
Towards Software Architecture at Runtime

Authors Names
Department of Computer Science and Technology

Peking University, Beijing, PRC, 100871
+86 10 62757801-1
{ }@ cs.pku.edu.cn

Abstract

1. Introduction

Software architecture (SA) is the gross structure of a
software system as a collection of components, connectors
and constraints [Perry 92, Shaw 96]. As a bridge between
requirements and implementations, SA simplifies the
comprehension of large systems, supports reuse at multiple
levels, guide the construction of the systems, reveals the
dimensions of the evolution, and facilitates analysis and
management [Garlan 00].
Currently, almost all of the research and experiment focus
on SA at design phase. Such condition makes it hard to
achieve the architecture-based engineering [Garlan 00], i.e.,
to develop, manage and evolve software systems based on
SA systematically. At the same time, the fact that Internet
and wireless network become the dominated runtime
environment makes software systems much more dynamic
and open. The architectures of such systems may be
frequently restructured at runtime, which need to deal with
components evolved dynamically [Garlan 00]. Thus it is
necessary to research SA at runtime. There is few work on
SA at implementation and runtime. ArchJava extends Java
to code architectural information in the implementation and
enforce communication integrity [Aldrich 02]. [Oreizy 98]
studies how SA can support corrective, perfective and
adaptive evolution at runtime and experiments on C2, a
layered, event-based architectural style. [Rosenblum 00]

investigates the architectural concerns in the component
interoperability framework and combines the JavaBean
model with C2 style.
This paper presents a novel technique, called Runtime
Software Architecture (RSA), which has close relation with
SA at design phase (DSA), describing the structure of the
system more concretely and accurately. RSA can keep
consistency and traceability of SA between the
development and runtime and help to manage and evolve
SA at runtime. This paper addresses three fundamental
issues towards RSA:
�

�

�

In order to represent and manipulate RSA at runtime,
RSA should be incarnated as a runtime entity, which
encapsulates all of the architectural information of the
runtime system and allows access and modification of
such data.
In fact, the data encapsulated in RSA is retrieved from
some part of the states of the runtime system. And the
modification of RSA is to modify the states and thus
change the execution semantics of the runtime system.
So there exists casual-connection between RSA and
runtime systems, i.e., the changes made in RSA are
immediately mirrored in the actual state and behavior
of the runtime system. In a word, the casual-
connection enables the management and evolution
based on RSA.
RSA should be integrated with DSA to introduce
current achievements and experiences of SA from the
design phase into runtime, such as formal notations,
graphical representation, reason and validation.
Moreover, such integration facilitates to apply SA
technology to the systems that do not take architecture
as an explicit design activity in the development.

The rest of the paper is organized as follows. Section 2
incarnates RSA through defining what data encapsulated in
RSA and how to manipulate RSA. Section 3 describes what
is and how to implement the casual-connection between
RSA and the runtime system. Section 4 presents the tool for
RSA and how to integrate RSA and DSA. Section 5

discusses related work and Section 6 summarizes the
contributions and identifies the future work of the paper.

2. Incarnation Of RSA

It is a natural way to incarnate RSA in Object-Oriented paradigm,
i.e., to encapsulate architectural data in a set of objects and
investigate operations on these data.

2.1 Data Encapsulated in RSA

As DSA contains the main part of RSA and to keep the
consistency, it is reasonable to define the content of RSA
based on DSA. In order to represent and analyze
architectural design, an ADL (Architecture Description
Language) provides formal notations [Garlan 00], which
usually define the complete contents of SA. Based on
ABC/ADL, the ADL of the Architecture-Based Component
Composition (ABC), some classes are derived to incarnate
RSA, shown in Figure [*]. In fact, the elements of
ABC/ADL have the similar definitions with those of the
ADL Classification and Comparison Framework presented
in [Medvidovic 00]. And the details of ABC/ADL can be
found in [Mei 02]. The incarnation of RSA includes the
following entities:
�

�

�

�

RuntimeSoftwareArchitecture: A RSA consists of the
definitions of a set of components, connectors and
architectures.
ComponentDef and ConnectorDef: A component or
connector can be defined from five aspects. The
Interface Aspect defines players that incorporate the

type of the player (provide or request) and several
method specifications, i.e., MethodDef. There are two
kinds of methods in every player: type-method and

instance-method, because we notice that some
methods are bound to the component type and may be
not executed by any instance, such as creation of
instances, while others are executed by instances. The
Attribute Aspect designates the attributes the
component will use in the interaction with others. The
Property Aspect describes additional information of
the component, e.g. security, version, throughout limit.
Most of the excess architectural information of RSA
over DSA is represented in the Property Aspect of the
component, connector and architecture. The
Dependency Aspect describes the relationship of
dependency between the players. And the Semantic
Aspect uses formal methods to model, or, at least, use
natural language to describe, the behaviors and
features of the elements.
Architecture: An architecture (it is also called
architectural configuration in [Medvidovic 00]) is a
group of interconnected component and connector
instances that comply with the constraints of
architectural styles. It consists of the declarations of
all instances of components and connectors used in the
system and the topologic layout of these instances.

2.2 Operations on RSA

According to the characteristics of the encapsulated data,
the operations provided by RSA can be categorized into the
following:

Access to data: All of the data encapsulated in RSA
can be accessed through the operations named as

“get<Data>”, such as RuntimeSoftwareArchitecture.
getArchitecture().getConnInstances() to explore all of
the connector instances.

Fig. 1 Classes to incarnate the Runtime Software Architecture in UML

Java Virtual Machine

Service Tool

Container System

Naming

Transaction
Security

Deployment
Configuration
Management

Communication

···

Micro
Kernel

···

Container
Component

Modification of the data without changing the state of
the runtime system: Some data of RSA is derived from
DSA to keep consistency and cannot be retrieved from
the runtime system, such as the Semantic Aspect. And
RSA may modify such data to refine DSA, such as
describing the semantics of the players more
concretely and accurately.

�

�

�

Modification of the data that leads to change the state
of the runtime system: Almost all of the data
encapsulated in RSA is casually connected with the
state and behavior of the runtime systems. For
example, when changing the name of the
implementation class of a component as
ComponentDef.properties.put(“ejb-class”,”…”), the
current implementation class will be replaced by the
new one identified by the second parameter.

Fig. 2 Pluggable Architecture of PKUAS

Invocation of the instances of components: It allows to
invoke one of the Architecture.compInstances with
any methods defined in the PlayerDef.methods.

In practice, the above operations require the ability of
casual-connection provided by the runtime system.

3. Casual-Connection between RSA and
PKUAS

In order to keep consistency between RSA and the
underlying runtime system through the casual-connection, it
has to explore which states of the runtime system can be
casually connected with the data encapsulated in RSA and
what behavior of the runtime system can be casually
connected with the operations on RSA.

3.1 Synopsis of PKUAS

PKUAS is an open J2EE-compliant application server,
implementing all of the functionalities specified in [EJB 1.1]
and the Local Interface in [EJB 2.0]. Shown as Figure [*],
the internal functionalities of PKUAS are modularized as
follows:
� Container System: A container is the runtime space for

components deployed by applications, managing their
lifecycle and runtime contexts [J2EE 1.2]. PKUAS
implements EJB containers for stateless session bean,
stateful session bean and bean-managed entity bean.
One instance of a container holds all instances of one
EJB. And a container system consists of the instances
of the containers holding all EJBs in an application.
Such organization of the containers facilitates the
configuration and management specific to individual
applications, such as security realm per application
and architectural states of the application.

� Service: It provides the common functions, e.g.,
naming, communication, security and transaction.

� Tool: it provides functions to facilitate the operation
of PKUAS, i.e., deployment and management.

� Micro kernel: It provides a registry for the above
modules and other management functions, e.g., class
loading, relation, timer and monitor.

In the above entities, EJBs are the components in RSA, and
the container holds the states related to the component data
in RSA. The communication service provides connectors
and holds the states related to the connector data in RSA.
The services except communication hold the states related
to the component properties, such as method permission
and transaction attribute. And the container system holds
the states related to the architecture data in RSA.

3.2 States Casually Connected with RSA

All of the states of PKUAS are derived from the
deployment package, configuration and runtime context of
the runtime system. Typically, the ComponentDef is
casually connected with the states derived from the
deployment package, the ConnectorDef is casually
connected with the states derived from the configuration of
the communication service configuration, and the
Architecture is casually connected with the states derived
from the runtime context and the configuration of the
services except communication.

3.2.1 States Casually Connected with ComponentDef
A J2EE application is packaged and deployed as an archive
with suffix of “.war”, “.ear” or “.jar”. Such archives
typically contain interfaces and implementations of EJBs
and deployment descriptors of EJBs and the application.
The deployment descriptor describes the structure of EJBs
and their external dependencies and the application
assembly information, specifying how to compose
individual EJBs into an application [EJB 1.1]. Most of the
states derived from the deployment package is hold and
operated by the EJB containers.

Table. 1 Casual-connection between RSA data and
PKUAS states derived from the deployment package

RSA Data Elements in Deployment Package

Name of
ComponentDef

<ejb-name> in <module>

Name of the
provide player of
ComponentDef

<home> and <remote> or <local-home> and
<local> in <session> or <entity>

Name of the
request player of
ComponentDef

<home> and <remote> in <ejb-ref>; <local-
home> and <local> in <ejb-local-ref>

Attributes of
ComponentDef

<env-entry>, <resource-ref>, <cmp-field>
and <primkey-field>

Properties of
ComponentDef

<ejb-class>, <session-type>, <persistence-
type>, <prim-key-class>, <transaction-type>,
<reentrant>, <security-role-ref>, <security-
role>, <method-permission>

MethodDef of the
provide player of
ComponentDef

They can be easily retrieved from the
interface classes of EJBs through the
reflective mechanism of Java language, i.e.,
the JDK package of java.lang.reflect.

The MethodDef of the request player cannot be retrieved
from the states derived from the deployment package. The
data is very important to reason about RSA because
component A can provide a player for another component
B (or A can be connected to B through a connector) if and
only if the MethodDef of the provide player of A contains
the MethodDef of the request player of B. But the
MethodDef of the request player can be retrieved from the
data encapsulated by the log service, which can record all
of the messages received or sent by EJBs. The outgoing
messages contain the name and remote reference of the
target EJB and the details of the invoked method. When all
of the use cases of the runtime application are executed at
least once, all of the MethodDefs of the request players are
retrieved completely.

3.2.2 States Casually Connected with ConnectorDef
There have three typical connector types for EJBs,
including RMI-IIOP (Remote Method Invocation – Internet
Inter-ORB Protocol), RMI-JRMP (Jave Remote Method
Protocol) and EJBLocal. RMI is the default distributed
object model of Java. The RMI-IIOP supports interactions
between EJBs and other CORBA-compliant systems. And
the RMI-JRMP support interactions between EJBs and
other RMI-compliant Java systems. As RMI supports
interactions between EJBs deployed in the same or different
JVM (Java Virtual Machine) with the pass-by-value
semantics, the EJBLocal supports interactions between
EJBs collocated in the same JVM with the pass-by-
reference semantics and much lower cost. Figure [*] shows
the specification of RMI-IIOP and EJBLocal in ABC/ADL,
which is discussed in the next section. In this specification,

the use of “*” in the player definitions denotes that the
player’s methods are the same as the component player that
connects to it.

Connector RMIoverIIOP is OO.Connector {
 Interfaces {
 provide player Callee is Connector.Callee {*}
 request player Caller is Connector.Caller {*}
 }
 Properties {

WireProtocol = iiop;
Version = 1.2; //version of IIOP
。。。

}
Connector EJBLocal is OO.Connector {
 Interfaces {
 provide player Callee is Connector.Callee {*}
 request player Caller is Connector.Caller {*}
 }
 Properties {

WireProtocol = javaLanguageDefault;
Version = 2.0; // version of EJB
。。。

}
Fig. 3 RMIoverIIOP and EJBLocal specified in ABC/ADL

3.2.3 States Casually Connected with Architecture
In the application deployed in PKUAS, the name of
Architecture is equal to the name of the deployment
package. And one ComponentDef retrieved from the
deployment package must have the corresponding
ComponentInstance with its multiplicity casually connected
with the state in the EJB containers.
The <ejb-ref> and <ejb-local-ref> in the deployment
descriptor identify the connector instances between two
components. And the type of the connector instance is
casually connected with the type of the communication
proxy at the client side. For example, if EJB A is invoked
by EJB B through RMI-IIOP and by EJB C through RMI-
JRMP, there have two connector instances, i.e., B2A with
the type of RMIoverIIOP and C2A with the type of
RMIoverJRMP.
Most of the Properties are casually connected with the
states derived from the configuration of the services except
communication, such as the security realm and naming
space.

3.3 Behavior Casually Connected with RSA

In the four types of the operations on RSA, only the modification
of the data that leads to change the state of the runtime
system is casually connected with behavior of the runtime
system. These data is typically encapsulated either in the

ComponentDef and ComponentInstance or in the
ConnectorDef and ConnectorInstance.

3.3.1 Behavior Casually Connected with Components
In order to add or remove functions other than the standard
functions defined in [EJB 1.1] of the contain, we employ
the design pattern of interceptor to dynamically insert extra
functions before and after the invocation of the
implementation of EJBs. Typically, the services used by the
container should have corresponding interceptors, such as
security interceptor, log interceptor and transaction
interceptor, shown in Figure [*]. Moreover, the instance

manager is
EJBs, such
the instanc
related to
deploymen
The mo
Component
following b
�

�

�

�

To ad
add or
To mo
Comp
corres
includ
buffer
transa
implem
from t
To mo
Comp
will
corres
the “tr
transa
To mo
Comp
the co
instan

More det
reconfiguri

found in [Wang 02]. And the modification of the PlayerDef,
i.e., to update the interfaces of EJBs, is under development.

3.3.2 Behavior Casually Connected with Connectors
The communication service of PKUAS is implemented
with a flexible interoperability framework that can add,
modify and delete communication protocols embedded in
PKUAS, shown in Figure [*]. PKUAS interoperability

framework separates the interoperability aspect from the
container in order to enable EJBs to interoperate with other
components through multiple protocols, such as IIOP,

P K U A S C om m u nic a tion Se rv ic e

P K U A S
N am ing
S erv ice

Transport

P K U A S C on ta ine r

C omponent

S keleton
C onnector

Stub
A cceptor

C O S
N aming

R M I
R egistry

U D D I IIO P

JR M P

SO A P

 PKUAS Container
 Instance

Manager

Transaction

Security

Log

Skeleton

…
instance

Context Manager

Incoming
and

Outgoing
messages

Interceptors

Fig. 4 Structure of PKUAS Container
 responsible for the lifecycle management of
 as creating, releasing, passivating and activating
es. The context manager holds all of the data
EJBs, including the states derived from the

t package and runtime context.
dification of the ComponentDef and
Instance will make PKUAS perform the
ehavior:

�

�

d or remove ComponentDef will make PKUAS
 remove the corresponding EJBs.
dify the value of the “ejb-class” in Properties of
onentDef will make PKUAS update the
ponding EJBs with new implementation classes,
ing blocking the incoming invocations,
ing the old instances until its execution or
ction is over, creating new instances of the new

entation and copying the unchanged attributes
he old instances.
dify the value of the elements in Properties of

onentDef that relate to the usage of the services
make PKUAS add, remove or update the
ponding interceptors. For example, to change
ansaction-type” will change the behavior of the
ction interceptor.
dify the value of the elements in Properties of

onentInstance will make PKUAS reconfigure
rresponding containers, such as the size of the
ce pool and the rule to passivate the instances.
ails of adding, removing, updating and
ng EJBs and interceptors in PKUAS can be

JRMP an
the trans
message
connecto
interope
protocol
responsi
underlyi
can publ
with the
interope
interope
SOAP a
Then,
Connect
followin

To
PK
add
pro
suc
suc
To
allo
pub
acc
com
the
inte
Con
the
Fig. 5 PKUAS Interoperability Framework
d SOAP. The stub and skeleton are responsible for
formation between the invocations of RMI and the
s of the underlying interoperability protocol. The
r and acceptor transform the messages between the

rability protocol and the underlying transport
 and manage the connections. The transport is
ble for sending and receiving messages through the
ng transport protocol. And PKUAS naming service
ish and retrieve different interoperability addresses
 integration of the naming services specific to the
rability protocols. Currently, PKUAS allows EJBs
rate with other components through IIOP, JRMP,
nd EJBLocal.
the modification of the ConnectorDef and
orInstance will make PKUAS perform the
g behavior:

add or remove the ConnectorDef will make
UAS reconfigure the communication service with
ing or removing the corresponding interoperability
tocol. Moreover, the deletion of the ConnectorDef
ceeds only when there is no ConnectortInstance of
h type.
add the ConnectorInstance will make PKUAS
cate a new acceptor to the “to” component and
lish the interoperability address of the new
eptor into the naming service. Then the “from”
ponent can invoke the “to” component through

 new connector. This operation is very useful in the
gration or evolution. For example, to add a new
nectorInstance as the type of RMI-JRMP allows

 legacy Java program to invoke an EJB, and to add

a new ConnectorInstance as the type of RMI-SOAP
enables an EJB to act as a Web Service.

�

�

To remove the ConnectorInstance will make PKUAS
reclaim the corresponding acceptor from the “to”
component and remove its interoperability address
from the naming service. Then the “from” component
cannot invoke the “to” component through the
corresponding connector any more.
To modify the value of the elements in Properties of
ConnectorInstance will make PKUAS reconfigure the
corresponding acceptor or connector, such as the size
of the message buffer, the transport semantics and the
maximum number of the concurrency connections.

4. Integration of RSA and DSA

The integration between RSA and DSA means that RSA
retrieved from the runtime system can be represented and
analyzed in the architecting tools, and at the same time, SA
constructed at design phase can facilitate the retrieval of
RSA. In fact, the major challenge of the integration is the
transformation between SA specified in ADL and the data
encapsulated in RSA.

4.1 ABC/ADL and ABCTool

ABC/ADL is the architecture description language of the
Architecture-Based Component Composition (ABC), which
employs SA descriptions as frameworks to develop
components as well as blueprints for constructing systems,
while using middleware as the runtime scaffold for
component composition [Chen 02]. Figure [*] shows part
of the architecture of eShop, the sample J2EE application
discussed in the next section, specified in ABC/ADL. We
also provide the ABCTool to support the design of SA in
ABC/ADL, shown in Figure [*]. More details of ABC/ADL
and ABCTool can be found in [Mei 02].

Component ShoppingCart is J2EE.EJB {
 Interfaces {
 provide player ShoppingCartHome is EJB.Home {
 instance-method{ ShoppingCart create();
 。。。 }}

provide player ShoppingCart is EJB.Object {}
request player OrderHome is J2EE.EJB.Home {};
。。。

 }}
Component Order is J2EE.EJB{}
 。。。
Architecture eShop_Architecture{

uses{
 Component ShoppingCart : sCarts[];

 Component Order : orders[];
。。。
Connector RMIoverIIOP : shoppingCartToOrderHome[];
。。。
Variable i : int;

}
config main {

 sCarts[i].OrderHome connects
shoppingCartToOrderHome[i].Callee;

 shoppingCartToOrderHome[i].Caller connects
orders[i].OrderHome;

 。。。
}}

Fig. 6 Description of eShop in ABC/ADL

Fig. 7 Graphic Modeling of eShop using ABCTool

4.2 RSATool

The RSATool allows administrators to manage and evolve
PKUAS and the deployed applications through the
representation and manipulation of RSA. Figure [*] shows
the main window of RSATool, representing RSA of eShop
that is a simple B2C application allowing customers to
purchase computer products from Internet. The location of
the visual elements is very important to make the
representation clearer and more understandable. Such
location information cannot be retrieved from the runtime
system and should be complemented through the drag and
drop of the visual elements by the administrator. After the
“Save View” command in the “View” menu is executed,
RSATool will save the location information and retrieve it
at the next time.

4.3 Transformation Between RSA and DSA

One of the main reasons to incarnate RSA based on
ABC/ADL is to make the natural transformation between
them. Because all of the elements of ABC/ADL are mapped
into the data encapsulated in RSA, the description of SA in

ABC/ADL can be directly retrieved from the operation of
generateADL() of RuntimeSoftware-Architecture.
Moreover, PKUAS can retrieve information from the
ABC/ADL description embedded in the deployment
package to construct RSA faster. Currently, we develop a
RSA tool independent of ABCTool. And the two tools are
integrated through the description of SA in ABC/ADL,
shown as Figure [*].

ABCTool ABC/ADL RSATool

Fig. 9 Integration of RSA and DSA

5. Conclusion and Future Work

Acknowledgments

This effort is sponsored by the State 863 High-Tech Program,
National Natural Science Foundation of China, and Major
Program of Ministry Of Education of China.

References

[1] Jonathan Aldrich, Craig Chambers and David Notkin,
ArchJava: Connecting Software Architecture to
Implementation, Proceedings of 24th International
Conference on Software Engineering, ACM Press 2002.

[2] Bass L., Clements P. and Kazman R., Software Architecture
in Practice, Published by Addison-Wesley in the SEI Series,
1998.

[3] Feng Chen, Qianxiang Wang, Hong Mei, Fuqing Yang, An
Architecture-Based Approach for Component-Oriented
Development, Proceedings of COMPSAC 2002.

[4] David Garlan, Software Architecture: A Roadmap, The
Future of Software Engineering 2000, Proceedings of 22nd
International Conference on Software Engineering, ACM
Press 2000.

[5] Nenad Medvidovic and Richard N. Taylor, A Classification
and Comparison Framework for Software Architecture
Description Languages, IEEE Transaction On Software
Engineering, Vol. 26, No. 1, p70-93, January 2000.

[6] Hong Mei, Feng Chen, Qianxiang Wang, Yaodong Feng,
ABC/ADL: An ADL Supporting Component Composition,
accepted by 4th International Conference on Formal
Engineering Methods (ICFEM2002).

[7] Peyman Oreizy, Nenad Medvidovic and Richard N. Taylor,
Architecture-Based Runtime Software Evolution,
Proceedings of 20th International Conference on Software
Engineering, ACM Press 1998.

[8] D. E. Perry and A. L. Wolf, Foundations for the Study of
Software Architecture, ACM SIGSOFT Software
Engineering Notes, vol. 17, no. 4, pp. 40-52, October 1992.

[9] David S. Rosenblum and Rema Natarajan, Supporting
Architectural Concerns in Component Interoperability
Standards IEE Proceedings – Software Special Issue on
Component-Based Software Engineering, 2000.

[10] M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall, April 1996.

[11] Sun Microsystems, Java 2 Platform, Enterprise Edition
Specification, V1.2, Final Release, http://java.sun.com/j2ee,
December 1999.

[12] Sun Microsystems, Enterprise JavaBeans Specification, V1.1,
Final Release, http://java.sun.com/j2ee, December 1999.

[13] Sun Microsystems, Enterprise JavaBeans Specification, V2.0,
Final Release, http://java.sun.com/j2ee, August 2001.

[14] Qianxiang Wang, Feng Chen, Hong Mei, Fuqing Yang,
Using Application Server To Support Online Evolution,
International Conference on Software Maintenance
(ICSM2002), 3-6 October 2002, Montréal, Canada.

l
Fig. 8 GUI of RSAToo

http://java.sun.com/j2ee
http://java.sun.com/j2ee
http://java.sun.com/j2ee

