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Robust Full-Order and Reduced-
Order Observers for a Class of
Uncertain Switched Systems
This paper deals with the problem of robust state estimation for a class of switched linear
systems with unknown inputs under average dwell time (ADT) switching, where the
switching of the observers is synchronous with that of the estimated system. First, based
on the feasibility of an optimization problem with linear matrix inequality (LMI) con-
straint, a robust sliding-mode switched observer is developed such that the asymptotic
state reconstruction is guaranteed even if the switched system is with unknown inputs.
Second, a reduced-order switched system which avoids the influence of unknown inputs is
constructed by the technique of state transformation, and a reduced-order switched ob-
server is proposed to estimate the continuous states of the original switched system. Next,
the conditions under which a full-order switched observer exists also guarantee the exis-
tence of a reduced-order switched observer. The convergence of the state estimate is
proved to be exponential by appropriate Lyapunov analysis. Finally, the simulation
results confirm the predicted performance and applicability by a simplified three-tank
system. [DOI: 10.1115/1.4032067]

1 Introduction

In recent years, there has been an increasing interest in the state
observation for switched systems due to their significance both in
theory and applications [1–5]. A switched system is a dynamical
system that consists of both a family of subsystems which are usu-
ally described by a collection of indexed differential or difference
equations and a switching rule that orchestrates switching between
these subsystems in Ref. [6]. Most of the attention has been
focused on the problems of stability [6–19] and control [20–27]
issues with extensive and satisfactory results for linear or nonlin-
ear switched system. Meanwhile, some efforts have also been put
on the state estimation of linear [1,2,28–37] or nonlinear
[3–5,38,39] switched systems. For continuous-time and discrete-
time linear switching systems, Alessandri and Coletta proposed a
switched version of the conventional Luenberger observer, and
the problem of finding a common Lyapunov function (CLF) for
the switching dynamics of the error system is addressed via LMI
technique in Ref. [28], where a common quadratic Lyapunov
function is used to guarantee the stability of switched system
regardless of the mode switches in the system. By using multiple
Lyapunov functions (MLF), where one for each observer mode,
Pettersson deals with the estimation issue of the continuous states
for a class of switched system, and the observer states are reset in
order to guarantee the boundedness of the observation error in
Ref. [29]. Based on algebraic tools and distribution theory, Tian
et al. discussed a method for the finite time estimation of the
switching times of linear switched systems in Ref. [30]. Bejarano
et al. addressed the state observation problem for a class of
switched linear systems with unknown inputs by using high-order
sliding-mode observer in Ref. [31]. The positive observers for
switched positive linear systems with time-varying delays are also

concerned in Ref. [32]. The problems of state estimation are
investigated for switched linear systems with ADT switching in
both continuous-time and discrete-time contexts in Ref. [33]. An
observer design method for switched linear systems is presented
based on the idea of accumulating the information from the indi-
vidual subsystems in Ref. [34]. The issue of H1 filtering is dis-
cussed for a class of switched linear systems in discrete-time
domain in Ref. [35]. For nonlinear switched systems, Barbot et al.
dealt with nonlinear observer synthesis for a particular class of au-
tonomous switching systems with jumps by super twisting algo-
rithm in Ref. [38]. References [35] and [38] deal with the
stochastic systems. The state estimation problem is investigated
for a class of stochastic linear switching-output systems by Ger-
mani et al. in Ref. [36].

In the existing literature, some works consider the issues of the
state estimation for linear or nonlinear switched systems without
unknown inputs [5,28–30,33–35,38] and stochastic switched sys-
tems [36]. The work of Alessandri and Coletta [28] adopts the
CLF approach to design state observer, and Bejarano and Pisano
tackled the issues of reduced-order observer design for some
classes of switched linear systems with unknown inputs by using
CLF methods in Ref. [2]. However, the existing results are con-
servative since the estimation error might converge or be bounded
without the existence of a CLF. On the other hand, many state
estimation methods have been proposed for switched systems
without unknown inputs. For example, Hernandez and Garc�ıa pro-
posed an alternative approach to the state observation problem for
switched Lipschitz continuous systems without unknown inputs in
Ref. [5]. Similarly, the unknown inputs are also not considered in
Refs. [28–30,33–35,38], when they discuss state estimation issues.
So, how to deal with the state estimation problem of switched sys-
tem with unknown inputs is still not trivial, and which is one of
the research motivations of this paper. Besides, Germani et al.
[36] considered the state estimation for stochastic linear
switching-output system which is different from the present paper.
In this paper, the state estimation problem for a class of switched
linear systems with unknown inputs is tackled by incorporating
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the ADT switching to investigate the state estimation and using
MLF and sliding-mode control techniques. The difference
between this paper and other existing ones can be summarized as
follows: (1) A class of switched system with unknown inputs is
considered in this paper, while the systems discussed in Refs.
[5,16–18,21–23] are without unknown inputs and (2) the techni-
ques of MLF, sliding-mode control, and LMI-optimization, which
are different from Refs. [2,26] where CLF approach is used, are
adopted to deal with the state estimation issues of switched sys-
tem, so the feasibility of the methods proposed in this paper is
general since the MLF approach is relatively less conservative
than the CLF one. Besides, it is also pointed out that the condi-
tions under which a full-order switched observer exists also guar-
antee the existence of a reduced-order switched observer, and the
global exponential stability conditions of observer error dynamics
are derived based on the feasibility of an optimization problem
with LMI constraint.

The remainder of the paper is organized as follows: Section 2
presents general model and preliminaries. In Sec. 3, by the use of
both MLF and ADT approaches, a robust sliding-mode switched
observer and a reduced-order observer are proposed to estimate
the states of original switched system. In Sec. 4, an example is
given to show the performance of the proposed methods. Some
conclusions are summarized in Sec. 5.

The notations used throughout the paper are fair standard. Rn

denotes the n-dimensional Euclidean space, and Rn�m is the set of
real n�m matrices. For matrix X 2 Rn�n, X> 0 (X< 0) means
that X is real symmetric positive definite (negative definite). The
notation X> Y, where X and Y are symmetric matrices, means that
X�Y is positive definite. Nset is the set of natural number.

2 General Model and Preliminaries

Let us consider a class of linear switched systems with
unknown inputs given by

_x tð Þ ¼ Aq tð Þx tð Þ þ Bq tð Þu tð Þ þ Dq tð Þg tð Þ
y tð Þ ¼ Cq tð Þx tð Þ

(
(1)

where x 2 Rn is the state vector; u 2 Rm is the known input vector;
and y 2 Rp and g 2 Rq stand for the system output and unknown
input vectors, respectively. q �ð Þ : Rþ ! K is a piecewise constant

function of time, called a switching signal, which takes its values
in the finite set K ¼ 1; 2;…;Mf g. The so-called discrete state
q tð Þ ¼ k 2 K determines which actual subsystem dynamic is acti-
vated among the possible M operating modes corresponding to a
specific instance of matrices Ak; Bk; Ck, and Dk. Also, for a
switching sequence t0 < t1 < � � � < ti < tiþ1 < � � �, we say the kth
subsystem is active when q tð Þ ¼ k and t 2 ti; tiþ1½ Þ, where t0 ¼ 0

is the initial time of switched system, and tþi and t�iþ1 denote the

starting and ending times of the kth mode, respectively, for the ith
switching i 2 Nsetð Þ, i.e., q tþi

� �
¼ q t�iþ1ð Þ ¼ k. It is assumed that

the dimension of output matrix Ck and the distribution matrix Dk

satisfy p � q for any k 2 K.
ASSUMPTION 1. The following rank conditions, 8k 2 K:

rank CkDkð Þ ¼ rankDk (2)

and

rank
sI� Ak Dk

Ck 0

� �
¼ nþ rankDk (3)

hold for every complex number s with non-negative real part.
ASSUMPTION 2. The unknown input vector function g �ð Þ is

bounded in norm, i.e., there exists a positive constant �h such that
kg tð Þk � �h holds for all t � 0.

LEMMA 1. Assumption 1 means that condition (2) together with
condition (3) holds if and only if for symmetric positive definite

matrices Qk 2 Rn�n, there exist matrices Lk 2 Rn�p and
Gk 2 Rq�p, such that [40]

Ak � LkCkð ÞTPk þ Pk Ak � LkCkð Þ ¼ �Qk

DT
k Pk ¼ GkCk

(
(4)

holds for symmetric positive definite matrices Pk 2 Rn�n, where
k 2 K ¼ 1; 2;…;Mf g.

A way of computing to find the matrices Lk; Gk; Pk, and Qk is
given by LMI approach in detailed, which is described as the
following optimization problem with feasible solution [40]:

mind

Pk > I

PkAk þ CkCk þ PkAk þ CkCkð ÞT < 0

dI DT
k Pk � GkCk

DT
k Pk � GkCk

� �T
dI

" #
> 0

8>>>>>>><
>>>>>>>:

(5)

and matrices Qk ¼ � Ak � LkCkð ÞTPk þ Pk Ak � LkCkð Þ
h i

; Lk

¼ �P�1
k Ck.

It is well know that the filters or observers are not always found
for switched systems to achieve desired performances under arbi-
trary switching since the switched system is with the discontinuity
feature at the switching instants [33]. For ensuring system per-
formances, it is necessary to design appropriate switching laws,
and the ADT switching which leads to a stability condition
involving an ADT constraint on the switching sequence
ti 8i ¼ 1; 2;…ð Þ is an efficient one. So, let us first recall the con-
cept of ADT by giving the following definition.

DEFINITION 1. Let Nq tð Þ s1; s2ð Þ be the number of discontinuities
of the switching signal q tð Þ on the interval s2; s1ð Þ [33]. We say
that q tð Þ has an ADT sa if there exist two bounded positive num-
bers N0 and sa, such that

Nq tð Þ s1; s2ð Þ � N0 þ
s1 � s2

sa

holds for the given s1 > s2 � 0.
Remark 1. In this paper, the discrete mode (or switching signal)

of switched systems is assumed as known. Under the case of
unknown switching signal, how to identify the current discrete
mode has been discussed in the literature, such as Ref. [30] and
our previous work [37]. Besides, the switching of the designed
observers is synchronous with that of switched system modes.

3 Observer Design for State Estimation

The purpose of this section is to study that under which specific
conditions the full-order and reduced-order switched observers
can be designed to determine an estimation x̂ of state x. We par-
ticularize the class of switched systems considered in Sec. 2, and
the methods that will be presented here use sliding-mode tech-
nique and reduced-order approach to design full-order and
reduced-order observers such that the aim of state estimation is
reached. First, let us give the design procedure of full-order
switched observer based on the ADT switching.

3.1 Full-Order Observer Design. Consider the following ro-
bust sliding-mode switched observer:

_̂x tð Þ ¼ Aq tð Þx̂ tð Þ þ Bq tð Þu tð Þ þ Lq tð Þ y tð Þ � ŷ tð Þð Þ þ aq tð Þ tð Þ
ŷ tð Þ ¼ Cq tð Þx̂ tð Þ

(
(6)

with sliding-mode control law

aq tð Þ tð Þ ¼ �k
DkGk y tð Þ � ŷ tð Þð Þ
kGk y tð Þ � ŷ tð Þð Þk (7)
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for 8q tð Þ ¼ k 2 K, where k- is a large enough such that k- holds.
In order to achieve an asymptotically stable error dynamics, we

need to obtain the observer gain matrices L1;L2;…; LN which will
be derived from Eq. (4) and define the observation error
~x ¼ x� x̂. When the switching of the observer is synchronous
with that of the system modes, the error dynamic system can be
described from observer (6) and system (1) as

_~x tð Þ ¼ Aq tð Þ � Lq tð ÞCq tð Þ
� �

~x tð Þ þ Dq tð Þg tð Þ � aq tð Þ tð Þ (8)

THEOREM 1. Consider system (1) fulfilling Assumptions 1 and 2
and observer (6) with sliding-mode control law (7). Then, the as-
ymptotic estimation of the continuous state vector x is obtained
provided that for given scalars l2 > l1 > 0, there exists a sym-
metric positive definite matrix S 2 Rn�n, such that

l1S < Pk < l2S (9)

holds, and sa is sufficiently large according to

sa >
ln j1ð Þ

j2

(10)

where j1 ¼ l2=l1ð Þ and j2 ¼ inf‘2K kmin Q‘ð Þ=kmax P‘ð Þ
� �

.
Proof. If symmetric positive definite matrix Pk, for any

k ¼ q tð Þ, satisfies Eq. (4), then we choose

Vk ~x tð Þð Þ ¼ ~xT tð ÞPk~x tð Þ (11)

as a Lyapunov function candidate. So, the time derivative of the
Lyapunov function along the trajectories of the switched error sys-
tem (8) is

_Vk ~x tð Þð Þ ¼ Ak � LkCkð Þ~x tð Þ þ Dkg tð Þ � ak tð Þ
� �T

Pk~x tð Þ
þ ~xT tð ÞPk Ak � LkCkð Þ~x tð Þ þ Dkg tð Þ � ak tð Þ

� �
¼ ~xT tð Þ Ak � LkCkð ÞTPk þ Pk Ak � LkCkð Þ

h i
~x tð Þ

þ 2~xT tð ÞPkDkg tð Þ � 2~xT tð ÞPkak tð Þ
¼ �~xT tð ÞQk~x tð Þ þ 2~xT tð ÞPkDkg tð Þ � 2~xT tð ÞPkak tð Þ

Since

2~xT tð ÞPkDkg tð Þ � 2j~xT tð ÞPkDkg tð Þj ¼ 2j DT
k Pk~x tð Þ

� �T
g tð Þj

¼ 2j GkCk~x tð Þð ÞTg tð Þj � 2kg tð ÞkkGkCk~x tð Þk
� 2�hkGkCk~x tð Þk

and

�2~xT tð ÞPkak tð Þ ¼ �2 �k
~xT tð Þ GkCkð ÞTGk y tð Þ � ŷ tð Þð Þ

kGk y tð Þ � ŷ tð Þð Þk

¼ �2 �k
~xT tð Þ GkCkð ÞTGkCk~x tð Þ

kGkCk~x tð Þk ¼ �2 �kkGkCk~x tð Þk

we can obtain

_Vk ~x tð Þð Þ ¼ �~xT tð ÞQk~x tð Þ þ 2~xT tð ÞPkDkg tð Þ � 2~xT tð ÞPkak tð Þ
� �~xT tð ÞQk~x tð Þ þ 2�hkGkCk~x tð Þk � 2 �kkGkCk~x tð Þk
� �~xT tð ÞQk~x tð Þ

Thus, one can further rewrite the above inequality as follows:

_Vk ~x tð Þð Þ � �~xT tð ÞQk~x tð Þ � �kmin Qkð Þ~xT tð Þ~x tð Þ

� � kmin Qkð Þ
kmax Pkð Þ

Vk ~x tð Þð Þ

� �inf‘2K
kmin Q‘ð Þ
kmax P‘ð Þ

� 	
Vk ~x tð Þð Þ ¼ �j2Vk ~x tð Þð Þ (12)

where j2 ¼ inf‘2K kmin Q‘ð Þ=kmax P‘ð Þ
� �

. By integrating this for
any t 2 ti; tiþ1½ Þ and q tið Þ ¼ k, one can obtain from Eq. (12) that

Vq tið Þ ~x tð Þð Þ � e�j2 t�tið ÞVq tið Þ ~x tið Þð Þ (13)

which is equivalent to

Vq tið Þ ~x tð Þð Þ � e�j2 t�tið Þ Vq tð Þ ~x tið Þð Þ
Vq t�ið Þ ~x t�ið Þ

� �Vq t�ið Þ ~x t�ið Þ
� �

(14)

where Vq t�
ið Þ ~x t�ið Þ
� �

¼ limt!t�
i

Vq tð Þ ~x tð Þð Þ.
We can obtain from Eq. (9) that 8 k; k0ð Þ 2 K� K; k 6¼ k0

Pk < l2S;Pk0 > l1S (15)

Based on Eqs. (11) and (15), one can obtain the following result:

Vq tð Þ ~x tið Þð Þ
Vq t�ið Þ ~x t�ið Þ

� � ¼ ~xT tið ÞPk~x tið Þ
~xT t�ið ÞPk0~x t�ið Þ

<
l2~xT tið ÞS~x tið Þ

l1~xT t�ið ÞS~x t�ið Þ
¼ l2

l1

So, Eq. (14) is equivalent to

Vq tið Þ ~x tð Þð Þ < l2

l1

e�j2 t�tið ÞVq t�ið Þ ~x t�ið Þ
� �

which means that

Vq tið Þ ~x tið Þð Þ < j1Vq t�ið Þ ~x t�ið Þ
� �

¼ j1~xT t�ið ÞPq t�ið Þ~x t�ið Þ (16)

Thus, for any t 2 ti; tiþ1½ Þ, we can obtain by iterating Eqs. (13)
and (16) from i¼ 0 to i ¼ Nq tð Þ t; 0ð Þ that

Vq tð Þ ~x tð Þð Þ � e�j2 t�tið ÞVq tið Þ ~x tið Þð Þ < j1e�j2 t�tið Þ~xT t�ið ÞPq t�ið Þ~x t�ið Þ

¼ j1e�j2 t�tið ÞVq t�ið Þ ~x t�ið Þ
� �

¼ j1e�j2 t�tið ÞVq ti�1ð Þ ~x t�ið Þ
� �

� j1e�j2 t�tið Þe�j2 ti�ti�1ð ÞVq ti�1ð Þ ~x ti�1ð Þð Þ

<j2
1e�j2 t�tið Þe�j2 ti�ti�1ð Þ~xT t�i�1ð ÞPq t�

i�1ð Þ~x t�i�1ð Þ

¼ j2
1e�j2 t�tið Þe�j2 ti�ti�1ð ÞVq t�

i�1ð Þ ~x t�i�1ð Þ
� �

¼ j2
1e�j2 t�tið Þe�j2 ti�ti�1ð ÞVq ti�2ð Þ ~x t�i�1ð Þ

� �
� j2

1e�j2 t�tið Þe�j2 ti�ti�1ð Þe�j2 ti�1�ti�2ð ÞVq ti�2ð Þ ~x ti�2ð Þð Þ

�

¼ j
Nq tð Þ t;0ð Þ
1 e�j2 t�t1ð ÞVq t0ð Þ ~x t�1ð Þ

� �
� j

Nq tð Þ t;0ð Þ
1 e�j2 t�t1ð Þe�j2 t1�t0ð ÞVq t0ð Þ ~x t0ð Þð Þ

¼ j
Nq tð Þ t;0ð Þ
1 e�j2 t�t0ð ÞVq t0ð Þ ~x t0ð Þð Þ

Since Nq tð Þ t; 0ð Þ � N0 þ t� 0ð Þ=sa

� �
¼ N0 þ t=sað Þ and j1 ¼

l2=l1ð Þ > 1, we can derive that
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Vq tð Þ ~x tð Þð Þ < j
N0þ t

sa

1 e�j2tVq t0ð Þ ~x t0ð Þð Þ ¼ jN0

1 j
t

sa

1 e�j2tVq t0ð Þ ~x t0ð Þð Þ

¼ jN0

1 elnj
t

sa
1 e�j2tVq t0ð Þ ~x t0ð Þð Þ

¼ jN0

1 e
t

sa
lnj1 e�j2tVq t0ð Þ ~x t0ð Þð Þ

¼ jN0

1 e�j2tþ t
sa

lnj1 Vq t0ð Þ ~x t0ð Þð Þ

which is equivalent to

Vq tð Þ ~x tð Þð Þ < jN0

1 e� j2� 1
sa

lnj1ð ÞtVq t0ð Þ ~x t0ð Þð Þ (17)

Therefore, according to Eq. (10), inequality (17) implies that
Vq tð Þ ~x tð Þð Þ converges exponentially to zero as t tends to infinity,
which in turns means that ~x tð Þ converges exponentially to zero as
t tends to infinity.

Remark 2. Equation (14) is always constructed as the positive
definite character of Lyapunov function Vk ~x tð Þð Þ, and similar tech-
nique is also used in Ref. [41].

Theorem 1 provides an LMI condition to robust sliding-mode
switched observer (6) under Assumptions 1 and 2. Since the alge-
braic equation (4) can be solved by the optimization problem (5)
with LMI constraint, we can directly derive the following Corol-
lary 1 from Eqs. (5) and (9) as follows.

COROLLARY 1. Under Assumptions 1 and 2, observer (6) with
sliding-mode control law (7) can asymptotically estimate the con-
tinuous state vector x provided that for given scalars
l2 > l1 > 0, there exist symmetric positive definite matrices Pk, S
and matrices Lk; Gk such that the following optimization problem:

mind

Pk > I

Pk > l1S

Pk < l2S

PkAk þ CkCk þ PkAk þ CkCkð ÞT < 0

dI DT
k Pk � GkCk

DT
k Pk � GkCk

� �T
dI

2
64

3
75 > 0

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

has feasible solution, then Qk ¼ �½ Ak � LkCkð ÞTPk þ Pk

Ak � LkCkð Þ� and the observer gain matrices Lk ¼ �P�1
k Ck,

where sa is sufficiently large such that Eq. (10) satisfies.
Remark 3. Some works of the existing literature have consid-

ered the problem of the state estimation for switched systems
without unknown inputs [5,16–18,21–23]. Bejarano and Pisano
[2] and Zhang et al. [16] adopted the CLF approach. This paper
incorporates the ADT switching and MLF approach to investigate
the state estimation issue for a class of switched linear systems
with unknown inputs. So, it is different from Refs.
[2,5,16–18,21–23] on both system structure and techniques since
the MLF approach is relatively less conservative than the CLF
one, and the switched system considered in this paper is with
unknown inputs.

3.2 Reduced-Order Observer Design. In Sec. 3.1, a full-
order sliding-mode switched observer is proposed to
estimate the continuous state of uncertain linear switched sys-
tem. In this section, in order to reconstruct the continuous state
of switched system, the underlining idea is to develop a
reduced-order switched observer which can directly eliminate the
influences of the unknown inputs. We first give the orthogonal
procedure.

There exist invertible matrices Nk 2 Rp�p such that

Ck ¼ NkCk

_

, where Ck

_

2 Rp�n; Ck

_

C
_ T

k ¼ Ip. We extend matrices

Ck

_

such that it becomes an orthogonal matrices

Tk ¼ C
_ T

k MT
k

h iT

, where Mk 2 R n�pð Þ�n. If we take the state

transformation �x tð Þ ¼ Tkx tð Þ, the system (1) is, 8t 2
ti; tiþ1½ Þ; q tð Þ ¼ q tið Þ ¼ k 2 K and q ti�1ð Þ ¼ k0 2 K, then equiva-

lent to

_�x tð Þ ¼ �Ak�x tð Þ þ �Bku tð Þ þ �Dkg tð Þ
�x tþi
� �

¼ TkT�1
k0 �x t�ið Þ

y tð Þ ¼ �Ck�x tð Þ

8>><
>>: (18)

where �Ak ¼ TkAkTT
k ;

�Bk ¼ TkBk; �Dk ¼ TkDk and �Ck ¼ CkTT
k

¼ Nk Ip 0
� �

.
The state �x tð Þ will jump at the switching instants t ¼ ti as the

time-varying state transformation �x tð Þ ¼ Tkx tð Þ, so the state fea-
tures can be expressed, for the transformed system (18) and the
switching time ti, as follows:

�x tþi
� �

¼ Tkx tþi
� �

¼ Tkx t�ið Þ ¼ TkT�1
k0 �x t�ið Þ

which is the second equation of Eq. (18).
LEMMA 2. If there exist symmetric positive definite matrices

Pk; Qk 2 Rn�n, matrices Lk 2 Rn�p and Gk 2 Rq�p such that
Eq. (4) holds, then we can find �Pk ¼ TkPkTT

k ;
�Qk ¼

TkQkTT
k ;

�Lk ¼ TkLk and �Gk ¼ Gk, such that

�Ak � �Lk
�Ckð ÞT �Pk þ �Pk

�Ak � �Lk
�Ckð Þ ¼ � �Qk

�D
T
k

�Pk ¼ �Gk
�Ck

8<
: (19)

hold, where k 2 K ¼ 1; 2;…;Nf g.
For 8q tð Þ ¼ k 2 K, we decompose matrices �Ak; �Bk; �Dk; �Pk,

and �Qk into block matrices as follows:

�Ak ¼
�Ak;1

�Ak;2

�Ak;3
�Ak;4

" #
; �Bk ¼

�Bk;1

�Bk;2

" #
; �Dk ¼

�Dk;1

�Dk;2

" #
;

�Pk ¼
�Pk;1

�Pk;2

�P
T
k;2

�Pk;3

" #
; �Qk ¼

�Qk;1
�Qk;2

�Q
T
k;2

�Qk;3

" #

where �Ak;1; �Pk;1; �Qk;1 2 Rp�p; �Bk;1 2 Rp�m, and �Dk;1 2 Rp�q. As
the special structure of �Ck, we find that the block in the intersec-
tion of the second row and the second column in the first equation
of Eq. (19) is

�A
T

k;2
�Pk;2 þ �A

T

k;4
�Pk;3 þ �P

T
k;2

�Ak;2 þ �Pk;3
�Ak;4 ¼ � �Qk;3

Denote �Kk ¼ � �P
�1
k;3

�P
T
k;2, the above equation implies that

�Ak;4 � �Kk
�Ak;2

� �T �Pk;3 þ �Pk;3
�Ak;4 � �Kk

�Ak;2

� �
¼ � �Qk;3 (20)

By the second equation of Eq. (19), there is

�Dk;1
�Dk;2

� �T �Pk;1
�Pk;2

�P
T
k;2

�Pk;3

" #
¼ �GkNq tð Þ Ip 0

� �

which means that the following equation:

�P
T
k;2

�Pk;3

h i
�Dk ¼ 0 (21)

holds. By taking a state transformation of
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v tð Þ ¼ v1 tð Þ
v2 tð Þ

� �
¼ Nk

�x1 tð Þ
�x2 tð Þ

� �
(22)

where v1 tð Þ 2 Rp; v2 tð Þ 2 Rn�p, and Nk ¼
Ip 0

��Kk In�p

� �
, we can

obtain, for q tið Þ ¼ k 2 K and q ti�1ð Þ ¼ k0 2 K, that

v tþi
� �

¼ Nk�x tþi
� �

¼ Nk�x t�ið Þ ¼ NkN
�1
k0 v t�ið Þ (23)

So, a system decomposition for switched system (18), 8t 2
ti; tiþ1½ Þ; q tð Þ ¼ q tið Þ ¼ k 2 K and q ti�1ð Þ ¼ k0 2 K, can be

derived from Eqs. (21) to (23) that

_v1 tð Þ ¼ �Ak;1 þ �Ak;2
�Kk

� �
v1 tð Þ þ �Ak;2v2 tð Þ þ �Bk;1u tð Þ þ �Dk;1g tð Þ

_v2 tð Þ ¼ �Ak;4 � �Kk
�Ak;2

� �
v2 tð Þ þ ��Kk In�p

� �
�Bku tð Þ þ �Ak;3 þ �Ak;4

�Kk � �Kk
�Ak;1 þ �Ak;2

�Kk

� �� �
v1 tð Þ

v2 tþi
� �

¼ ��Kk þ �Kk0ð Þv1 t�ið Þ þ v2 t�ið Þ
y tð Þ ¼ Nkv1 tð Þ

8>>>>><
>>>>>:

(24)

We need to reconstruct the states of the switched system (24) such that the states of the original switched system (1) can be obtained
by the state transformation �x ¼ Tkx. Thus, a reduced-order observer is considered to reach the above purpose as follows:

_̂v2 tð Þ ¼ �Ak;4 � �Kk
�Ak;2

� �
v̂2 tð Þ þ ��Kk In�p

� �
�Bku tð Þ þ �Ak;3 þ �Ak;4

�Kk � �Kk
�Ak;1 þ �Ak;2

�Kk

� �� �
N�1

k y tð Þ
v̂2 tþi
� �

¼ ��Kk þ �Kk0ð ÞN�1
k0 y t�ið Þ þ v̂2 t�ið Þ

�̂x tð Þ ¼
N�1

k y tð Þ
v̂2 tð Þ þ �KkN�1

k y tð Þ

" #

8>>>>>><
>>>>>>:

(25)

THEOREM 2. Consider system (1) fulfilling Assumption 1, the ob-
server system (25) is a reduced-order observer of switched system
(24) provided that for given scalars l2 > l1 > 0, there exists a
symmetric positive definite matrix S 2 Rn�n such that Eq. (9)
holds, and s0a is sufficiently large according to

s0a >
ln j1ð Þ

j3

(26)

where j3 ¼ inf‘2K kmin
�Q‘;3


 �
=kmax

�P‘;3

� �
 �
.

Proof. If the observer error is set as ~v2 tð Þ ¼ v2 tð Þ � v̂2 tð Þ, we
can then get the observer error dynamic system between Eqs. (24)
and (25) as follows:

_~v2 tð Þ ¼ �Ak;4 � �Kk
�Ak;2

� �
~v2 tð Þ (27)

Consider the Lyapunov function candidate

V0k ¼ ~vT
2 tð Þ �Pk;3~v2 tð Þ (28)

its derivative along the error dynamic system (27), based on
Eq. (20), is

_V 0k¼~vT
2 tð Þ �Ak;4� �Kk

�Ak;2

� �T �Pk;3þ �Pk;3
�Ak;4� �Kk

�Ak;2

� �h i
~v2 tð Þ

¼�~vT
2 tð Þ �Qk;3~v2 tð Þ��kmin

�Qk;3


 �
~vT

2 tð Þ~v2 tð Þ

��
kmin

�Qk;3


 �
kmax

�Pk;3

� � V0k ~v2 tð Þ
� �

��inf‘2K
kmin

�Q‘;3


 �
kmax

�P‘;3

� �
0
@

1
A

V0k ~v2 tð Þ
� �

¼�j3V0k ~v2 tð Þ
� �

So, for any t 2 ti; tiþ1½ Þ and q tið Þ ¼ k, we can obtain

V0q tið Þ ~v2 tð Þ
� �

� e�j3 t�tið ÞV0q tið Þ ~v2 tið Þð Þ (29)

We can derive from Eq. (9) and �Pk ¼ TkPkTT
k that

l1Z < �Pk < l2Z (30)

where Z ¼ TkSTT
k . If we decompose matrix Z into the following

block matrix Z ¼ Z1 Z2

ZT
2 Z3

� �
, where Z1 2 Rp�p and

Z3 2 R n�pð Þ� n�pð Þ, then Eq. (30) shows that:

l1Z3 < �Pk;3 < l2Z3 (31)

holds. So, we can further derive from Eqs. (29) and (31) that
8 k; k0ð Þ 2 K� K; k 6¼ k0

V0q tið Þ ~v2 tð Þ
� �

� e�j3 t�tið Þ
V0q tið Þ ~v2 tið Þð Þ

V0q t�ið Þ ~v2 t�ið Þ
� �V0q tið Þ ~v2 t�ið Þ

� �

¼ e�j3 t�tið Þ ~vT
2 tið Þ �Pk;3~v2 tið Þ

~vT
2 t�ið Þ �Pk0 ;3~v2 t�ið Þ

V0q t�ið Þ
~v2 t�ið Þ
� �

< e�j3 t�tið Þ l2~vT
2 tið ÞZ3~v2 tið Þ

l1~vT
2 t�ið ÞZ3~v2 t�ið Þ

V0q t�ið Þ
~v2 t�ið Þ
� �

¼ j1e�j3 t�tið ÞV0q t�ið Þ
~v2 t�ið Þ
� �

which means that
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V0q tið Þ ~v2 tið Þð Þ < j1V0q t�ið Þ
~v2 t�ið Þ
� �

¼ j1~vT
2 t�ið Þ �Pq t�ið Þ;3~v2 t�ið Þ (32)

Similar to the proof of Theorem 1, by iterating Eqs. (29) and (32)
from i¼ 0 to i ¼ Nq tð Þ t; 0ð Þ, we can obtain that

V0q tð Þ ~v2 tð Þ
� �

< jN0

3 e
� j3� 1

s0a
lnj1

� �
t
V0q t0ð Þ ~v2 t0ð Þð Þ

which means that V0q tð Þ ~v2 tð Þ
� �

converges exponentially to zero as t

tends to infinity. Thus, the estimation error ~v2 tð Þ in Eq. (27) con-
verges exponentially to zero as t tends to infinity.

After the estimation of v2 tð Þ is derived from reduced-order
switched observer (25), if Eqs. (9) and (26) hold, it is easy to com-
pute the estimation of �x by the state transformation (22), and it is

�̂x tð Þ ¼ N�1
k v̂ tð Þ ¼

Ip 0

��Kk In�p

" #�1

v̂ tð Þ ¼
Ip 0

�Kk In�p

" #
v̂1 tð Þ
v̂2 tð Þ

" #

¼
N�1

k y tð Þ

v̂2 tð Þ þ �KkN�1
k y tð Þ

2
4

3
5

Based on the transformation �x tð Þ ¼ Tkx tð Þ, the state estimation of
original switched system (1) can be obtained as follows:

x̂ tð Þ ¼ T�1
k �̂x tð Þ ¼ T�1

k

N�1
k y tð Þ

v̂2 tð Þ þ �KkN�1
k y tð Þ

" #
(33)

It should be pointed out that the design procedure of reduced-
order observer shows that the conditions under which a full-order
observer exists also guarantee the existence of a reduced-order ob-
server. The design method of the reduced-order observer that is
dependent on Assumption 1 and matrix inequality (9) is then
presented.

4 Simulation

4.1 System Description. In this section, we present an exam-
ple to highlight the performances of the proposed robust sliding-
mode observer and reduced-order observer developed in this pa-
per. We consider the simplified three-tank system which is used to
control the liquid level in the production process of chemical
industry and is depicted in Fig. 1.

In Fig. 1, the injection rate of tank 1 is u, the liquid level
heights of the three tanks are x1; x2 and x3, respectively. v1; v2,
and v3 stand for the effluent rates of the tanks. The relationship
between liquid inflow or outflow rate and liquid level height is lin-
ear. When the selector s switches to the tank 2, the variation of
liquid level heights can be described as

_x1

_x2

_x3

2
4

3
5 ¼ �v1 0 0

v1 �v2 0

0 0 �v3

2
4

3
5 x1

x2

x3

2
4

3
5þ 1

0

0

2
4
3
5uþ

1

1

1

2
4
3
5g

and

_x1

_x2

_x3

2
4

3
5 ¼ �v1 0 0

0 �v2 0

v1 0 �v3

2
4

3
5 x1

x2

x3

2
4

3
5þ 1

0

0

2
4
3
5uþ

1

1

1

2
4
3
5g

for the case that the selector s switches to the tank 3, where g ¼
3:6 cos 4:8tð Þ is the unknown inputs, which stands for the model
uncertainty. If the values of effluent rates are set as
v1 ¼ 2:85; v2 ¼ 3:6, and v3 ¼ 1:36, respectively, then the three-
tank system is governed by the following state equations with the
form of system (1):

A1 ¼
�2:85 0 0

2:85 �3:6 0

0 0 �1:36

2
64

3
75;A2 ¼

�2:85 0 0

0 �3:6 0

2:85 0 �1:36

2
64

3
75;

B1 ¼ B2 ¼
1

0

0

2
64
3
75; D1 ¼ D2 ¼

1

1

1

2
64
3
75

The output matrices are assumed as C1 ¼ C2 ¼
1 0 0

0 0 1

� �
, and

the known input u is set as u ¼ 12 sin 10:5tð Þ.

4.2 Full-Order Observer. For given parameters l1 ¼ 1 and
l2 ¼ 1:8, by solving the optimization problem in Corollary 1, we
can obtain that

Fig. 2 State estimation error curves and switching signal qðtÞ
with sa51

Table 1 Different parameters and figures

‘1 ‘2 j1 j2 ðln j1Þ=j2 sa Figures

1 1.8 1.8 0.8511 0.6906 1 2
1 1.6 1.6 0.4163 1.1289 1.5 3
1 1.2 1.2 0.3960 0.4604 0.5 4

Fig. 1 Three-tank system
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P1 ¼
6:8014 �1:5314 0:2301

�1:5304 2:693 �1:1615

0:2301 �1:1615 5:2325

2
64

3
75;

P2 ¼
6:3301 �1:7014 1:0151

�1:7014 2:7495 �1:048

1:0151 �1:048 4:2832

2
64

3
75;

Q1 ¼
6:578 0:0561 �0:0217

0:0561 19:3893 0:0241

�0:0217 0:0241 6:5987

2
64

3
75

Q2 ¼
6:4374 0:1649 0

0:1649 19:7961 0

0 0 6:5994

2
64

3
75;

G1 ¼
�1:689 0:173

6:0083 2:1331

0:9971 �0:2635

2
64

3
75;G2 ¼

�1:4405 1:38

2:8197 2:6416

1:9575 �0:2703

2
6664

3
7775

and the gain matrices L1 ¼
5:5001

4:3011

� �T

and L2 ¼
5:6438

4:2503

� �T

. The

parameters j1 ¼ 1:8 and j2 ¼ 0:8511 can be easily obtained, so
the value of lnj1ð Þ=j2 is 0.6906. Let us generate a possible ADT
witching sequences with sa ¼ 1, as shown in the bottom of
Fig. 2. In the simulation, the initial state values and initial

estimation values are set as x 0ð Þ ¼ 2:5 �1:5 1:8
� �T

and

x̂ 0ð Þ ¼ 8 2:3 �1:6
� �T

, respectively. Then, applying the

observers in Eq. (6) with the sliding-mode law (7), the error
curves of state response between the estimated systems and the
observers are depicted in the top of Fig. 2, from which we can see
that the estimation performance is perfect under the designed
ADT switching signal.

Remark 4. In order to further investigate the parameter influ-
ence on the performance of state estimation, many different pa-
rameters are tested, and the values of them and the serial number
of simulation figures are shown in Table 1. We can derive from
Table 1 that the ADT sa can be allowed to choose the different
values, as the different parameter ‘2 is given. In the case of differ-
ent parameters, the curves of state estimation error and switching
signal are plotted in Figs. 2, 3, and 4, respectively. From Figs. 2 to
4, we can see that different parameters can affect not only the

Fig. 3 State estimation error curves and switching signal qðtÞ
with sa51:5

Fig. 4 State estimation error curves and switching signal qðtÞ
with sa50:5

Fig. 5 Estimation for state v2

Fig. 6 Estimation for state x2

Journal of Dynamic Systems, Measurement, and Control FEBRUARY 2016, Vol. 138 / 021004-7

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



choice of ADT sa but also the convergence speed of the state esti-
mation error dynamics. How to optimally choose parameters such
that the designed observer is with preferable performance will be
our next consideration.

4.3 Reduced-Order Observer. By applying Smith orthogo-
nal procedure to C1 and C2, we have

T1 ¼ T2 ¼
1 0 0

0 0 1

0 1 0

2
4

3
5; N1 ¼ N2 ¼

1 0

0 1

� �

which make the transformed system (18) be satisfied. We can fur-
ther obtain the matrices �Ak;1; �Ak;2; �Ak;3; �Ak;4; �Bk; �Qk;3 for k¼ 1,
2, and matrices

�P1;2 ¼ �P2;2 ¼
�1:2272

�1:2293

� �
; �P1;3 ¼ �P2;3 ¼ 2:4569½ �

which lead to the fact that �K1 ¼ �K2 ¼ 0:4996 0:5004
� �

. It is

easily to compute the parameter j3 and its result is

j3 ¼ inf‘2K kmin
�Q‘;3


 �
=kmax

�P‘;3

� �
 �
¼ 7:2, so ln j1ð Þ=j3 ¼

0:0816 which guarantees the ADT switching sequences with
s0a ¼ 1 > 0:0816. The dimension of the reduced-order switched
observer (25) is 1 since n� p ¼ 1. If the initial value of v̂2 is set

as v̂2 0ð Þ ¼ 8, the estimation of state v2 tð Þ can be derived from the
reduced-order switched observer (25), and the estimation curves
are given in Fig. 5. After this, the state estimation of original
switched system (1) can be obtained by Eq. (33), and Fig. 6
presents the simulation result for x2 tð Þ. From Figs. 5 and 6, we
know that the effectiveness of state trajectory tracking is
satisfactory.

5 Conclusions

The issues of state estimation are discussed for switched linear
system with unknown inputs in this paper. Under the assumption
that the switching signals are synchronous between the observers
and estimated system, a full-order switched observer with sliding-
mode control laws is developed by MLF approach, and the stabil-
ity condition of the observer error dynamics involves an ADT
constraint on the switching sequence. With the help of state trans-
formation, the reduced-order switched system which is without
unknown inputs is constructed and a reduced-order switched ob-
server is proposed such that the purpose of reconstructing the
states of the original switched system is realized. The sufficient
conditions of the existence of both the full-order observer and
reduced-order one are obtained by solving the optimization prob-
lem with the LMI constraint. It is also pointed out that the condi-
tions under which a full-order switched observer exists also
guarantee the existence of a reduced-order switched observer.
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