
Parameter Estimation as a Problem in Statistical
Thermodynamics

Keith A. Earle∗ and David J. Schneider†

∗Physics Department, University at Albany (SUNY)
kearle@albany.edu, http://earlelab.rit.albany.edu

†USDA Agricultural Research Service and Department of Plant Pathology
Cornell University, Ithaca NY 14853

Abstract. In this work, we explore the connections between parameter fitting and statistical ther-
modynamics using the maxent principle of Jaynes as a starting point. In particular, we show how
signal averaging may be described by a suitable one particle partition function, modified for the
case of a variable number of particles. These modifications lead to an entropy that is extensive in
the number of measurements in the average. Systematic error may be interpreted as a departure from
ideal gas behavior. In addition, we show how to combine measurements from different experiments
in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We sug-
gest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to
them may be derived from the system partition function. From this perspective, the parameter fitting
problem may be interpreted as a process where the system (spectrum) does work against internal
stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum en-
tropy. Finally, we show how the distribution function allows us to define a geometry on parameter
space, building on previous work[1, 2]. This geometry has implications for error estimation and we
outline a program for incorporating these geometrical insights into an automated parameter fitting
algorithm.
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INTRODUCTION

In order to compare experimental data to a model it is crucial to have a robust means
for performing parameter estimation. Our approach to this problem has been strongly
influenced by the observation that the sum of square differences or residuals between
the experimentally observed signal and a parameter-dependent model is intuitively anal-
ogous to a distortion energy. As the fitting procedure progresses, the sum of square
residuals is reduced in magnitude until some minimum value is reached. The residual,
or perhaps more accurately, a probability density function derived from the residual
would be maximally uninformative[3, 4] with respect to any missing information in the
absence of systematic error. The present work is an attempt to assess how far one may
press these observations in order to address some significant issues in data analysis that
have arisen in the authors’ laboratories. In particular, data analysis of magnetic reso-
nance spectra from different frequency bands may be known on physical grounds to
satisfy a common model of dynamics, yet the individual spectra may have very different
lineshapes due to the frequency dependent interplay of magnetic field dependent and
magnetic field independent interactions. It is our intention to suggest a procedure that
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exploits insights from statistical physics and information theory to address the question
of how one should weight contributions from different spectral bands when the model
has frequency-dependent parameter sensitivity and the noise residual is also frequency-
dependent.

SPECTRAL FUNCTIONS AND PARAMETER STIFFNESS

If one wishes to pursue the analogy that the spectral residual plays the role of a displace-
ment in a distortion energy, then it is useful to define a notion of stiffness. We note at
the outset that if one is only analyzing data from a single frequency band, then identifi-
cation of a stiffness parameter is not strictly necessary. For multifrequency fits however,
the sensitivity of the spectrum to changes in parameters will in general be frequency
dependent, thus the stiffness of the model to changes in parameters is something that
can vary across spectral frequency bands. A magnetic resonance absorption spectrum,
at least in the linear response regime[1], is a normalizable absorption cross-section and
may be treated as a probability density function (PDF). This observation allows one to
compute the Fisher information matrix associated with the spectral lineshape function

gi j(θ) =
∫

dω
(

∂ ln p(ω|θ)
∂θ i

)(
∂ ln p(ω |θ)

∂θ j

)
p(ω |θ) (1)

The notation used here is discussed elsewhere[1] in detail. Here, p(ω|θ) is our model for
the spectral absorption at frequency ω depending on the parameters {θ}. We note that ω
may be treated as random variable, as is done in the stochastic resonance experiment[5,
6]. We also note that the spectrum one observes from stochastic resonance, traditional
field sweep, or Fourier transform spectroscopy is identical[5, 6]. When interpreting ω as
a random variable, one may think of p(ω|θ) as representing the ‘payoff’ for landing on
a particular frequency ω .

In order to gain some insight into how the spectral function can be used to de-
fine stiffness, we begin with a simple, analytical model. In “Principles of Nuclear
Magnetism”[7], Abragam treats the linewidth problem of multiplet spectra including
the effects of quadrupolar relaxation and chemical exchange. For multiplet lines with
equal a priori probabilities, Abragam derives an expression for the lineshape which may
be written in the following (normalized) form

p(ω|θ) = 1
π(2I +1)

ℜ
[
〈 v |C−1(ω |θ) | v 〉

]
, (2)

where | v 〉 is a column vector of ones for this problem, and C−1(ω|θ) is the inverse of
a complex symmetric matrix. The symbol ℜ[·] denotes the real part of the expression in
square brackets in Equation 2. For the particular case of a spin 1/2 nucleus coupled to
a spin I = 1 nucleus, Abragam derived the following expression for the matrix C in our
notation[7]

C(ω|θ) =

 i(ω0 −ω + J)−3/5T 1/5T 2/5T
1/5T i(ω0 −ω)−2/5T 1/5T
2/5T 1/5T i(ω0 −ω − J)−3/5T

 (3)
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A simulated spectrum, including noise, based on Equation 3 is shown in the left panel
of Figure 1. The structure of the matrix C(ω|θ) in Equation 3 has many features in
common with the matrices that arise in the study of complex lineshapes[8, 9], although
the details depend on the particular problem at hand1.

In order to assess the sensitivity of the spectrum to the relevant parameters J and
1/T , we may compute the covariance matrix of the relative changes of the spectrum
as the parameters are varied with respect to the spectral lineshape[1, 10]. This is the
Fisher information, as defined in Equation 1. As shown earlier[1], this leads naturally to
the concept of spectral derivatives. For the simple 3 × 3 matrix inverse that appears
in Equation 2, it is tedious, but straightforward to compute explicitly the necessary
parameter derivatives for this case. One finds

∂ p(ω|θ)
∂θ i =− 1

π(2I +1)
ℜ
[
〈 v |C−1(ω|θ)

(
∂C(ω |θ)

∂θ i

)
C−1(ω|θ) | v 〉

]
. (4)

We note that the operator form ∂C−1/∂θ i = −C−1∂C/∂θ iC−1 in Equation 4 is the
matrix equivalent of the identity du−1/dx =−(du/dx)/u2.

the Fisher information in the multiplet spectrum may be evaluated numerically by
using Equation 4 with Equation 1. For this model, we obtain the following values for
the matrix elements of the Fisher information, its eigenvalues and eigenvectors. The

TABLE 1. Left: Matrix elements of the (symmetric) Fisher information derived
from the model discussed in the text. Center: Eigenvalues of the Fisher information
matrix. Right: Eigenvectors of the Fisher information. The matrix elements are given
in the (column) order: J, 1/T

Fisher Information Eigenvalues Eigenvectors[
9270 −224.
−224. 4970

] [
4960 0

0 9280

] [
−5.2×10−02 −9.99×10−01

−9.99×10−01 5.2×10−02

]
results shown in Table 1 contain useful information that is relevant for the parameter
estimation problem. Note that the eigenvectors of the Fisher information identify those
linear combinations of J and 1/T which are linearly independent. The eigenvalues
provide a measure of the relative importance of the eigenvectors. For this example, we
see that the eigenvalues are comparable and the eigenvectors do not mix J and 1/T
significantly. Thus, the Fisher information tells us that for this model, and this parameter
range, J and 1/T may be optimized separately with a high degree of confidence. The
stiffness of the model may be found by forming the product of the eigenvalues of the
Fisher information matrix.

If one accepts that the determinant of the Fisher information g is a useful measure of
stiffness, then one may compute a distortion energy from the squared difference of the

1 A suite of Octave and Matlab scripts is available to study the effects of changes in the relaxation
time T and coupling constant J at the Earle group website http://earlelab.rit.albany.edu/.
We thank Nabin Malakar for valuable assistance in converting the Octave scripts to a form usable in
Matlab.
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signal and a model trial function, scaled by the stiffness

U = ∑
ω∈{Ω}

1
2

g(S(ω)−M(ω|θ))2 (5)

We repeat that introducing the stiffness is not strictly necessary when analyzing a sin-
gle magnetic resonance spectrum. The stiffness is significant for simultaneous multifre-
quency fits as we will sketch in the Applications section. In Equation 5, the signal (plus
noise) is represented by S(ω). The model function, related to p(ω|θ), is scaled by a
dimensional factor. For example, the signal (plus noise) may be obtained from the out-
put of a lock-in amplifier. In this case, the scale factor for p(ω|θ) would have units of
µV/Hz, say. We note that the factor of 1/2 is conventional. In the absence of noise, the
energy U will achieve a minimum value of zero if the model is a faithful representation
of the underlying physics and the chosen parameters are at their optimum values. In the
presence of noise, U will achieve a minimum value equal to the total noise energy at
the optimum parameter set, when systematic error is not present. Note that the noise in
the spectrum can be quantified independently of the details of any model. This is, after
all, almost a definition of the noise. Thus, computing the mean square deviation for a
fraction of the data, far away from any spectral features of interest, is a practical means
for estimating the average noise energy for the entire spectrum.

THERMODYNAMIC CONSIDERATIONS

We seek a distribution function for U(ω|θ) where U = ∑ω∈{Ω}U(ω|θ) that is nor-
malized, with expectation value Ep(U(ω |θ)) =U , and that is maximally uninformative
with respect to any other information. A particularly complete and helpful derivation
for an analogous system using the technique of Lagrange multipliers may be found
elsewhere[11]. Following the maxent prescription of Jaynes[3, 4], this leads to the dis-
tribution

p(ω |θ) = exp(−βU(ω |θ))/Z (6)

where Z = ∑ω∈{Ω} exp(−βU(ω|θ)) in Equation 6. We recognize Z as analogous to the
partition function of the canonical distribution function[12, 13]. As is well-known, once
a partition function is available, any thermodynamic quantity of interest may be derived
from it by taking suitable partial derivatives.

The left panel in Figure 1 shows a simulated spectrum, including noise, from which
the ‘equilibrium’ PDF may be inferred by computing the mean squared deviation in the
baseline. The right panel in Figure 1 also shows the PDF appropriate for a model that
has an exchange rate that is too slow to correctly model the observed noisy spectrum. As
the model parameters approach their optimum values, the regions where the PDF dips
towards zero are annealed away. For a noisy spectrum the ‘equilibrium’ or optimum PDF
would have a level ‘grassy’ appearance. In the absence of noise, the PDF would be a
uniform straight line across the spectral range. In non-equilibrium thermodynamics[14,
13, pg. 126], the deviation of the entropy from its equilibrium value is given by the
negative of the Kulback-Leibler (KL) divergence, scaled by the Boltzmann constant:
−kB ∑ω∈{Ω} p(ω|θ) ln(p(ω|θ)/p(ω |θ0). Here θ0 is the optimum parameter set. This
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FIGURE 1. Left: Multiplet Exchange Spectrum including noise. Right: PDF computed from a model
with an exchange rate that is too slow to fit the spectrum in the left panel.

observation suggests to us that the parameter optimization problem may be profitably
viewed as a problem in transport theory where model parameters corresponding to
generalized coordinates are varied in order to minimize the KL divergence, or maximize
the entropy. For the example shown here, the KL divergence is 0.02 nats for the model
with the ‘wrong’ exchange rate.

A physical picture emerges that given a prescription for defining a partition function
one may define forces conjugate to the model parameters. Parameter optimization is then
a process of allowing the system to do work on the constraints in order to minimize the
Helmholtz free energy and maximize the entropy. A parameter optimization procedure
such as nested sampling[15] may be cited as an example of how these notions are
implemented in practice. In fact, one of the motivations for developing the approach
given here was to gain insights into nested sampling procedure. Now consider the case
that we repeat the experiment N times in order to improve the signal to noise, for
example. We assume that the repetitions are all independent and that permuting the
order of the repetitions would have no effect on the outcome. At a particular observation
point i : i ∈ {Ω}, one then has pi(θ)→ ΠN

j=1 pi(Ri, j|θ). Here we introduce new notation
Ri, j corresponding to the jth measured residual at the observation frequency i. Note
that pi(θ)≡ p(i|θ) in our previous notation. Note that if permutations of the repetitions
are truly equivalent, then to assign all permutations to the same equivalence class it is
necessary to divide pi by N!. In order to preserve the normalization condition on pi,
it is then necessary to divide the partition function by N! as well. The steps outlined
here are parallel to the ones conventionally used in the derivation of the Sackur-Tetrode
equation[11, 12]. We shall assume that we may replace the jth residual Ri, j by its average
R̄i ≡ (1/N)∑N

j=1 Ri, j. This is, in some sense, a mean field approximation. When this is
valid, the modified partition function becomes

Z̄ → 1
N!

(
m

∑
i=1

exp
(
−β

1
2
(
S̄i −Mi(θ)

)2
))N

. (7)

This choice of Z̄ in Equation 7 has an interpretation in terms of the ideal gas law, as we
will see below.
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In order to provide a plausibility argument for the ‘mean field’ approximation, note
that pi ∝ exp(−β R̄2

i /2) in that approximation, which is of the form exp(−(x−µ)2/σ2).
After N measurements, we substitute pi → (pi)

N up to an overall factor which is equiv-
alent to replacing σ2 with σ2/N. This implies that after N independent measurements
the standard deviation

√
σ2 →

√
σ2/N is reduced by a factor of

√
N, the standard result

for averaging N independent, normally distributed measurements. At least in this case,
the ‘mean field’ approximation is a useful tool for modeling multiple observations.

Suppose that we are able to collect data of sufficiently high signal to noise ratio that all
of the exponentials in Z̄ approach unity. Then we may approximate Z̄ ≈ (1/N!)(V/v0)

N .
Here, (V/v0) is the number of observations in {Ω} per experiment and v0 is the min-
imum resolvable frequency increment in the experiment. The entropy for this partition
function may be shown to be

S = kBN
[

ln
(

V
N

1
v0

)
+1
]
. (8)

Equation 8 is the Sackur-Tetrode equation appropriate for this system[11, 12]. Note
that it is extensive in the number of experiments N. The pressure in this system may
be computed from the Helmholtz free energy as follows p ≡ −∂A/∂V = ρ/β where
A =− ln(Z̄)/β . One may put this expression for p into the ideal gas form by identifying
ρ = N/V , β = 1/kBT , where T is a pseudo temperature and kB is Boltzmann’s constant.
With these substitutions, we find pV = NkBT , the ideal gas law as claimed.

As the model coordinates are varied the free energy will change according to the
following prescription dA = Θ jdθ j. Using the definition of Z in Equation 7 one finds
that

Θ j =−N
∑m

i=1 g(Si −Mi(θ)) ∂Mi(θ)
∂θ j exp(−βg(Si −Mi(θ)2/2)

∑m
i=1 exp(−βg(Si −Mi(θ)2/2)

≡−N〈g(S−M)M j〉,

(9)
where M j ≡ ∂M/∂θ j on the right hand side of Equation 9. Note that the generalized
forces scale the changes in the free energy due to coordinate changes. If the model is
not particularly sensitive to θ j over a particular range, then Θ j will be small and the
contribution to dA from Θ jdθ j will be small compared to those terms in dA for which
the generalized forces Θ j are significant. These coordinate changes correspond to the
system doing work on itself in order to minimize the free energy. When this has been
achieved, the sum of square residuals is a minimum and the entropy is a maximum.

APPLICATIONS

In this section, we will provide some suggestions for applications of the thermodynamic
analogy that we have presented here. This is currently work in progress. One of the more
intriguing possibilities suggested by the definition of a partition function for a spectrum
is that one can define its heat capacity from CV ≡ β 2(∂ 2 lnZ/∂β 2). This is relevant for
the problem of parameter optimization when spectra from several spectral bands are
available. Consider the following classic chemical physics problem from Reif[16]: Two
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substances with different heat capacities CA and CB at temperature TA and TB are brought
into contact. What is the final temperature? Answer: Tf = (CATA +CBTB)/(CA +CB)
when CA and CB are independent of temperature. Extensions to more systems in contact
are obvious. This problem may be solved by noting that the partition function for a
composite system may be written in the following form

Z = ∏
j

1
N j!

(
Vj

v0
ζ j

)N j

, (10)

where ζ j measures departures from ideal gas behavior. With our definitions

ζ j =
1

m j

m j

∑
i=1

exp
(
−β j

1
2

g j
(
S̄i −Mi(θ)

)2
)
. (11)

Here, m j =Vj/v0 the number of observed frequencies in the jth spectrum. In the absence
of systematic error and if the model is a faithful representation of the underlying physics
ζ j → 1 at the optimum parameter set. Starting from the composite partition function of
Equation 10, we suggest the following algorithm for simultaneous multifrequency fits

1. Estimate starting parameters {θ}
2. Infer β j’s and g j’s
3. Vary {N j} to make β j’s all equal (defines an isothermal ensemble)
4. Vary {θ} according to a search algorithm which maximizes the entropy defined by

the composite partition function.
5. Update β , N j’s and g j’s so that they are consistent with {θ}.
6. When the stopping criterion of the search algorithm is reached, estimate parameter

uncertainties by computing the change in Z as {θ} is varied about its optimum
values.

We expect that this algorithm will be useful for the common situation where increased
spectral resolution at high frequencies, parameterized by a larger g value, is partially
offset by reduced signal to noise. This is commonly the case for simultaneous multifre-
quency fits of ESR spectra[17]. In fact, this work was partially motivated by the need to
account for frequency-dependent parameter sensitivities in the presence of frequency-
dependent noise. We also note that the canonical distribution defined by our procedure
imposes a geometry on parameter space due to the normalization constraint and the con-
straint on the mean squared residual. In our view, the following observation, loosely
paraphrased from Murray and Rice, is apt[18]: Depicting any coordinate system in a
Cartesian way implies a Cartesian geometry, but few people take that geometry seri-
ously. Once you differentiate vector fields or compute Taylor series expansions in the
usual way, you have taken that geometry very seriously even if you don’t realize it.
Based on preliminary work[1], we expect that the constraints imposed by the PDF will
lead to improved estimates of errors and we are actively exploring this possibility for
simultaneous multifrequency fits. In particular, we expect that curvature corrections to
the Hessian used for updating parameter searches will be especially important[19]. The
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work of Sepulchre and co-workers will also be relevant to algorithm development that
takes account of the intrinsic geometry defined by the PDF[20].

Finally, although the examples given here have been limited to applications in mag-
netic resonance, the approach is generic and should be applicable to any problem for
which a spectral function and its derivatives are available. Space constraints have lim-
ited us to only presenting an overview of current work, but a more complete account
with applications is in preparation[2].
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