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Formulation of a Basic Building 
Block Model for Interaction of 
High Speed Vehicles on Flexible 
Structures 
In traditional analyses of vehicle/structure interaction, especially when there are 
constraints between vehicle masses and the structure, vehicle nominal motion is 
prescribed a priori, and therefore unaffected by the structure flexibility. In this 
paper, a concept of nominal motion is defined, and a methodology is proposed in 
which the above restriction is removed, allowing the vehicle nominal motion to 
become unknown, and encompassing the traditional approach as a particular case. 
General nonlinear equations of motion of a building block model, applicable to 
both wheel-on-rail and magnetically levitated vehicles, are derived. These equations 
are simplified to a set of mildly nonlinear equations upon introducing additional 
assumptions - essentially on small structural deformation. An example is given to il
lustrate the present formulation. 

1 Introduction 

In recent years considerable interest has been developed in 
implementing energy-efficient, high-speed, low-noise systems 
for airport-city or intercity transportation - in particular, the 
magnetically levitated (Maglev) vehicle systems (cf. Eastham 
and Hayes (1987)). Currently, to ensure success of Maglev 
systems, guideway structures must be designed to be stiff so 
that deflections remain within narrow margins of tolerance. 
The cost of a stiff guideway structure can easily exceed 70 per
cent of the total cost of a system (Zicha (1986)). More flexible 
guideways are less expensive, but present complex vehi
cle/structure interaction.1 The interaction between high speed 
moving vehicles and flexible supporting structures is the focus 
of the present paper. Even though the impetus behind this 
work is geared toward high speed vehicles, the problem of 
moving loads does find applications in various fields of 
engineering (cf. Fryba (1972), Blejwas et al. (1979)). Extensive 
lists of references on the subject of moving loads over elastic 
structures are contained in the classical monograph by Fryba 
(1972), and in several review papers, e.g., Kortum and 
Wormley (1981), Ting and Yener (1983), report of Subcom
mittee on Vibration Problems (1985) and Kortum (1986). 

Progress in suspension control technology will make possible the use of flexi
ble guideways, and the efficiency of Maglev systems will increase with advance 
in superconductor research. 
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Formulation of vehicle/structure interaction for wheel-on-
rail vehicles, or for electromagnetic Maglev vehicles with tight 
gap control, leads to a complex system of equations of mo
tion. This complexity stems mainly from the constraints be
tween moving masses and the flexible structure, and from the 
existence of convective terms, which are important for high 
speed regimes. Such problem does not arise for vehicle models 
connected to the structure via suspension systems where there 
are no constraints between moving masses and the structure. 
In addition, efficient numerical algorithms must be developed 
to deal with the resulting complex system of equations of mo
tion; analytical solution (for simple cases) is possible only 
when convective terms are neglected (e.g., Stanisic (1985)). So 
far, research effort has been based on the assumption that 
vehicle nominal motion is known a priori (e.g., Ting, Genin 
and Ginsberg (1974), Venancio-Filho (1978), Olsson 
(1985-1986), and Wallrapp (1986)). Since mathematical 
models in these work require prescribed vehicle nominal mo
tion and do not admit driving forces, there is no possibility to 
study effects of structure flexibility on vehicle nominal mo
tion, or effects of applied accelerating or braking forces on the 
vehicle/structure system. We have not come across any 
reference where the assumption of known vehicle nominal mo
tion is not used. 

We propose herein a methodology to analyze the complete 
vehicle/structure interaction, valid for high speed regime, 
without resorting to the usual assumption of known nominal 
motion. This general setting clearly includes the case where 
nominal motion is prescribed a priori. The scope of this paper 
is restricted to a basic model of planar motion of a rigid wheel, 
or a Maglev magnet unit with tight gap control, moving over a 
flexible beam. Energy dissipative mechanisms are not con
sidered here. The present prototype model serves as a basic 
building block for more complex vehicle/structure models. 
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We note that the wheel model also finds application in electro-
dynamic (repulsive) Maglev vehicles since these vehicles move 
on wheels up to a maximum lift-off speed of about 80 km/h 
(Alscher et al. (1983)). Further, both high speed Maglev 
vehicles and wheel-on-rail vehicles may possibly run on the 
same bivalent guideway structure. 

Nonlinear equations of motion of the basic model, valid for 
large deformation of the beam, are derived for a class of 
general (nonlinear) contact constraints via Hamilton's princi
ple of stationary action.2 In the present work, structural 
response in the small deformation range is, however, our main 
interest. With assumptions of small deformation, the 
nonlinear equations of motion are then reduced, in a consis
tent manner, to a system of mildly nonlinear equations. This 
consistency is an important feature that distinguishes the pre
sent approach from traditional practice of complete lineariza
tion: Nonlinear terms of physical relevance, essential for 
high speed regime, are retained in the equation for nominal 
motion of the basic model. Finally, an example of vehi
cle/structure interaction at different initial velocities is given 
to illustrate the present formulation. 

Note that the study of dynamic motion of the complete 
system, driven by external forces, as done here, is the only way 
to explain the Timoshenko paradox: Consider a constant 
vertical force traversing, with some prescribed motion, a 
simply-supported beam. Since the net work done by the force 
is zero, where does the energy which leaves the beam in a 
vibratory state after the traversing come from? The same 
question can be asked for a moving mass with prescribed mo
tion. In fact, the "excess" of energy comes precisely from the 
work done by (unmodeled) external forces needed for the vehi
cle to follow the motion prescribed (cf. Maunder (I960)). 

2 Description of Basic Problem 

In this section, we describe the basic problem of planar mo
tion of a high speed moving load - a single rigid wheel or a 
suspended magnet with tight gap control—over a flexible 
beam. Attention is focused, however, to the dynamics of the 
more complex case of a rolling wheel. Several possible models 
of a Magleve magnet ("magnetic wheel") can be obtained 
from this basic model. Recall that the present basic model 
serves as a building-block for more complex vehicle/structure 
models. 

2.1. Basic Assumptions. Let [E,, E2) be orthonormal 
basis vectors, and (X1, X2) the coordinates along these axes. 
These objects define a coordinate system for the material 
(undeformed) configuration of a beam. The line of centroids 
of the beam, of length L and initially straight, is assumed to lie 
along the axis E : ; the coordinate of a material point on the 
line of centroids is denoted by S = X1 € [0, L]. Let (e^ e2 j be 
the set of orthonormal vectors spanning the spatial (deformed) 
configuration, and conveniently chosen such that E, = e,, for 
/' = 1,2. The displacement of a material point S is denoted by 
u (S,t) = ua(S,t)ea,

3 where t € [0, + oo) is the time parameter. 
Consider a rigid wheel with mass M, radius R, and rotatory 

inertia about its center of mass /„,. Let Y (0 = Ya (t) Ea be the 
position of the wheel center of mass in the material configura
tion of the beam; its position in the spatial configuration is 
denoted by y(t)=ya(t)ea. We consider the following general 
form of constraint 

r ( 0 = Y<*(t) + g«(u(Yl(t),t), u,s (Y'(t),t)), (1) 

for a = 1,2, where ga (•,•) are some functions of the structural 

displacement u and its spatial derivative u , s = du/dS = 
(du^/dS)e0, such that ga(0, 0) = 0. We call Y(0, the motion 
of the wheel in the material configuration of the beam, the 
nominal motion of the wheel. Thus, for u(S,t) = 0, we have 
ya(t) = Ya(t). Given the funct ions/ (0 . u(S,t), andg1 (u, u s), 
relation (1) with a = 1 could be taken as a definition of the 
(unknown) nominal motion Yl(t), i.e., Yl(f) is defined to be a 
solution of (1). In this formulation, we consider only the case 
where Y2 = R, for some constant R. Let 6 denote the angle of 
revolution of the wheel, which is considered to be a function 
of the nominal position Yl and the structural deformation 
(u, u, s) . We will often employ the shorthand notation g"(Y] ,t) 
= ga (u(y ' ,0 . u , s (F ' ,0 ) , and similarly with 0(YV) = 
§(YlMY>,t),u,s(Y>,t)).Thm, 

dga dga du13 dga d2ue 

(2a) dS 

dd 

dS 

duP dS du»,s dS2 

86 

~d~S~ 

de due do d2^ 
drf dS duf>,s dS2 (2b) 

2.2 Kinetic Energy and Potential Energy. The kinetic 
energy IK of the basic system (wheel and flexible beam) is 
given by 

JK:=^-M[lYi+g'(Y\t)2 + [g2(Y\t)]2]+-^-Iwie(Y\t)]2 

+ ~TI[OL]A" [lul>i<s^2 + l"2u(S,0]2]dS, (3) 

where the superposed " •" denotes the total time derivative 
(i.e., ('.) = d/dt (•)); ua

u = dua/dt denotes the partial 
derivative of ua in time, and Ap the mass per unit length of the 
beam.4 Now, consider a function / : [0, L] x [0, <x)-~lR, 
smooth enough in both arguments. The first and second total 
time derivatives o f / (S ,0 , evaluated at S= Yx(t), are obtained 
as follows 

/ ( y , y 1 , o = ^ ^ y ' + - a / ( y l ' ° 
dS dt 

(4a) 

/(y.,y.,y,0 = jAg^jH+^.0(^ 
ds dS2 

]2d
2f(Y\t) . , d2f(Y\t) 

dSdt dt2 (4b) 

We will often omit to specify (Yl, Yl) in the argument lists of 
quantities such as / and f, and simply write f(Y\t) and 
f(Y[,t).s Thus, employing (2) and (4) w i t h / = ga to evaluate 
ga(Yl,t) and 8(Y[,t), one obtains an expanded form of the 
kinetic energy (3). The convective terms in (4)- i .e . , the first 
term in (4a), and the first three terms in (4b) - play an impor
tant role in the interaction between high speed moving vehicles 
and the supporting flexible structures, as shown in Blejwas, 
Feng, and Ayre (1979), where numerical results corroborated 
experimental findings (see also Ting, Genin, and Ginsberg 
(1974)). Further, by the assumed smoothness of the function/ 
in (4), total time derivatives and spatial derivatives are inter
changeable, 

dt' 

"_ r»/(y',Q-| _ »' rrf>/(yi,/)-i 
t> I d& J d& I dt' i' U 

The term "contact" is also used here for Maglev magnets with tight gap 
control. 

Throughout the paper, summation convention is implied on repeated in
dices, which take values in 11, 2 j . 

It should be noted that in (3) we do not consider the rotatory inertia of the 
beam cross-section; however, an analysis including this term could be carried 
out following the same methodology presented in this paper. 

This shorthand notation had been used in (3). 
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and thus notation such as f,s(Y
l,t) can be used without 

confusion. 
The wheel is subjected to an applied force F = Faea, and a 

torque Tabout its center of mass. Without loss of generality, 
for the moment, the applied force and torque can be con
sidered constant in time for the purpose of deriving the equa
tions of motion. The work done by the external forces is then 
given by W : = F«y + TO. Further, let \p(u) denote the elastic 
strain energy stored in the beam. The formulation is so far 
valid for large deformation in the beam, and we have not yet 
introduced assumptions of small deformation at this stage. 
Explicit expression of \p(u) for finite deformation of a beam in 
plane motion can be found in Simo and Vu-Quoc (1986). 

3 Derivation of Equations of Motion 

In this section, we derive the equations of motion for the 
basic problem, valid for large structural deformation, by 
employing Hamilton's principle of stationary action. Addi
tional assumptions of small deformation in the structure are 
subsequently introduced to further simplify the equations of 
motion. This simplification process is carefully carried out in a 
manner that is consistent with the assumptions. It should be 
indicated that even though particularized to small structural 
deformation the resulting equations of motion do retain some 
crucial nonlinear terms, for an adequate description of the 
dynamics at high speed regime. 

3.1 The General Nonlinear Equations of Motion. The 
Lagrangian of the system can be written as 

2L(y ' , u ) :=2S : (y 1 , u ) - ^ (n )+^ (y .u ) , 6 (6) 

Consider the time interval [tut2\. Let OKO.TJ'OS.O.*!2 ( S » 0 ) be 
the admissible variations corresponding to the functions 
(y'.i/ ' .K2), and vanishing at time t = tx and t = t2. The equa
tions of motion are obtained from the stationary condition of 
the action integral, i.e., the Euler-Lagrange equations cor
responding to (6): 

— ( IL(Yl+e^,u + er,)dt\ =0, 
de J[«i.'2l U=o 

(7) 

for all admissible variations (i/sij), where i\ = ife,^. It follows 
that the equations for nominal motion Y1 and for structural 
displacement u are, respectively, given by 

d 

~d7 

- ( 
de J[<i,<2l 

[ IL(Yl+e^,u)dt 
Ji'1,'21 

H(Yl,u + erj)dt 

= 0, 

= 0, V admissible (i/>,i?) (8) 

Nominal Motion Y1. We first note that from (4a) one has 

df(Y\Y\t) df(Y\t) 

d dS 

Then, it follows from (9a) and (5) that 

l_ (df(Y\t)\ ^d_ /df(Y\t)\ = df(Yi,t) 

dt \ d ) dt V dS ) dS 

Further, the variation of/with respect to Yl is given by 

d 
-f(Yl+et,t)\ 

de U=o 

df(Yl,t) df(Y*,Q • 
Y + ^ W,' 

(9a) 

(9b) 

(10) 
dS dS 

where we have made use of (4a).7 Next, after evaluation of the 

alleviate the notation. 
Another way to obtain (10) is by interchanging d/de and d/dt, and then us

ing (5). 

directional derivative (8)1; and applying integration by parts 
with the boundary conditions ^(/,) = ip(t2) = 0, we obtain 

d f , I 
--— M(Y[+e^, »)dt 

de J[/i,/2i U=o 

( M 1 + 
Jl'l. '2l V. V 

ag'(y,o 
as 

) [ f + gl(Y\t)] 

3 g 2 ( r \ 0 

d 

~de~ 

+ M^^g^,t) + Iw^^e{r,t)],dt, (lla) 

( W(r+et,n)dt\ = ( [ W l +
a * 1 ( y l - Q ) 

J['i.'2i N=o hn.ti] (- V dS J 

+ F* 
dg2(Y\t) d6(Yl,t) 

dS dS •]* dt, (lib) 

where use has been made of (9) and (10) wi th / = ga to allow 
cancellation of certain terms. The stationary condition (8)! 
and relations (11) yield the equation for the nominal motion 
Y1: 

dg^Y'j) 
W ( 1 + ^ ) [ ? + f ( , i 0 ] 

+ M-

=Fl (l + 

dS 

dg2(r,t) 

dS 
WW.*™^ 

dS 

dg[(r,t)\ dg\Y\t) 36(Y\t) 

dS J dS dS ' 
(12) 

Structural Motion (ul,u2). Similar to relations (9), one 
can prove that the following identifies hold 

9g°(u,u,5) _ dg"(u,u,s) 

d /dga(u,u,s)\ dga(u,u,s) / 9 g « ( u , u , 5 ) \ _ 
dt V duP J drf 

3g"(u,u,5) _ 3g»(n,ii,s) 
difi,s dut,s ' 

d /ag«(u,u)S)\_ag«(u,u,s) d /dg°(u,u , 5 ) \ 

dt \ dul1,, ) 3K" , 

(13a) 

(136) 

(13c) 

(13d) 

Now, computation of the directional derivative in (8)2, and in
tegration by parts with respect to time yield the following 
results 

- — [ IK(Yl,u + er,)dt\ 
de Jin.'ii le=o 

= ( WU{Y\t)d^YXj) 

J['l.'2l <- V- due 

dea ( Y1 t)\ / 
+ ^,s(Y\t) * l

g '') +Iwe\Y\t)[r)^Y\t} 
dd(Yl,t) 

9u»,s 

dO(Y\t) 

>s 

du* 

d r • , I 
— W(Yl,u + er,)dt\ 
de J[fi,<2l lc=o 

-i AH^i^^'W) 
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where we have made use of the (homogeneous) boundary con
ditions of (V, i)1) at t = t{ and t = t2, relation (4a), and the 
identities (13)8. Next, let the weak form of the stiffness 
operator be denoted by G(», •)> and 

G(u,,) = — ^ ( u + 6r/)| , (15«) 
de U=o 

where we recall that vHu) designates the strain energy of the 
beam - see Vu-Quoc (1986) and Simo and Vu-Quoc (1986) for 
an expression of G(u, i/). Therefore, using (8)2, (14) and (15a), 
the weak form of the structural equations of motion is then 
given by 

r deHY1 t) 
i-F'+M[P+gl(Y\t)]] [ y ( y , o a y 

+V,s(y,o dgl
d
(f'°] + [-fg+Mg?(y,f)] 

+ \ Aor>l3(S,t)ul3,ll(S,t)dS+G(u,ri) = 0, V admissible n. 
•W] (15fc) 

The corresponding partial differential equations of motion 
can be easily obtained from (15) by integrating by parts in S, 
and by invoking the fundamental lemma of calculus of varia
tions.9 We prefer, however, to retain the structural equations 
of motion in its weak form for numerical work. 

Remark 3.1. Energy Balance. The balance of system 
energy at time t can be written as follows 

Kt + +t-j'o [F*(T)y<*(T)+T(T)6(T)]dT=lK0 + t0, (16) 

where IK, is as given in (3), \j/t as given in Simo and Vu-Quoc 
(1986); the integral term is the work done by (time-varying) ex
ternal forces. On the right-hand side of (16) are, respectively, 
the initial kinetic energy 1K0 and the initial potential energy 
\p0. The discrete form of the system energy balance (16) has 
proved to be a very useful criterion in the design of reliable 
numerical integration algorithms for the equations of motion; 
see Vu-Quoc and Olsson (1987, 1988a) for the details. • 

3.2 Contact Constraints and Contact Forces. The wheel 
is assumed to be in permanent contact with, and rolling 
without slipping on, the beam.10 Clearly, without structural 
deformation (u(S,t) = 0), the revolution ofthe wheel is related 
to its nominal motion by 6 = Yl/R. Let R (= Y2) denote the 
distance from the beam centroidal line to the center of mass of 
the wheel (Fig. 1). For R=R, the wheel is moving with its cir
cumference tangent to the beam centroidal line. An explicit 
form of the function ga in the general constraint equations (1) 
for wheel/beam contact, or magnet/beam with constant gap, 

We could also obtain these results by making use of the interchangeability of 
d/de and d/dt. 

The containing space of the variations (t/ ,17 ) should be suitably chosen and 
should include the essential boundary conditions at S = 0 and S = L (see, e.g., 
Rektorys (1980)). 

The velocity of the contact point on the wheel is only about one thousandth 
of the velocity of the wheel center of mass (rigid slip); see Kalker (1979). 

Fig. 1 Basic problem: Building block models for wheel-on-rail and 
Maglev vehicles. 

can be written exactly as follows 
gl(u, u,s) = ul-R sinx(u,s), (17«) 

gHu, u,s) = M
2-i?[l-cosx(u, s)], (176) 

where X(u,s): = tan"1 ( " 'f ) , (17c) 

represents the slope angle of the deformed beam (cf. Fig. 1). It 
should be noted that the expressions in (17) are written for 
beam theory without shear deformation, and are valid for a 
finitely deformed beam. 

Remark3.2 "Magnetic Wheel." The above formulation 
encompasses several possible models for a Maglev vehicle us
ing electromagnetic suspension (attractive system) with tight 
gap control.11 By letting /,,, = 0 (or 0 = 0) in the kinetic energy 
(3), we have a model (A) of a moving magnet, where R 
represents the distance from the beam centroidal line to the 
magnet center of mass (Fig. 1). Next, by letting Iw = R = 0, 
in which case the constraints (1) becomes yl(t) = Y'(t) + 
u!(Yl,t) andy2(t) = u2(Yl,i), we obtain yet another model (B) 
of a moving magnet. In practice, often even simpler con
straints are chosen (model C) so that^'(/) = Yl(f) and_y2(/) = 
u2(Yl,t) (cf., e.g., Wallrapp (1986)). Thus, there is no direct 
coupling between vehicle nominal motion and structural axial 
deformation. In this case, the equations of motion (12) and 
(15) (in weak form) simplify to 

M [ f . + i ^ W , o ] ^ + ^ ^ > , (ito) 
ij2(yV)[-/*+MM2(yv)] 

+ { Arf(S,f) u^„(S,t)dS + G(.u,ri) = 0, (18b) 

which are also valid for a finitely deformed beam. In (18), the 
equation for axial displacement and the equation for 
transverse displacement are coupled through the nonlinear 
nature of G (u,ij) for the finite deformation case, m 

In the design of flexible structures under moving vehicles, it 
is important to quantify the (dynamic) contact forces. In par
ticular, these forces are crucial in studying structural response 
to emergency braking of a vehicle. For the basic problem con
sidered herein, let Fc = F%ea be the contact force acting on the 
beam. Once Y1 and u" have been solved for, the contact force 
can be evaluated by Fc = F —My, obtained from considering 
the equilibrium of forces acting on the wheel. Recall that y is 

The gap between a magnet and the guideway is in the range of 10-15 mm, 
independently of vehicle speed (Eastham and Hayes (1987)). See also the review 
paper by Kortu'm and Wormley (1981). 
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evaluated using (1), (17), and with the aid of (4b). In the case 
of a moving magnet, the contact force Fc is the required active 
control force that should be exerted on the magnet to maintain 
a constant gap. 

3.3 Assumptions on Small Structural Deforma
tion. Equations (12) and (15) form the complete set of cou
pled, fully nonlinear equations describing the motion of a 
rigid wheel moving over a flexible beam. In the present work, 
we consider the following additional assumptions to reduce 
the equations (12) and (15) to a mildly nonlinear form: (Al) 
\ua,s\ <<l, for a = 1 , 2 ; (A2) The Bernoulli-Euler 

hypothesis is adopted for beam response, 

+ u2,s(Y\t)u2,„(Y\t)\, 

c1(Y
i,t)«2M[[\-Ru2,ss (Y',t)] lu',Sl(Y\t) 

-Ru\ssl(.Y\t)] + u\s(Y\t)u\st(Y\t)}, 

c2(Y\t)«M^[\-Ru2,ss (Y\t)] [u\ss(Y\t) 

-Ru\sss(Y\t)} + u\s<J\t)u\ss(Y\t)\, 

u) = — \ \EA[u\s^+EI[u\ssf\dS, (19a) c,(Y\t)^M[\-Ru2,ss(Y\t)}2+-W 

where EA is the axial stiffness, and EI the bending stiffness; 
(A3) All nonlinear terms in the displacement ua are neglected 
in the equations for structural motion; (A4) The wheel rolls 
without slipping and with little influence from structural 
deformation, 

R2 

(23b) 

(23c) 

(23d) 

(23e) 

6(Y\t)< 
Yl dd(Yl,t) 1 

R dS -j,e(Y\ty-

d6 
= 0, and 

dO 

Yl 

~R~ 

= 0. 

0(1" ,0» R ' 

- „ , „..„ - „ . (196) 

Note that the aforementioned assumptions are not only 
physically relevant in real operational conditions of the 
system, but carry important implications on the numerical 
treatment as well (see Vu-Quoc and Olsson (1988a)). 

3.4 The Mildly Nonlinear Equations of Motion. Con
sidering the structural equations of motion (15b), assumption 
(A3) implies that we neglect nonlinear terms in ul and u2 in the 
fully-expanded expressions of g1 and of g2 obtained from us
ing (2a) and (4b) in (17). Thus, together with assumption (Al), 
we arrive at the approximations 

gl~V-RQ2,s, g2~u2. (20) 

Note that approximations (20) together with relations (4) when 
applied to g' and g2 imply 

Qi+jgl d-+jul 
-R 

Qi+j+lu2 di+jg2 di+ju2 
(21) 

dS'dP dS'dP " 3Si+idP ' dS'dP dS'dP 

for (i,j) = (1,0), (2,0), (1,1), (0,2). Further, assumptions (Al) 
and (A3) lead to the following approximations 

z°l dg{ 

>s 

dg2 

= 0, 

Ru2,s, 

dg2 

-~-R, 
>s 

du2,s 
~-Ru2,s, 

1 + 
dg1 

•~1-Ru2, 'U2,s, 

(22a) 

(22b) 

(22c) 
dS M dS 

where (22c) are obtained with the additional aid of (21) (or 
(2d)). As a result of (4b), (20), (22), together with assumption 
(A4) (i.e., (196)), the equation for nominal motion (12) can be 
approximated by 

c%(Y\t) Yl+c2(Y\t)(Yi)2 + cl(Y
i,t)Y'+c()(Y

i,t) = 0, 

(23a) 

where 

c0(Y',t)^-Fi[l-Ru2,ss(r,t)]-F2u2,s(Y
l,t)-

T 

~R~ 

+ M[[l-Ru2,ss(Y
l,t)][u\,t(Y

l,t)-Ru2,sll(Y\t)] 

Remark 3.3. Consistency in the Formulation. The 
nonlinear term in g2 in the equation for the nominal motion 
(12) is, according to (20) and (22), approximated by 

9 g 2 ( r ' ° g 2 ( r ' , 0 - «2 ,s( i" M\Yl ,t), (24a) 

which is also nonlinear in u2. Using (4b), we obtain the term 
(24a) in expanded form as given in (23). This term plays an im
portant role in representing the influence of transverse struc
tural displacement on vehicle nominal motion at high speed. 
To see this, we rewrite the equation for nominal motion (18a) 
of Maglev model C, fori71 = 0, as follows 

MY1=u2,s(Y
l,t) [F2-Mii2(Y1,t)] = u2,s(Y

i,t)F2
c(t). (24b) 

At high speed, the amplitude of the vertical contact force F\ 
may significantly exceed that of the vertical force F2. We will 
present next an example with high speed vehicle motion where 
one has \F2.(t) \ > 1.5 | F2 | , for some time t. In other 
words, the inertia force Mix2 could be of the same order of 
magnitude as that of F2, and should be retained in equation 
(23). Hence, it is shown that the formulation would not be ap
propriate for high speed regime, had we systematically re
moved all nonlinear terms in ua from the equations of motion. 
This is a variance with the usual practice of complete lineariza
tion (see discussion in Kortum (1986)), which is therefore in
consistent in the present situation, m 

Now, applying assumptions (A1-A4), the weak form of the 
equations for structural motion, which is linear in the 
displacement ua, is given by 

nl(Yl,t) (-Fl+M[Yl + iil(Y\t)-Ru2,s(Y\t)]) 

-R{P-MPW,s(Y\t)u2,s(Y\t) 

+ j Q i Arf(S,t)u\tt(S,t)dS 

+ \0LEA jj1,s(S,0«1,s(S.0rfS = 0, (25a) 

and 

- ^ 2 , s ( F 1 , 0 ( - i r l +MI*1 +ul(r,t)-Ru2,s(r,t)]j 

+ rt
2(Yl,t)(-F2+Mu2(Y\t)) 

-RF2r,2,s(Y
lJ)u2,s(Y

l,t) + { ^ ( S . O K 2 , * (S,t)dS 

+ j EI v
2,ss(S,t)u2,ss(S,t)dS = 0, (25b) 
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for all admissible variations (rj1, rj2). Next, using the relations 
(4), we can recast equations (25a), (256) to the following ex
panded form 

[Mr,l(Yl,f)(ul,„(Yl,0-Ru1,sll(Y
l,o) 

+ j ArffoQu1 „,(S,t)ds\+2MY^^Y\t) [ H ' . ^ F ' . O 

-Ru\ssl{Y\t)\ + [Mv
1(Yl,f)(Yllul,s(Y

i,0-iiu2,sslY
i,f)] 

+ (Y1)2 [ « 1 , s s ( y 1 , 0 - * « 2 , s s s ( I r t , 0 ) 

-R[F' -MYlW,s{Y\t)u2,s(Y\t) 

+ \ EAr,\s(S,tW,s(.S,t)ds\ =^1(y1 ,/)[F1 -MP], 

and 

[-RMT,\S {Y\t)(u\„{Y\t)-Ru\sll (Y\t)) 

+ Mv
2(Y\t)u2„(Y\t) + j ApV

2(S,t)u2„t(S,t)ds] 

+ 2MF1 [ - ^ i ?
2 , s ( y , , 0 ( « 1 , a ( I r t , 0 - ^ « 2 , s a ( y , , 0 ) 

+ii2(y,,/)«2,»(y1,o] + [My'f-^.scy1 ,/)(«* ,5(^,0 

-^ii2,ss(y,o)+i;2(y1,OM2,s(^.o] 

+M(f')2 [-JRi/
2,s(y

1',o(«1,ss(y
1,o 

- ^ M 2 , ^ (y1,/)) +i?2(y1,o«2.ss(y
1,o] 

+ */V,s(F l ,0«2 ,s(y , ,O + [ £fi,2,ss(S,/)«2,ss(S,Orfs] 
J [0,Z.] J 

= - ^ ^ ( F ' . O t ^ 1 -MP]+r,2(Y\t)F*, (26b) 

for all admissible variations (j;1, r/2), where terms are grouped 
in square brackets according to their nature (mass, velocity-
convection, and stiffness terms on the left-hand side, and ap
plied forces on the right-hand side). Note the geometric stiff
ness character of the term with factor R[Fl - MY1 ], and of the 
term with factor RF2 in the stiffness operators of (26a) and 
(266), respectively. Even though equations (23) and (26) are 
the simplified versions of the fully nonlinear equations (12) 
and (15), according to assumptions (Al) to (A4), they remain 
nonlinear and coupled. Moreover, these equations in spatially 
discrete form are not explicit ordinary differential equations, 
and special algorithms must be designed for numerical com
putation. The system is driven by the initial conditions ( F'(0), 
F'(0), u(S,0), u„ (S,0)] and the forces {F1, F2, T] applied on 
the wheel. 

Remark 3.4. In connection with Remark 3.3, we note that 
the linearized structural equations of motion (266) contains 
the (low order) effect of the contact force F2 = F2 - Mu2 (the 
term Mil2 appears in (266) in expanded form using (46). Thus, 
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Fig. 2 Vehicle/structure interaction at different initial velocities: 
Nominal velocity (normalized wrt initial values) versus Nominal position. 
Solid line: V1(0) = 100 m/s. Dotted line: Y^O) = 50 m/s. Beam length L 
= 24 m 

the contact force F2. is consistently accounted for in both equa
tions (23) and (26). m 

Remark 3.5. With assumptions (A1-A3), equation (186) is 
decoupled into an equation of motion for axial vibration and 
an equation of motion for the transverse vibration. But this 
means that the Maglev model C, unlike models A and B (see 
Remark 3.2), cannot be used to study effects of vehicle ac
celerating or braking on the axial structural response, a 

4 An Illustrative Example 

In this section, an example is given to illustrate the above 
basic model for interaction between a vehicle, starting with 
different initial velocities, and a flexible supporting structure. 
Emphasis is focused on results which are not achievable using 
formulations based on the traditional assumption of known 
vehicle nominal motion. The results, obtained by numerical 
methods, correspond to the set of mildly nonlinear, coupled 
equations (23) and (26). We refer to Vu-Quoc and Olsson 
(1987, 1988a) for details and discussions on the numerical 
algorithms employed in solving these equations. 

Consider a basic model with parameters M = 3000 kg, Iw = 
135 kgm2, R = 0.3 m, R = 0.9 m, L = 24 m, Ap = 1250 
kg/m, EA = 5 x \09N, and EI = 109iVm2. The beam has sim
ple supports at its ends. The wheel is subjected to a constant 
vertical force F2 = - 600,000 N (with F1 = T = 0), whose 
magnitude is about 20 times that of the weight of the wheel 
(acceleration of gravity 9.81 m/s2), creating a maximum 
midspan static deflection of 0.1728 m or about L/140. The 
lowest flexural frequency of the beam is 2.44 Hz; its lowest ax
ial frequency is 20.8 Hz. Initial conditions are set to: Yl(0) 
= 0, u(S,0) = u,,(S,0) s 0 with the origin of S being coinci
dent with the left support. The vehicle moves mainly due to its 
own initial velocity F'(0). 

Nominal Velocity. Figure 2 shows the variation of the 
nominal velocities, normalized with respect to their respective 
initial values (at the entry of the beam) of Yl (0) = 50 m/s and 
100 m/s, as functions of the nominal position Y1. From this 
figure, one can clearly observe a loss in nominal velocity at the 
end of the traversing: An entry velocity of 50 m/s drops by 
1.2 percent at the exit, while an entry velocity of 100 m/s 
drops by 0.7 percent at the exit. The peak-to-peak variations 
in nominal velocity for these two cases are, respectively, 1.7 
percent and 1.0 percent of their initial velocities. These varia
tions ̂ stand in contrast to traditional analyses where the veloc
ity F1 is prescribed to its initial value throughout the 
traversing. 

The drop in velocity is related to a drop in vehicle kinetic 
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Fig. 3 Vehicle/structure interaction at different initial velocities: Ver
tical displacement at contact point (normalized wrt 0.1728 m) versus 
Nominal position. ^1(0) = 1 m/s, 10 m/s, 50 m/s, 100 m/s. L = 24 m. 
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Fig. 4 Vehicle/structure interaction at different initial velocities: Ver
tical contact force FJS (normalized wrt vertical force F2) versus Time 
(normalized wrt traversing time on rigid structure). Solid line: y1(0) = 
100 m/s. Dotted line: ?1(0) = 50 m/s. 

energy, as part of this initial kinetic energy is transferred to the 
beam; we refer to Vu-Quoc and Olsson (1987) for the details. 
This energy transfer, which keeps the beam in free vibration 
after the passage of the vehicle, effectively explains the 
Timoshenko paradox. We note that for a sufficiently long 
multiple-span structure, a vehicle moving under its initial 
velocity, without the aid of any other external force than a ver
tical one, and even in the absence of all energy-dissipative 
force, will experience a continuous drop in velocity as a result 
of this type of energy transfer (examples are given in Vu-Quoc 
and Olsson (1988a,b). 

It is also interesting to note that at very low speed, one has a 
large relative increase in velocity during the traversing. For in
stance, for Y"'(0) = 1 m/s, the increase in nominal velocity is 
about 400 percent, i.e., the maximum velocity is about 5 m/s. 
As a result, the traversing time ( = 9s) is only about one-third 
of the traversing time on a rigid structure (24s). This increase 
in velocity is, however, drastically reduced to about 10 percent 
for F'(0) = 10 m/s (see Vu-Quoc and Olsson (1988a)). 

Structural Deflection. The greater relative loss of velocity 
for ^'(0) = 50 m/s is due to larger vertical displacement at 
contact point, compared to the same displacement for Yl(0) 
= 100 m/s, as recorded in Fig. 3. Also plotted on this figure 
are displacement at contact point for F'(0) = 1 m/s (close to a 
static curve) and for F'(0) = 10 m/s. We note the shift of the 
location of maximum displacement closer to the exit as entry 
velocity increases. 

Contact Force. Recorded in Fig. 4 are time histories of the 
vertical contact force F2, for initial velocities of 50 m/s and 
100 m/s. As noted in Remark 3.2, the inertia force Mu2 is 
non-negligible at high speed: For Yl(0) = 100 m/s, this iner
tia force could reach 60 percent of the vertical force F2 (Fig. 
4). Again, this points to the consistency of the present for
mulation, which is crucial for a high speed regime. 

5 Closure 

We have presented a basic building block model for analyz
ing the interaction between high speed vehicles and supporting 
flexible structures. The present formulation departs complete
ly from traditional practice of assuming known vehicle 
nominal motion. Nonlinear equations of motion for the basic 
model, with a general form of constraints and valid for large 
structural deformation, are derived using Hamilton's princi
ple. Additional assumptions, essentially on small structural 
deformation, are introduced to simplify these equations to a 
mildly nonlinear form. The applicability of the present model 
is demonstrated through an example. In subsequent publica
tions, we will present efficient algorithms to integrate the 
nonlinear equations of motion of the complete vehicle/struc
ture interaction problem, and further results. 
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