of S-matrix in classical complementarity problem when Ω only contains a single

element.

Definition 2.6. The matrix M(w) is said to be a semi-infinite S-matrix relative to a set

Ω if there exists a vector z > 0 such that M(w)z > 0 for all w ∈ Ω.

With this preparation, the condition that guarantees the feasibility of SICP can be

stated.

Theorem 2.7. Consider the SILCP(q(w),M(w),Ω). Let Ω be compact and M(·) be

continuous on Ω. Then M(w) is a semi-infinite S-matrix relative to Ω if and only if the

SILCP(q(w),M(w),Ω) is feasible for all q ∈ C(Ω), where C(Ω) denotes all continuous

mapping on Ω.
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Proof. We first show “only if” part. From the facts that Ω is compact and that M(w)z >

0 for all w ∈ Ω, there exists a sufficiently small scalar α > 0 such that M(w)z ≥ αe for all

w ∈ Ω where e = (1, 1, · · · , 1)T . Now choose µ > 0 with µe > −qmin. Letting µ̄ = µ
α

, it

follows that µ̄z ≥ 0 and M(w)(µ̄z) + qmin ≥ 0. Therefore, µ̄z is a feasible point. We next

show “if” part. Let q(w) := q̃ < 0 for all w ∈ Ω. The feasibility of SILCP(q(w),M(w),Ω)

(i.e. SILCP(q̃,M(w),Ω)) means the existence of a vector z ≥ 0 such that M(w)z ≥ −q̃
for all w ∈ Ω. Note that when λ > 0 small enough we have z + λe > 0 and λMmine > q̃.

Therefore,
M(w)(z + λe) = M(w)z + λM(w)e

≥ M(w)z + λMmine

> M(w)z + q̃

≥ 0.

This completes the proof. 2

As a direct consequence of Theorem 2.7, the following result furnishes a simple crite-

rion for SILCP(q(w),M(w),Ω) to be feasible.

Corollary 2.8. Consider the SILCP(q(w),M(w),Ω). Suppose Ω is compact and M(w)

is continuous on Ω. If Mmin is an S-matrix, then SILCP(q(w),M(w),Ω) is feasible for

all q ∈ C(Ω).

Proof. From (2.4) and the definition of S-matrix, it can be easily verified that if Mmin

is an S-matrix (i.e. Mminz > 0 for some z > 0), then M(w)z > 0 for all w ∈ Ω, implying

that M(w) is a semi-infinite S-matrix. Therefore, Theorem 2.7 is applicable. 2

For simplicity, we write SILCP(0,M(w),Ω) and LCP(0,M(w)) as SILCP(M(w),Ω)

and LCP(M(w)), respectively. In a similar manner, their corresponding solution sets are

written as SOL(M(w),Ω) and SOL(M(w)), respectively.

Theorem 2.9. Consider the SILCP(M(w),Ω). Suppose Ω is compact and M(w) is

continuous on Ω. If M(w) is a copositive matrix for each w ∈ Ω, then

{x ∈ Rn
+|MT

maxx ≤ 0} ⊆ S∗. (2.6)

Proof. Since M(w) is copositive matrix, we have {x ∈ Rn
+|M(w)Tx ≤ 0} ⊆ SOL(M(w))

by Theorem 3.8.13 in [10]. Hence
⋂
w∈Ω

{x ∈ Rn
+|M(w)Tx ≤ 0} ⊆

⋂
w∈Ω

SOL(M(w)). Using

the facts that S∗ =
⋂
w∈Ω

SOL(M(w)) by Theorem 2.1 and that MT
maxx ≥ M(w)x for all

x ∈ Rn
+ and w ∈ Ω, we get the result immediately. 2

The aforementioned result indicates that we can find a solution of SILCP(M(w),Ω)

by checking the left set in (2.6).
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3 Equivalent Reformulation

In this section, we show that the SICP can be equivalently reformulated as typical semi-

infinite min-max programming problems. To begin, we recall that a function φ : R2 → R
is an NCP function, if it has the property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

In the last decade, NCP functions have been used as a powerful tool for dealing with

the classical complementarity problem, because it allows us to reformulate the comple-

mentarity problems as equations or minimization problems. Such formulations are very

beneficial for both analytical and computational purpose. Indeed, powerful theories from

classical analysis of systems of equations can be applied to treat the classical complemen-

tarity problem for developing the existence of solutions and for analyzing these solutions;

efficient algorithms for solving equations and optimization problems can be employed

and extended to solve the classical complementarity problem. For an excellent study of

this topic, please refer to [12].

Analogous to the classical complementarity problem, we obtain the equivalent formu-

lation of the SICP as a system of equations:

x ∈ S∗ ⇐⇒ Φ(x,w) = 0 ∀w ∈ Ω,

where Φ : Rn × Ω→ Rn is defined by

Φ(x,w) =

 φ(F1(x,w), x1)
...

φ(Fn(x,w), xn)

 .

A straightforward choice of a residual function is

r(x) = max
w∈Ω
‖Φ(x,w)‖2.

Clearly, to solve the semi-infinite complementarity problem is the same as to find a root

of r(x) = 0, or equivalently, to find an optimal solution of the following minimization

problem with zero objective value:

min
x∈Rn

max
w∈Ω
‖Φ(x,w)‖2.

Noting that this minimization problem is a typical semi-infinite min-max programming

problem [24] (also called min-max programming in some literature), it offers another

explanation of why we call the problem (1.1) as semi-infinite complementarity problem.

Note also that the residual functions involved for semi-infinite complementarity problem

are expressed by pointwise supremum of a family of functions. Although such functions

fail to preserve smoothness, they enjoy some other nice properties, such as semidifferen-

tiable and semismoothness. Toward this end, let us introduce the following concept.
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Definition 3.1. We say that the semi-infinite strict complementarity condition holds at

x if min{Fi(x,w), xi} = 0 and max{Fi(x,w), xi} > 0 for all w ∈ Ω and i = 1, 2, · · · , n.

In the case of Ω consisting of a single element, the definition reduces to the strict com-

plementarity condition for the classical complementarity problem. Here we list several

NCP-functions which we will focus on:

φ1(a, b) = min(a, b),

φ2(a, b) =
√
a2 + b2 − (a+ b),

φ3(a, b) =
√
{[φ2(a, b)]+}2 + α[(ab)+]2, α > 0,

φ4(a, b) = φ2(a, b)− αa+b+, α > 0,

φ5(a, b) =
√

[φ2(a, b)]2 + α(a+b+)2, α > 0,

φ6(a, b) =
√

[φ2(a, b)]2 + α[(ab+)]4, α > 0

φ7(a, b) =
√

[φ2(a, b)]2 + α[(ab)+]2, α > 0,

and the corresponding residual functions constructed via φi is denoted by ri for i =

1, 2, · · · , 7. The semismoothness of the residual functions ri for i = 1, 2, · · · , 7 are given

in Theorem 3.3 for which the following lemma is needed.

Lemma 3.2. [26, Theorem 10.31] and [21, Theorem 3.2] Let Y be a compact subset in Rm.

Consider the max-function θ(x) = max
y∈Y

g(x, y). If the gradient ∇xg(·, ·) is continuous on

Rn × Y , then θ is semidifferentiable and semismooth.

Theorem 3.3. Consider the SINCP(F (·, w),Ω). Suppose Ω is compact and F is contin-

uously differentiable on Rn × Ω. Then, the following conclusions hold.

(a) If the strictly semi-infinite complementarity condition holds at every point in a cer-

tain neighborhood of x, then r1 is semidifferentiable and semismooth at x.

(b) The function ri for i = 2, 3, · · · , 7 is semidifferentiable and semismooth.

Proof. The desired results follow from Lemma 3.2 and the facts of (φi)
2 for i = 2, 3, · · · , 7

being continuously differentiable [29] as well as (φ1)2 being continuously differentiable in

the presence of the strict complementarity condition [12]. 2

4 Error Bounds

We say that a residual function r(x) is a global (local) error bound for SICP if there

exists some constant c > 0 (and ε > 0) such that for each x ∈ Rn (when r(x) ≤ ε)

dist(x, S∗) ≤ cr(x), (4.1)
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where dist(x, S∗) = inf{‖x−x∗‖ | x∗ ∈ S∗}. The theory of error bounds has a wide range

of applications in different areas, for example, sensitivity analysis and the convergence

analysis of the numerical methods; see [23], which presents an excellent survey of the

theory of error bound and its relations to other issues. In particular, the question about

the error bounds for the classical complementarity problem has been answered elegantly;

see [12, Chapter 6]. Taking this fact into account, it is not difficult to treat the case

where S∗ happens to be SOL(F (·, w)) for some w ∈ Ω. For any fixed w ∈ Ω, denote by

r(x,w) the residual function of NCP(F (·, w)).

Theorem 4.1. Consider the SINCP(F (·, w),Ω). Suppose the solution set S∗ is nonempty

and S∗ = SOL(F (·, w0)) for some w0 ∈ Ω. If r(x,w0) is a global (or local) error bound

for the NCP(F (·, w0)), then r(x) = max
w∈Ω

r(x,w) is a global (or local) error bound for the

SINCP(F (·, w),Ω).

Proof. When r(x,w0) is a global error bound, there exists c > 0 such that

dist(x, SOL(F (·, w0))) ≤ cr(x,w0) ∀x ∈ Rn,

which, together with the identity S∗ = SOL(F (·, w0)) by hypothesis, implies that

dist(x, S∗) = dist(x, SOL(F (·, w0))) ≤ cr(x,w0) ≤ cr(x), ∀x ∈ Rn.

This completes the proof. 2

To deal with the general case, we introduce the concept of ε-error bounds: Given

ε ≥ 0, we say that a residual function r(x) is an ε-error bound for SICP if there exists

c > 0 such that

dist(x, S∗) ≤ cr(x) + ε ∀x ∈ Rn.

Obviously, if ε = 0, this definition reduces to the error bound defined by (4.1).

Theorem 4.2. Consider the SILCP(q(w),M(w),Ω). Suppose the solution set S∗ is

nonempty. If M(w0) is an R0-matrix for some w0 ∈ Ω, then there exist c > 0 and ε > 0

with ε ≤ diam
(
SOL(q(w0),M(w0))

)
such that

dist(x, S∗) ≤ cr(x) + ε

where r(x) = max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖.

Proof. Since M(w0) is an R0-matrix, SOL(q(w0),M(w0)) is bounded. This means the

existence of ε > 0 such that SOL(q(w0),M(w0)) ⊆ S∗ + εB. Consequently,

dist(x, S∗) ≤ dist(x, SOL(q(w0),M(w0))) + ε, ∀x ∈ Rn. (4.2)

12



Noting that S∗ ⊆ SOL(q(w0),M(w0)), a simple upper bound of ε is the diameter of the set

SOL(q(w0),M(w0)). For the classical linear complementarity problem LCP(q(w0),M(w0)),

by [20, Theorem 2.1], there exists c > 0 such that

dist(x, SOL(q(w0),M(w0))) ≤ c ‖min
(
x,M(w0)x+ q(w0)

)
‖ ∀x ∈ Rn,

from which and (4.2) the desired result follows. 2

As evident from the above proof, the parameter ε represents the degree of approxi-

mation of the sets S∗ and SOL(q(w0),M(w0)). This is illustrated by Example 4.3 below.

Example 4.3. Consider the SILCP(q(w),M(w),Ω) with

M(w) =

(
1 w − 1

w − 1 w

)
, q(w) =

(
1− w

0

)
, and Ω = [0, 1].

It is easy to see that SOL(qmax,Mmax) = SOL(qmin,Mmin) = SOL(q(1),M(1)) =

{(0, 0)} and SOL(q(0),M(0)) = {(x1, x2)|x1 = 0, 0 ≤ x2 ≤ 1}. From Theorem 2.3, we

have {(0, 0)} = SOL(qmax,Mmax) ∩ SOL(qmin,Mmin) ⊆ S∗ ⊆ SOL(q(1),M(1)) = {(0, 0)},
which in turn means that S∗ = {(0, 0)}. Clearly, we have diam(SOL(q(0),M(0))) = 1

and hence SOL(q(0),M(0)) ⊆ S∗ + B. On the other hand, it can be easily verified that

M(0) is an R0-matrix, and hence LCP(q(0),M(0)) has a global error bound. By simple

calculation, we get dist(x, SOL(q(0),M(0))) ≤
√

3‖min
(
x,M(0)x+q(0)

)
‖ for all x ∈ R2.

In summary, the inequality in Theorem 4.2 holds true by taking c =
√

3 and ε = 1.

Theorem 4.4. Consider the SILCP(q(w),M(w),Ω). Suppose Ω is compact and M(w)

is continuous on Ω. If the solution set S∗ is nonempty, then

r(x) ≤ cdist(x, S∗) ∀x ∈ Rn,

where r(x) = max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖ and c = 2 + max

w∈Ω
‖M(w)‖.

Proof. Letting x ∈ Rn be arbitrary and x̄ be a projection of x onto S∗, we get

r(x) = max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖

= max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
−min

(
x̄,M(w)x̄+ q(w)

)
‖

= max
w∈Ω
‖x−

(
x−M(w)x− q(w)

)
+
− x̄+

(
x̄−M(w)x̄− q(w)

)
+
‖

≤ ‖x− x̄‖+ max
w∈Ω
‖
(
x−M(w)x− q(w)

)
+
−
(
x̄−M(w)x̄− q(w)

)
+
‖

≤ 2‖x− x̄‖+ max
w∈Ω
‖M(w)(x− x̄)‖

≤ (2 + max
w∈Ω
‖M(w)‖)‖x− x̄‖,
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where the second inequality follows from the nonexpansivity of the projection mapping

[26, Corollary 12.20]. 2

The foregoing theorem shows that the order of the distance from any point x to the

solution set S∗ is at least as big as r(x). Therefore, in order to be an error bound, a

residual function must bound r(x). More precisely, we know from Theorem 4.4 that

r(x) ≤ c1dist(x, S∗), for some c1 > 0. (4.3)

Hence if other residual function, say η(x), is an error bound (i.e., dist(x, S∗) ≤ c2η(x)),

we must have

r(x) ≤ c1dist(x, S∗) ≤ c1c2η(x).

This means that in order to be an error bound, other residual function must bound r(x).

In addition, if r(x) is an error bound (i.e., dist(x, S∗) ≤ c3r(x)), then it follows from (4.3)

that
1

c1

r(x) ≤ dist(x, S∗) ≤ c3r(x).

Hence r(x) can be used as an estimate to the distance dist(x, S∗) since the latter is

non-computable (or difficult) in some cases.

Theorem 4.5. Consider the SILCP(q(w),M(w),Ω). Suppose the matrices Mmax and

Mmin are both positive semidefinite and one of them is an R0-matrix. If SOL(qmin,Mmin)∩
SOL(qmax,Mmax) 6= ∅, then there exist ε > 0 and c > 0 such that

dist(x, S∗) ≤ c(rmin(x) + rmax(x)) ∀x satisfying rmin(x) + rmax(x) ≤ ε,

where rmin(x) = ‖min
(
x,Mminx+ qmin

)
‖ and rmax(x) = ‖min

(
x,Mmaxx+ qmax

)
‖.

Proof. The positive semidefiniteness of the matrices Mmax and Mmin implies the polyhe-

dron of the solution sets SOL(qmin,Mmin) and SOL(qmax,Mmax), see [10, Theorem 3.1.7].

Since the intersection of these two sets is nonempty, it follows from [3, Corollary 3, pp.147]

that the collection set {SOL(qmin,Mmin), SOL(qmax,Mmax)} is bounded linear regularity,

that is, for every bounded subset D, there exists k > 0 such that, for any x ∈ D,

dist(x, SOL(qmin,Mmin) ∩ SOL(qmax,Mmax))

≤ kmax{dist(x, SOL(qmin,Mmin)), dist(x, SOL(qmax,Mmax))}. (4.4)

We know from [20] that the positive semidefiniteness of Mmin implies the existence of

ε1 > 0 and c1 > 0 such that

dist(x, SOL(qmin,Mmin)) ≤ c1rmin(x) ∀x satisfying rmin(x) ≤ ε1. (4.5)

Similarly, for the matrix Mmax, there exist ε2 > 0 and c2 > 0 such that

dist(x, SOL(qmax,Mmax)) ≤ c2rmax(x) ∀x satisfying rmax(x) ≤ ε2. (4.6)
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Suppose, without loss of generality, that the matrix Mmin is an R0-matrix. Thus, the

level set {x|rmin(x) ≤ ε} is bounded (see e.g., [12, Proposition 9.1.26]) which further

implies the boundedness of the set {x|rmin(x) + rmax(x) ≤ ε}. Letting ε = min{ε1, ε2},
c = kmax{c1, c2} and specializing D as {x|rmin(x) + rmax(x) ≤ ε}, we obtain from (4.4)-

(4.6) that

dist(x, SOL(qmin,Mmin) ∩ SOL(qmax,Mmax)) ≤ c(rmin(x) + rmax(x))

for all x satisfying rmin(x) + rmax(x) ≤ ε. Since SOL(qmin,Mmin)∩SOL(qmax,Mmax) ⊆ S∗

by Theorem 2.3, it follows that

dist(x, S∗) ≤ dist(x, SOL(qmin,Mmin) ∩ SOL(qmax,Mmax)) ∀x ∈ Rn.

Combing the last two inequalities yields the desired result. 2

5 Weak Error Bounds

So far, we have studied several fundamental issues in the study of SICP. Needless to

say, most of the results involve the assumption that the solution set is nonempty. In this

section, we will introduce the concept of weak error bounds, which makes sense even if the

solution set is empty. First, however, we consider the level-boundedness of the residual

function r(x) = max
w∈Ω
‖min

(
x,M(w)x + q(w)

)
‖2; that is, the level set {x|r(x) ≤ ε} is

bounded for every ε ≥ 0. This property is very flexible in providing a criterion for the

existence of the solutions, and is crucial to the applications of many algorithms because

the convergence of the iterative algorithms usually occurs in a limiting sense.

Definition 5.1. The matrix M(w) is said to be a semi-infinite R0-matrix relative to a

set Ω if the SILCP(M(w),Ω) has zero as its unique solution, that is,

x ≥ 0, M(w)x ≥ 0, xTM(w)x = 0, ∀w ∈ Ω =⇒ x = 0.

In particular, if Ω is a singleton, the definition reduces to the standard definition of

R0-matrix for the classical complementarity problem. At first glance, the above definition

may seem a bit artificial and restrictive. However, the following result shows the failure

of this recognition.

Theorem 5.2. Consider the SILCP(q(w),M(w),Ω). If M(w0) is an R0-matrix for some

w0 ∈ Ω, then M(w) is a semi-infinite R0-matrix relative to Ω.

Proof. Since M(w0) is an R0-matrix, we have SOL(M(w0)) = {0}, from which and the

fact S∗ ⊆
⋂
w∈Ω

SOL(M(w),Ω) ⊆ SOL(M(w0)) the desired result follows. 2

Theorem 5.3 below asserts that the matrix being a semi-infinite R0-matrix is a nec-

essary and sufficient condition for the residual function r(x) to be level-bounded.
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Theorem 5.3. Consider the SILCP(q(w),M(w),Ω). Suppose Ω is compact and M(w)

and q(w) are continuous. Then, r(x) = max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖2 is level-bounded

if and only if the matrix M(w) is a semi-infinite R0-matrix relative to Ω.

Proof. We first prove the sufficiency. Suppose on the contrary that there exists a

sequence ‖xn‖ → ∞ as n→∞, but {r(xn)} is bounded. We can assume, by passing to

a subsequence if necessary, that xn
‖xn‖ converge to the limit x0 with ‖x0‖ = 1. Taking into

account the continuity of q(·) and M(·) and the compactness of Ω, we see that r(x) is

continuous (see e.g., [24, Corollay 5.4.2]) and q(w) is bounded on Ω. Hence, lim
n→∞

r(xn)
‖xn‖ = 0

and lim
n→∞

q(w)
‖xn‖ = 0 for all w ∈ Ω. Since

r(xn)

‖xn‖2
= max

w∈Ω
‖min

( xn
‖xn‖

,
M(w)xn + q(w)

‖xn‖
)
‖2,

taking the limit gives

max
w∈Ω
‖min

(
x0,M(w)x0

)
‖2 = 0.

This means that the SILCP(M(w),Ω) has x0, a nonzero vector, as a solution, contracting

the definition of the semi-infinite R0-matrix.

Now let us show the necessity. Suppose on the contrary that the SILCP(M(w),Ω) has

a nonzero vector x as a solution. Let I(x) = {i|xi = 0} and J(x) = {i|xi > 0}. The

compactness of Ω and the continuity of q ensure that q(w) is bounded on Ω. Thus there

exists a scalar K > 0 such that, for any k ≥ K,

kxi ≥ qi(w) for all w ∈ Ω and i ∈ J(x). (5.1)

Given any k ≥ K, we have

r(kx) = max
w∈Ω
‖min

(
kx, kM(w)x+ q(w)

)
‖2

≤
n∑
i=1

max
w∈Ω

[
min

(
kxi, (kM(w)x)i + qi(w)

)]2
. (5.2)

We now consider the following two cases.

Case 1. If i ∈ J(x), then (M(w)x)i = 0. It follows from (5.1) that

max
w∈Ω

[
min

(
kxi, k(M(w)x)i + qi(w)

)]2
= max

w∈Ω
qi(w)2. (5.3)

Case 2. If i ∈ I(x), then, by a simple calculation, we have

[
min

(
kxi, k(M(w)x)i + qi(w)

)]2{ = 0, if k(M(w)x)i + qi(w) ≥ 0,

≤ qi(w)2, if k(M(w)x)i + qi(w) < 0.
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where the inequality in the latter case comes from the fact that qi(w) ≤ k(M(w)x)i +

qi(w) < 0. Thus,

max
w∈Ω

[
min

(
kxi, k(M(w)x)i + qi(w)

)]2 ≤ max
w∈Ω

qi(w)2. (5.4)

Putting the facts (5.2),(5.3), and (5.4) together, it follows that r(kx) ≤
n∑
i=1

max
w∈Ω

qi(w)2 <

∞ for all k ≥ K. This contradicts the level-boundedness of r(x). 2

As shown in our previous discussion, solving the semi-infinite complementarity prob-

lem is equivalent to finding a vector x such that x ∈ SOL(F (·, w)) for all w ∈ Ω. However,

in many situations, it is possible to find a vector x such that x ∈ SOL(F (·, w)) for some

w but not for others. In this case, it is necessary and interesting to give a quantitative

measure of the closeness of each x ∈ Rn to each individual set SOL(F (·, w)) in terms of

residual functions. In other words, we wish to find c > 0 such that

dist(x, SOL(F (·, w))) ≤ cr(x) ∀w ∈ Ω, ∀x ∈ Rn,

or equivalently,

max
w∈Ω

dist(x, SOL(F (·, w))) ≤ cr(x) ∀x ∈ Rn, (5.5)

which is referred as weak error bounds. The importance of introducing this concept is

twofold. First, in (5.5), the solution set S∗ is not assumed to be nonempty, as required in

(4.1). Second, the weak error bound can be easily derived from the error bound because

we always have

max
w∈Ω

dist(x, SOL(F (·, w))) ≤ dist(x, S∗) ∀x ∈ Rn, (5.6)

due to S∗ ⊆ SOL(F (·, w)) for all w ∈ Ω. However, the converse is not necessarily true

unless some more restrictive conditions are imposed, for example, the linear regularity

of the collection {SOL(F (·, w))|w ∈ Ω}; for further details on this subject, see [2, 3, 4,

22, 30]. In addition, the inequality in (5.6) can also be strict. The following example

illustrates this point.

Example 5.4. Consider the SILCP(q(w),M(w),Ω) with

M(w) =

(
w 1− 2w

−w 1− w

)
, q(w) =

(
w

0

)
, and Ω = {0, 1}.

Clearly, we have SOL(q(0),M(0)) = {(x1, x2)|x1 ≥ 0, x2 = 0} and SOL(q(1),M(1)) =

{(x1, x2)|x1 = 0, 0 ≤ x2 ≤ 1}, and hence S∗ = {(0, 0)}, according to the identity that

S∗ = SOL(q(0),M(0)) ∩ SOL(q(1),M(1)). Letting x = (1, 1) yields

max{dist(x, SOL(q(0),M(0))), dist(x, SOL(q(1),M(1)))} = 1 <
√

2 = dist(x, S∗).
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Given d = (d1, · · · , dn) ∈ Rn, we write d ∈ [0, 1]n to means di ∈ [0, 1] for all i =

1, 2, · · · , n. It is known that a matrix A is an P -Matrix if and only if I − D + DA is

nonsingular for any diagonal matrix D = diag(d) with 0 ≤ di ≤ 1, see [13]. This fact will

be used in the proof for the following theorem which gives a significant refinement of [8,

Theorem 3.2], because not only the finiteness of the index set Ω is dropped but also the

error bounds constant is computable.

Theorem 5.5. Consider the SILCP(q(w),M(w),Ω). Suppose M(w) is continuous and

Ω is compact. For each w ∈ Ω, let M(w) be an P -matrix and denote by x∗(w) the unique

solution to LCP(q(w),M(w)). Then,

max
w∈Ω
‖x− x∗(w)‖ ≤ cmax

w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖ ∀x ∈ Rn,

where c = max
d∈[0,1]n

w∈Ω

‖(I −D +DM(w))−1‖ and D = diag(d1, d2, · · · , dn).

Proof. Given any w ∈ Ω, it follows from [7] that

‖x− x∗(w)‖ ≤ max
d∈[0,1]n

‖(I −D +DM(w))−1‖‖min
(
x,M(w)x+ q(w)

)
‖, ∀x ∈ Rn.

Since M(w) is continuous over the compact set Ω, and M(w) is an P -Matrix by hypothe-

sis, then c = max
d∈[0,1]n

w∈Ω

‖(I −D+DM(w))−1‖ is well defined. The desired conclusion follows

by taking the pointwise supremum over the index set Ω. 2

6 Conclusions

Several fundamental issues have been discussed in this paper. The emphasis is on the

solvability, feasibility, semismoothness of residual functions, and error bounds. Overall

speaking, the present work makes the following contributions. First, we characterize

the solution set by investigating its relationship to the solution sets of two classical

complementarity problems, rather than resorting to the fact S∗ =
⋂
w∈Ω SOL(F (·, w))

(see Theorems 2.2 and 2.3 ). Second, we introduce the concept of weak error bounds,

which has particularly attractive in the case where the solution set is empty. In addition,

some important concepts in the study of classical complementarity problem have been

extended to the context of semi-infinite complementarity problem (see Definitions 2.6,

3.1, and 5.1). Several questions merit further investigation: (a) Under which conditions

the solution set S∗ is nonempty? (b) How can we propose an efficient algorithm for

solving SICP by using the differentiability properties of the residual functions? (c) How

can we give an upper bound for the parameter ε as tight as possible in the concept of

ε-error bounds?
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