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The antidisturbance fault tolerant control problem of attitude control systems for microsatellite is investigated in the presence of
unknown input delay, stuck faults from the reaction wheel and the multiple disturbances. The multiple disturbances are supposed
to include the vibration disturbance torque from the reaction wheel and modeling uncertainties. The fault diagnosis observer and
disturbance observer are constructed to estimate stuck faults and vibration disturbance torque from the reactionwheel, respectively.
A composite fault tolerant controller is designed by combining a PID controller, the fault accommodation estimation based on the
fault diagnosis observer, and the disturbance compensator based on the disturbance observer.The controller and observer gains can
be easily obtained via a set of linear matrix inequalities. Simulation results are given to show that the faults can be accommodated
readily, and the disturbances can be rejected and attenuated simultaneously.

1. Introduction

Microsatellite, which is a kind of modern small satellites with
mass below 100 kg, plays more and more important roles
in position location, earth observation, atmospheric data
collection, space science, and other space missions because
of its advantages of cost, risk, and manufacturing time.
The reaction wheel had been widely used for microsatellite
attitude control as a kind of momentum exchange device
owing to its great decrease in size and weight. In order
to pursue designated space missions, the reaction wheel
works on a high-speed rotational state sometimes; it raises
the probability of faults to occur inevitably (see [1, 2]).
Moreover, the wheel produces a disturbance torque and
force as by products; the effects of wheel disturbances on
the microsatellite’s attitude error and stability are so critical
that the influence of disturbances on the quality of the
attitude control should be analyzed prior to the application
of the wheels for microsatellite (see [3–6]). In addition, it
is well known that time-delay is a common phenomenon
in many industrial and engineering system and is one of

the instability sources for dynamical systems (see [7–9]).
With an impending requirement on reliability and stability
of attitude control systems, time delay must be considered
when designing the control algorithm. All these aspects in
a realistic environment create considerable difficulty in the
design of attitude control systems for adequate performance
and stability, especially when all these issues are treated
simultaneously.

In the past several decades, one way to improve the
reliability is that enhancing the fault tolerance of the system.
More and more attention had been paid to the development
of methodologies to detect and isolate faults so that measures
could be taken to accommodate these faults (see [10–13]). In
[14], a simple and effective fault tolerant control method for
satellites with four reaction wheels has been proposed based
on dynamic inversion and time-delay control theory. In [15], a
nonlinear fault detection and isolation strategy for redundant
reactionwheels in the attitude control subsystem for a satellite
has been attempted. However, the strategy for redundant
reaction wheels is unfeasible for microsatellite because of its
size and weight.
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To remedy this problem, more and more attention had
been focused on model-based methodologies. In [16], an
interactive bank of unscented Kalman filters has been devel-
oped for fault detection and isolation in reaction wheel
actuators of satellite attitude control systems. In [17], an
unsupervised algorithm of kernel fuzzy 𝑐-means-based fault
diagnosis method for unknown faults in satellite reaction
wheels has been presented. Because of continued presence
of disturbance, the fault tolerant control (FTC) problem
of attitude control systems for microsatellite with multiple
disturbances will be more complicated.

To overcome these obstacles, some approaches have been
provided and applied. In [18], a robust adaptive FTCapproach
for attitude tracking of flexible spacecraft is proposed for use
in situations when there are reaction wheels/actuator failures,
external disturbances, and time-varying inertia-parameter
uncertainties. In [19], a FTC design technique against actua-
tor stuck faults with application to spacecraft attitudemaneu-
vering control systems has been proposed via designing an
integral-type sliding mode attitude controller to compensate
for the effects of stuck actuators and system parameters and
external disturbances. In [20], a robust adaptive controller
has been provided with the utilization of fuzzy logic and
backstepping techniques.The authors investigate the problem
of spacecraft in the presence of unknown mass moment
of inertia matrix, external disturbances, actuator failures,
and control input constraints. Overall, some robust control
techniques had been applied in most existing literature for
the disturbances are assumed to be norm bounded. However,
in practical engineering, the disturbance may originate from
various sources and can be described by a composite form
rather than a single variable. In this case, the robust control
may be too conservative to provide highly accurate control
performance. As such, disturbance attenuation and rejection
for linear (or nonlinear) control systems is a challenging
objective in the control area. Analysis and synthesis for
control systems with disturbances have been one of the
most active research fields in the past few decades. The
idea of disturbance-observer-based control (DOBC) is to
construct an observer to estimate and compensate some
external disturbances (see [21–27]). And it has been shown
that DOBC approach has a good performance to reject
the various unknown disturbances. However, none of these
methods has dealt with multiple disturbances as well as
unknown input delay simultaneously.

In this paper, a composite fault tolerant controller is firstly
addressed for the attitude control systems for microsatellite
with stuck faults from reaction wheel, multiple disturbances
and unknown input delay based on fault diagnosis observer,
disturbance observer and PID state-feedback controller. Fault
diagnosis observer can estimate the stuck faults from reaction
wheel real time. Disturbance observer can estimate the effect
of vibration from the reaction wheel. PID state-feedback
controller can attenuate the influence of the norm bounded
disturbances and the estimation errors. Simulation results
for a microsatellite are given to show the efficiency of the
proposed approach.

The remainder of this paper is organized as follows. In
Section 2, the dynamic model for microsatellite and control

problem formulation is presented. In Section 3, the fault
diagnosis observer and disturbance observer are designed.
In Section 4, the stabilization of the attitude control systems
under the given controller is analyzed, and the solution of
the controller is resolved. In Section 5, the proposed control
algorithm is confirmed by numerical simulation. Section 6
contains conclusions.

2. Problem Formulation

When the Euler angle is very small, the attitude dynamics
equation for microsatellite can be described by the following
matrix form:
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where 𝛾, 𝜑, and 𝜃 are the yaw angle, pitch angle, and rolling
angle, respectively. 𝐼

𝑖
(𝑖 = 1, 2, 3) is the inertiamatrix, and𝜔 is

the velocity of the orbital reference frame with respect to the
inertial frame expressed in the body-fixed reference frame.
Δ(𝑡) is an unknown control input delay, and the control input
torque is supposed to be 𝑢

𝑖
(𝑡 − Δ(𝑡)). Δ(𝑡) satisfies 0 ≤ Δ(𝑡) ≤

𝜏 < ∞ and Δ̇(𝑡) ≤ 𝑑 < 1. 𝑀
𝑑𝑖
and 𝐹

𝑖
are the disturbance

torques and fault input vector, respectively.
Since the microsatellite rarely performs a large angle

maneuver, the linearmodel is reasonably accurate and accept-
able to be used in attitude controller design. So, the attitude
dynamics equation can be rewritten as follows:
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where 𝑝(𝑡) = [𝛾, 𝜑, 𝜃]
𝑇 is the state vector of Euler angles,

�̇�(𝑡) is the Euler angular velocity, and �̈�(𝑡) is the Euler angles
acceleration.𝐹(𝑡) is the stuck fault from reactionwheel, and it
is supposed to be time varying, but its derivative is supposed
to be bounded. 𝑑

1
(𝑡) is the disturbance which represents the

vibration disturbance torque from reaction wheel. 𝑑
2
(𝑡) is the

merged disturbance from space environmental disturbances,
moment-of-inertia uncertainty, and noises from sensors and
actuators. Considering
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can be written as
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The vibration disturbance torque 𝑑
1
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described by

𝑑
1
(𝑡) =

𝑛

∑

𝑖=1

𝐶
𝑖
𝑓
2

𝑟𝑤𝑎
sin (2𝜋ℎ

𝑖
𝑓
𝑟𝑤𝑎
𝑡 + 𝜙
𝑖
) , (9)

where 𝑛 is the number of harmonics included in the model,
𝐶
𝑖
is the amplitude of the 𝑖th harmonic, 𝑓

𝑟𝑤𝑎
is the wheel

speed in Hz, ℎ
𝑖
is the 𝑖th harmonic number, and 𝜙

𝑖
is a

random phase (assumed to be uniform over [0, 2𝜋]) (see
[5, 6]). However, it is impossible to obtain the information
of 𝐶
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when the reaction wheel works on a

high-speed rotational state. The disturbance force or torque
𝑑
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(𝑡) can be rewritten as the following matrix form:
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where 𝑤(𝑡) is the state variable, and 𝛿(𝑡) is the additional
disturbance that results from the perturbations and uncer-
tainties in the exogenous system.𝑊 is the vibration frequency
of reaction wheel, and 𝑉 and 𝐵

3
are the known parameter

matrices of the exogenous system with proper dimension.

Assumption 1. (𝐴, 𝐵
1
) is controllable; (𝑊, 𝐵

1
𝑉) is observable.

In the next section, the objective is to design fault
diagnosis observer and disturbance observer, with which the
fault can be accommodated, and themodeled disturbance can
be rejected.

3. Fault Diagnosis Observer and Disturbance
Observer Design

3.1. Fault Diagnosis Observer Design. Fault diagnosis needs to
be accomplished in order to reconfigure system and improve

its reliability. For this purpose, the following fault diagnosis
observer is constructed to diagnose the stuck faults from the
reaction wheel
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where 𝜀(𝑡) is the auxiliary variable, and 𝐹(𝑡) is the estimation
of 𝐹(𝑡). 𝐾 is the fault diagnosis observer gain to be deter-
mined later. ̂𝑑

1
(𝑡) is the estimation of 𝑑

1
(𝑡) which will be

designed in next subsection.

3.2. Disturbance Observer Design. Disturbance observer is
designed in this subsection in order to reject the modeled
external disturbance, and the disturbance observer is formu-
lated as
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where V(𝑡) is the auxiliary variable, and𝑤(𝑡) is the estimation
of 𝑤(𝑡). 𝐿 is the disturbance observer gain to be determined
later.

The error of disturbance observer and fault diagnosis
observer are defined as
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In this section, fault diagnosis observer and disturbance
observer are designed for fault estimation and disturbance
estimation, respectively. In the next section, a composite
time-delay fault tolerant controller should be determined
for reconfiguring the systems with disturbance rejection and
attenuation performance.

4. Composite Fault Tolerant Controller

In this section, a composite fault tolerant controller is de-
signed to guarantee system (7) stability in the presence of
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stuck faults and disturbances simultaneously. A composite
fault tolerant controller is presented as

𝑢 (𝑡) = 𝑀𝑥 (𝑡) −
̂
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where 𝑀 is the state feedback controller gain to be deter-
mined later. Substituting (16) into (7), and it is possible to
obtain the augmented system
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At this stage, the objective is to find𝐾, 𝐿, and𝑀 such that
system (17) is robustly asymptotically stable and satisfies the
generalized𝐻

∞
performance.We give the following theorem

for the concerned robust fault diagnosis problem.
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𝑇
(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−Δ(𝑡)

𝑥
𝑇
(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−Δ(𝑡)

∫

𝑡

𝑡+𝛽

𝜉
𝑇
(𝑠) 𝑆
−1
𝜉 (𝑠) 𝑑𝑠 𝑑𝛽.

(26)

It can be shown that
�̇� (𝑥 (𝑡) , 𝑡)

= �̇�
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 𝑥

𝑇
(𝑡) 𝑃�̇� (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡) − [(1 − Δ̇ (𝑡))] 𝑥

𝑇

𝑑
(𝑡) 𝑄𝑥

𝑑
(𝑡)

+ Δ̇ (𝑡) ∫

𝑡

𝑡−Δ(𝑡)

𝜉
𝑇
(𝑠) 𝑆
−1
𝜉 (𝑠) 𝑑𝑠 + Δ (𝑡) 𝜉

𝑇
(𝑡) 𝑆
−1
𝜉 (𝑡)
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Figure 1: Curves of stuck fault and its estimation.
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Figure 2: Curves of the estimation error of stuck faults.

− ∫

0

−Δ(𝑡)

𝜉
𝑇
(𝑡 + 𝛽) 𝑆

−1
𝜉 (𝑡 + 𝛽) 𝑑𝛽

≤ 𝛼
𝑇
(𝑡) (Θ

1
− Θ
2
) 𝛼 (𝑡) , (27)

where

𝛼 (𝑡) =

[

[

[

[

𝑥 (𝑡)

𝑥
𝑑
(𝑡)

𝑤
0
(𝑡)

𝑤
𝐹
(𝑡)

]

]

]

]

,

Θ
2
=

[

[

[

[

[

[

[

[

𝐶
𝑇

1
𝐶
1
𝐶
𝑇

1
𝐶
2

0 0

∗ 𝐶
𝑇

2
𝐶
2

0 0

∗ ∗ −𝛾
2

0
𝐼 0

∗ ∗ ∗ −𝛾
2

1
𝐼

]

]

]

]

]

]

]

]

. (28)

By using Schur complement formula that Θ
1
< 0 leads

to Θ
1
− Θ
2
< 0, it can be obtained that �̇�(𝑥(𝑡), 𝑡) ≤ 0,
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which implies that the system (17) is robustly asymptotically
stable.

The next step is to prove the robustness of the sys-
tem. Consider an auxiliary function as the performance
index

𝐽 (𝑥 (𝑡))

= 𝑉 (𝑥 (𝑡) , 𝑡) + ∫

𝑡

0

‖𝑧(𝑠)‖
2

2
− 𝛾
2

0





𝑤
0
(𝑠)





2

2
− 𝛾
2

1





𝑤
𝐹
(𝑠)





2

2
𝑑𝑠,

(29)

which satisfies the zero initial condition. Similar to the proof
of the stability, from (21) we have

̇𝐽 (𝑥 (𝑡 ) = �̇� (𝑥 (𝑡) , 𝑡) + ‖𝑧 (𝑡)‖
2

2
− 𝛾
2

0





𝑤
0
(𝑡)





2

2
− 𝛾
2

1





𝑤
𝐹
(𝑡)





2

2

≤ 𝛼
𝑇
(𝑡) (Θ

1
− Θ
2
) 𝛼 (𝑡) < 0.

(30)

Then, we can draw a conclusion that 𝐽(𝑥(𝑡)) < 0 under
the zero initial condition which further leads to ‖𝑧(𝑡)‖2

2
<

𝛾
2

0
‖𝑤
0
(𝑡)‖
2

2
+ 𝛾
2

1
‖𝑤
𝐹
(𝑡)‖
2

2
. The proof is completed.

Theorem 3. For composite system (18), the parameters 𝛾
0
> 0,

𝛾
1
> 0, 𝛾

2
> 0, and 𝛾

3
> 0, if there exist matrices 𝑋 > 0,

𝑌 > 0, 𝑃
2
> 0, 𝑄

2
> 0, 𝑇 > 0, 𝑆

1
> 0, and 𝑆

1
< 𝑋, 𝑇 < 𝑃

2
,

satisfying

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜙
11
𝐵
1
𝐸 0 0 𝐵

2
0 0 0 𝜏𝑋𝐴

𝑇
0 𝜏𝐵

1
𝑅
1

0 𝑋𝐶
𝑇

11

∗ 𝜙
22

0 0 0 𝑅
2
𝐵
2
𝑃
2
𝐻
3
𝑃
2
𝐻
1
𝜏𝐸
𝑇
𝐵
𝑇

1
𝜏𝑊
𝑇

1
𝑃
2

0 𝑅
2
𝐵
1
𝐸 𝐶

𝑇

12

∗ ∗ −𝜎𝑌 0 0 0 0 0 𝜏𝑅
𝑇

1
𝐵
𝑇

1
0 0 0 𝑋𝐶

𝑇

21

∗ ∗ ∗ −𝜎𝑄
2

0 0 0 0 0 𝜏𝐸
𝑇
𝐵
𝑇

1
𝑅
𝑇

2
0 0 𝐶

𝑇

22

∗ ∗ ∗ ∗ −𝛾
2

0
𝐼 0 0 0 𝜏𝐵

𝑇

2
0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

1
𝐼 0 0 0 𝜏𝐵

𝑇

2
𝑅
𝑇

2
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

2
𝐼 0 0 𝜏𝐻

𝑇

3
𝑃
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

3
𝐼 0 𝜏𝐻

𝑇

1
𝑃
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
1

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑇 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑋 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (31)

where 𝜙
11

= 𝑠𝑦𝑚(𝐴𝑋 + 𝐵
1
𝑅
1
) + 𝑌, 𝜙

22
= 𝑠𝑦𝑚(𝑃

2
𝑊
1
+

𝑅
2
𝐵
1
𝐸) + 𝑄

2
, then the composite system (18) with controller

gain𝑀 = 𝑅
1
𝑋
−1 and observer gain [ 𝐿

𝐾
] = 𝑃
2

−1
𝑅
2
is robustly

asymptotically stable and satisfies

‖𝑧 (𝑡)‖
2

2

< 𝛾
2

0





𝑑
2
(𝑡)





2

2
+ 𝛾
2

1





𝑑
2
(𝑡 − Δ (𝑡))






2

2
+ 𝛾
2

2
‖𝛿 (𝑡)‖

2

2

+ 𝛾
2

3






�̇� (𝑡)







2

2
. (32)

Proof. According to the system (18), denoting

𝑃 = [

𝑃
1
0

0 𝑃
2

] , 𝑄 = [

𝑄
1
0

0 𝑄
2

] , 𝑆 = [

𝑆
1
0

0 𝑆
2

] .

(33)

Substituting the related matrix into Lemma 2, we can
get

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜑
11
𝑃
1
𝐵
1
𝐸 0 0 𝑃

1
𝐵
2

0 0 0 𝜏𝐴
𝑇

0 𝜏𝑃
1
𝐵
1
𝑁 0 𝐶

𝑇

11

∗ 𝜑
22

0 0 0 𝑅
2
𝐵
2
𝑃
2
𝐻
3
𝑃
2
𝐻
1
𝜏𝐸
𝑇
𝐵
𝑇

1
𝜏𝑊
𝑇

1
0 𝑅

2
𝐵
1
𝐸 𝐶
𝑇

12

∗ ∗ −𝜎𝑌 0 0 0 0 0 𝜏𝑀
𝑇
𝐵
𝑇

1
0 0 0 𝐶

𝑇

21

∗ ∗ ∗ −𝜎𝑄
2

0 0 0 0 0 𝜏𝐸
𝑇
𝐵
𝑇

1
𝑁
𝑇

0 0 𝐶
𝑇

22

∗ ∗ ∗ ∗ −𝛾
2

0
𝐼 0 0 0 𝜏𝐵

𝑇

2
0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾
2

1
𝐼 0 0 0 𝜏𝐵

𝑇

2
𝑁
𝑇

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

2
𝐼 0 0 𝜏𝐻

𝑇

3
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

3
𝐼 0 𝜏𝐻

𝑇

1
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
1

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑆
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝜎𝑃
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (34)
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Figure 3: Curves of vibration estimation of disturbance observer.
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where 𝜑
11
= sym(𝑃

1
𝐴 + 𝐵

1
𝑀) + 𝑄

1
, 𝜑
22
= sym(𝑃

2
𝑊
1
+

𝑅
2
𝐵
1
𝐸) + 𝑄

2
, premultiply and postmultiply diag{𝑋, 𝐼, 𝑋, 𝐼, 𝐼,

𝐼, 𝐼, 𝐼, 𝐼, 𝑃
2
, 𝑋, 𝐼, 𝐼} simultaneously to the left and right sides

of (34), and then defining 𝑋 = 𝑃
−1

1
, 𝑅
1
= 𝑀𝑃

−1

1
= 𝑀𝑋,

𝑅
2
= 𝑃
2
𝑁, 𝑌 = 𝑋𝑄

1
𝑋, and 𝑇 = 𝑃

2
𝑆
2
𝑃
2
then (31) is obtained.

Furthermore, 𝑆
1
≤ 𝑃
−1

1
= 𝑋 and 𝑆

2
≤ 𝑃
−1

2
are equivalent

to 𝑇 ≤ 𝑃
2
. So, the composite system (18) with controller

gain𝑀 = 𝑅
1
𝑋
−1 and 𝑁 = 𝑃

−1

2
𝑅
2
is robustly asymptotically

stable and satisfies ‖𝑧(𝑡)‖2
2
< 𝛾
2

0
‖𝑑
2
(𝑡)‖
2

2
+ 𝛾
2

1
‖𝑑
2
(𝑡 − Δ(𝑡))‖

2

2
+

𝛾
2

2
‖𝛿(𝑡)‖

2

2
+ 𝛾
2

3
‖�̇�(𝑡)‖

2

2
.

5. Simulation Example

In order to demonstrate the effectiveness of the proposed
control algorithm, numerical simulations will be performed
in this section. The composite controller will be applied
for the attitude control of a microsatellite with unknown
input delay, reaction wheel’s faults, and vibration disturbance
torque from reaction wheel simultaneously.

In this paper, we only consider the attitude in the pitch
channel. Select the upper bound 𝜏 = 30ms, and 𝑑 = 0.1.
Themicrosatellite is supposed tomove in a circular orbit with
the altitude of 900 km; then the orbit rate 𝑛 = 0.0011 rad/s.
𝐽 = 6.14 kg⋅m2 is the nominal principal moment of inertia
of pitch axis. The initial pitch attitudes of the microsatellite
are 𝜃 = 0.02 rad and ̇

𝜃 = 0.002 rad/s. Periodic disturbances
𝑑
1
(𝑡) caused by reactionwheel are described by (10) with𝑊 =

[
0 6

−6 0
], 𝑉 = [5 0]. We select 𝛿(𝑡) as the random signal with

upper 2-norm bound 1. 𝑑
2
(𝑡) can also be considered as the

random signalwith boundedupper 2-norm. For the reference
output, it is denoted that 𝐶

11
= [0.2 0.2 0.2], 𝐶

12
=

[0.8 0.2 0], 𝐶
21
= [0 0.2 0.8], and 𝐶

22
= [0.8 0.2 0]. For

𝜎 = 0.9 and 𝛾
0
= 1, 𝛾

1
= 2, 𝛾

2
= 0.5, and 𝛾

3
= 1.2. It can be

solved via LMI related to (17) that the gain of fault diagnosis
observer (11) is

𝐾 = [0 0 −20.4023] , (35)

the gain of disturbance observer (12) is

𝐿 = [

0 0 −4.3713

0 0 −2.3608
] , (36)

and the gain of state feedback controller is

𝑀 = [−17.2607 −37.7208 −38.7539] . (37)

The stuck fault of reaction wheel is supposed to occur
at the 1000th second as 𝐹 = 0.02N⋅m. The estimation of
stuck faults is demonstrated in Figure 1, where the solid line
represents the real fault signal and the dash-dot line stands for
their estimation. Fault estimation error is shown in Figure 2.
From Figures 1 and 2, it can be seen that the proposed fault
diagnosis method has respectable estimation ability.

When the disturbance observer is constructed based on
(12), Figure 3(a) shows the actual value, and estimated value
of the disturbance caused by the reaction wheel. Figure 3(b)
is obtained by partially amplifying Figure 3(a). From both

figures, we can see that themain disturbance can be estimated
and rejected accurately by the proposed disturbance observer.

Figures 4(a) and 4(b) show that the composite controller
is capable of compensating the effect of stuck faults and vibra-
tion disturbance torque from reaction wheel actively and can
improve the reliability and stability of themicrosatellite in the
presence of the model uncertainty and space environmental
disturbances.

6. Conclusion

In this paper, the fault diagnosis problem is addressed
for microsatellite with unknown input delay. The following
features of the proposed algorithm are compared with the
previous results. Firstly, a uniform fault diagnosis observer
is constructed for the attitude control systems. Secondly, the
disturbances considered in this paper are assumed to include
vibration disturbance torque from reaction wheel and norm
bounded uncertain disturbance. A disturbance observer is
constructed to estimate the vibration disturbance. Thirdly,
a new composite controller is designed which can attenuate
the influence of the norm bounded disturbances and the
estimation errors and correspondingly guarantee the robust
stability against other disturbances. Finally, simulations for a
microsatellite are given to show the efficiency of the proposed
approach. Although numerical simulations have shown that
enhanced robustness can be achieved by using the proposed
method, more general theoretical research and experimental
simulations need to be carried out in the future to ensure
the reliability and stability of attitude control systems for
microsatellite.
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