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Abstract  Augmenting accurate predict ion of channel attenuations can be of immense value in improving the quality of 
signals athigh frequency for satellite communication networks. Such prediction of weather related attenuation factors for 
the impendingweather conditions based on the weather data and the Markovian theory are the main object of this paper. 
The paper also describes anintelligent weather aware control system (IWACS) that is used to employ the predict ions made 
from Markov model to maintainthe quality of service (QoS) in  channels that are impacted by rain, gaseous, cloud, fog, and 
scintillat ion attenuations. Based onthat, a three dimensional relationship is proposed among estimated atmospheric 
attenuations, propagation angle, and predictedrainfall rate (RRpr) at a given location and operational frequency. This novel 
method of pred icting weather characteristicssupplies valuable data for mit igation planning, and subsequently for 
developing an algorithm to iteratively tune the IWACS byadaptively selecting appropriate channel frequency, modulation, 
coding, propagation angle, transmission power level, and datatransmission rate to improve the satellite's system 
performance. Some simulat ion results are presented to show the effectiveness of the proposedscheme. 

Keywords  Intelligent Weather Aware Control System (IWACS), Markov Model, Quality of Service (QoS), Satellite 
Communicat ions, Signal to Noise Rat io (SNR), WeatherPredict ion

 

1. Introduction 
Recently, satellite based communication networks at high 

frequency bands have been rapidly expanding. These high 
frequencyoperations have enabled a wide variety of 
available and potentialapplicat ions and services including 
communicat ions, navigation,tele-medicine, remote sensing, 
distributed sensors networks,and wireless access to the 
internet. However, h igh frequencyoperations are prone to 
excessive digital transmissionerrors due to atmospheric 
attenuations[1]- [8]. 

Control systems attempt to minimize the effect ofattenua
tionby adjusting the trans mission parameters and signal 
characterist ics .However, excit ing system rely on total 
attenuationin actuating the transmission control.Consequen
tly, the control of t ransmission parameters have been less 
than the optimal as the detail knowledge o f occurrence 
probabilit ies ford ifferent impairments would have been 
miss ing . Knowing expected impairments separately for 
different attenuation factors, more specifically the weather 
factors, would help us utilizethe most appropriate methods 
for mitigat ing impairments withmechanisms like up-link 
power contro l, adapt ive cod ing, antenna beam shap ing, 
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ansite diversity[9],[10]. Therefore,improve quality of 
service (QoS) provisioning  [11]. 

The major atmospheric and  weather related factors in  
signalattenuation are rain fade, gaseous absorption, cloud 
attenuation,and tropospheric scintillat ion. Among them, the 
rainattenuation (RA), also known as rain fade, is the 
dominantcause of signal impairment, especially at 
frequencies higherthan 10 GHz and small aperture antennas 
such as Very SmallAperture Terminal (VSAT) and 
Television Receive Only types(TVRO)[2],[12]- [17]. 

International Telecommunicat ion Union – Radiocommun
ications(ITU-R) maintains a large database for probability 
ofprecipitation and other parameters. It provides 
mathematicalequations and analytical approaches to 
estimate rainfall rate(RR) and different atmospheric 
attenuations around the worldfrom these data[18]. However, 
ITU-R techniques were developed in view of finding the 
average conditions and boundaryconditions, which are more 
useful for the design of controlsystem and less for the 
operation of those systems. Moreover,ITU-R techniques 
were developed at a time when the high 
frequencyoperations above Ku band, where losses become 
really significant,were not expected. Consequently, there 
was a greatroom to first improve the ITU-R techniques to 
maintain them accurateat higher frequency operations and 
second, to decouplethem from the fifteen years average data 
provided by ITUR.Instead, if we make ITU-R techniques 
work with real-t imeweather data, those techniques could 
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help us achieve better operation,as they were helping us 
with the system design inthe past[13],[14],[17], and[19]. 

Some of the prior work in the area include[20], where 
RRis predicted by using weather radar reflection data 
instead ofground based measurement. Paper[21] presented a 
methodcalled  two level Markov model to pred ict multi-path 
fading ofsignals. Authors of[22]presented a method for RA 
predictionwhich y ielded good results during low rain and 
low elevationangle. Authors in[24] presented fade duration 
prediction asa function of RA and frequency and used 
modelling of channelsto obtain signal attenuation due to 
clouds and precipitation.While[25] cited difficulty in 
approximating the lossesdue to limited availability of 
experimental data on clouds;[26]cited problem in 
developing accurate models due to ambiguityof cloud water 
content and cloud extent limits. In[10], authorspresent 
prediction models and analytical techniques fora range of 
operational parameters involving low-margin, lowelevation 
angle, inclined geosynchronous, and low earth orbitsystems. 
The paper estimated rain and scintillat ion whileassuming 
gaseous attenuations as constant. These techniqueshave 
helped to mature the control systems in satellite 
communicat ion.Due to new bandwidth and frequency 
requirements,the problems of attenuations due to various 
atmospheric factorshave come to receive increased level of 
prominence dueto increased operations at frequencies above 
10 GHz. Theseproblems are articu lated very well 
by[2],[3],[7], and[12]. 

In our past research work, we demonstrated that a 
bettercontrol of satellite signal parameters resulting in 
improvedsystem performance could be achieved by taking 
into accountthe major weather related contributors of signal 
attenuationseparately[16]. In[5] we demonstrated how 
estimation of RR, aswell as attenuation due to rain, gas, 
cloud, fog, and scintillat ion,could be measured. The 
methodology yielded greateraccuracy in estimat ing the 
weather related attenuation. Totalattenuation as well as 
constituent weather attenuations werecalculated for any 
rainfall conditions and for any elevation angle.However, 
this methodology relied on historical data collected by 
ITU-Rthat provided average rainfall per year for locations 
throughoutthe world based on statistical data collected over 
a decade[6].During the research, we realized that the 
estimations wouldhave helped tune channel parameters in 
real-t ime had the real-t imemeasurements were used to gain 
a closer estimation of impendingweather conditions. The 
work reported in  this paperwas inspired by  that premise. As 
research thrusts were put to improveQoS on satellite based 
networks withthe use of intelligent prediction methods, the 
work presentedin this paper should be of significant interest 
to research anddevelopment community.This paper makes 
four major contributions towards improvingthe operation of 
satellite control systems and enhancing theperformance of 
satellite network systems. This is specificallytrue during 
severe weather condition and operat ions ofcommunicationc
hannels above Ku band. The major contributionsof the work 
are: 

1. Migrat ion of ITU-R techniques from the domain of the 
improvingdesign to the domain o f improving the operation, 

2. Application of Markov theory in real-t ime predict ion 
ofweather and applying of those predictions in the 
forecastof atmospheric attenuation, 

3. Improvement of ITU-R techniques in predicting rain, 
gas,cloud, fog, and scintillation attenuations more 
accuratelyat wide range of frequencies including Ka band 
and tomake them work at any propagation angle, and RRs, 

4. An enhanced intelligent weather aware control 
system(IWACS) for achiev ing improved channel 
performance. 

This paper is presented in five sections. Section 2 
describesprediction of d ifferent weather attenuation factors 
based onMarkovian modelling of weather characteristics. 
Section 3 describescalculation of rain, gaseous, cloud, fog, 
and scintillationattenuations which will be used by IWACS 
in decisionmaking. Section 4 presents simulation 
environment and implementationof IWACS, results and 
discussions. Finally, weconclude this study in Section 5. 

2. Prediction of Channel Characteristics 
This section describes the behaviour of RA at high 

frequency and proposes a method for better estimating 
channel attenuation in weather impacted satellite networks. 
The RA is computed, based on predicted rainfall rate (RRpr), 
which itself is predicted by using Markov theory[27] along 
with ITU-R models and bi-linear interpolation[28],[29]. The 
method predicts RR at any location on earth, for a wide 
range of propagation angles and frequencies. The 
RRprvalues are then used toadjust the control parameters 
and,therefore, help improve the QoS in communication 
channels. 

2.1. The Rainfall Rate Prediction 

In this section, we present prediction of rainfall rate 
usingMarkov theory on the time series of weather data. For 
that reason, weather is considered a discrete random process 
thatcan assume a set of fin ite states. Further, it is assumed 
that thechange from one state to another is a random discrete 
step withcertain transition probability (p), whose value is 
derived fromstatistical properties of the system.  

2.1.1. Classification of Rain  

For the purpose of explaining to the reader the application 
ofMarkov modelling fo r p redicted rainfall rate, a  specific 
locationis chosen where we divided rainfall rate ranges into 
five classes starting from zero mm/hr up to the highest 
rainfall rate asfollows: 

a. Class A: from zero up to but less than 1 mm/hr. 
b. Class B: from 1 up to but less than 4 mm/hr. 
c. Class C: from 4 up to but less than 8 mm/hr. 
d. Class D: from 8 up to but less than 14 mm/hr. 
e. Class E: values greater than 14 mm/hr. 
The discrete time interval chosen in this study was one 
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hour. The reason being that environment should 
supplyweather data in one hour intervals. However, the 
method canbe applied for finer grain intervals given that 
weather data forshorter intervals are available. 

The approach in grouping total rain conditions into 
classifiedblocks has been depicted in Figure 1. This 
classificationin actual data provides the basis for the data 
required to applyMarkovian theory in  the prediction of 
rainfall rate[8]. 

 
Figure 1.  Presentation of the five rainfall rate classes 

To make the classificat ion of rainfall rate to better 
reflectlocal statistical weather patterns, two parameters can 
be adjusted: 

a. Periodicity of rainfall rate: Instead of selecting one 
hourinterval, periodicity in  minutes or hours could be 
used.The smaller the sampling period, the more 
instantaneouswill be the rainfall rate values especially  when 
dealingwith rapidly changing weather conditions. 

b. Number o f classes: Instead of five, the number of 
classes could be decreased or increased according to the 
variation of rainfall rate history for that location. More 
classes means more computational time with finer 
granularity of control. 

2.1.2. Markov Model Implementation  

I- Weight of Transition Probability Matrices: 
Different weights are assigned to each Markov state, zero  

order(present state), first order (previous state), and second 
order(previous to previous state), as defined in Markov 

Chaintheory. There exist no direct formulas for calculating 
theseweights and it needs iterative search involving trial and 
error.The weight values need to be validated over many sets 
of data. 

The resulting weight vector is denoted as: 

(1 3)[W]  = [W(0)  W(1)  W(2)],×      (1) 

where W(0), W(1), and W(2) represent weight assignedto 
present, previous, and previous to previous 
intervals,respectively, as shown in Figure 2. Each weight in 
(1)(1) has adifferent unique value and the largest value will 
belong to thepresent weight W(0) and so on for the other 
weights. Also,these weights are positive numbers and their 
summation isequal to one. This research came to conclude 
that there exista set of weight that work very well for all 
possible sets oftransition probability matrices describe 
below. 

 
Figure 2.  Presentation of the three different weights 

II- Transition Probability: 
The transition probabilities and classification of rain  

aredirectly correlated. The transition probabilities are 
theprobabilit ies of moving from g iven state to another state. 

In Markov Chain theory, the p robability of a discrete event 
to remain in state x is denoted as P(x). In this representation, 
independent chains without any memory of past state are 
called  zero-order Markov Chains. The transition probability 
matrix of zero-order Markov Chaintheory [P0] for the five 
presented classes is, thus, represented as follows:  

 
Figure 3.  First Order Markov Chain model with transition probabilit ies for switching among different states 
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[ ] [ ].P  = P  P   P  P  P0 A B C D E(1 m)×        (2) 

Then the process consisting of a finite number o f states 
with known probabilities P(x, y) of transition from state y to 
state x is considered a first order Markov 
Chain[27],[30]- [31]. The t ransition probability matrix o f the 
first-order Markov Chain for the five classes is shown below 
in(3). These transitions are depicted in a pictorial form in 
Figure 3 and can be represented by: 

 (3) 
Similarly, the transition probability matrix of the 

second-orderMarkov Chain theory P(z|xy) for the five 
classes is presentedin (4). 

[ ]

        A  B    C D E

P P P P PAAA AAB AAC AAD AAE
P P P P PABA ABB ABC ABD ABE
P P P P PACA ACB ACC ACD ACE
P P P P PADA ADB ADC ADD ADE
P P P P PAEA AEB AEC AED AEE
P P P P PBAA BAB BAC BAD BAE
P

 

AA
AB
AC
AD
AE
BA
BB
BC
BD
BE
CA
CB
CC
CD
CE
DA
DB
DC
DD
DE
EA
EB
EC
ED
EE

P  =
2 (m m)×

P P P PBBA BBB BBC BBD BBE
P P P P PBCA BCB BCC BCD BCE
P P P P PBDA BDB BDC BDD BDE
P P P P PBEA BEB BEC BED BEE
P P P P PCAA CAB CAC CAD CAE
P P P P PCBA CBB CBC CBD CBE
P P P P PCCA CCB CCC CCD CCE
P P P P PCDA CDB CDC CDD CDE
P P P P PCEA CEB CEC CED CEE
P P P P PDAA DAB DAC DAD DAE
P P P P PDBA DBB DBC DBD DBE
P P P P PDCA DCB DCC DCD DCE
P P P P PDDA DDB DDC DDD DDE
P P P P PDEA DEB DEC DED DEE
P P P P PEAA EAB EAC EAD EAE
P P P P PEBA EBB EBC EBD EBE
P P P P PECA ECB ECC ECD ECE
P P P P PEDA EDB EDC EDD EDE
P P P P PEEA EEB EEC EED EEE























 























 (4) 

The characteristics of these transition probability 
matricesare such that the entries for each column vectors in 
(2), (3), and (4) are positive numbers. The sum of the 
elements of eachrow in the matrices is one. The co lumns 

represent probability vectors, which are the stochastic values 
for transition. The transition probabilit ies are dependent on 
statistical pattern of rain  at a  particular geography and 
climate.  

Note that, m and nrepresent the number ofrows and 
columns, respectively. 

2.1.3. Pred icted Rainfall Rate 
The value of predicted rainfall rate for the immediately  

followingdiscrete time period is computed based on 
probability andweight combinations. These combinations 
present a specialmodule of weather predict ion of different 
weights assigned toeach transition probability matrix along 
with Markov  Chain oforder φ, where φ is fin ite and equal to 2 
in our case. Thus,the prediction of the future state is 
dependent on the present,previous, and previous to previous 
states and is independent of the other earlier states[8]. 

Given that the zero [P0], first [P1], and second order [P2] 
transition probability matrices with the weights assigned to 
each matrix (W(0)), (W(1)), and (W(2)),respectively. The 
predicted rainfall rate values can be computed as follows: 
PW(1) = W(0).P0(1)+ W(1).P1(m, 1) + W(2).P2(n, 1),PW(2) 

= W(0).P0(2) + W(1).P1(m, 2) + W(2).P2(n, 2), 
PW(3) = W(0).P0(3) + W(1).P1(m, 3) + W(2).P2(n, 3), 
PW(4) = W(0).P0(4) + W(1).P1(m, 4) + W(2).P2(n, 4), 
PW(5) = W(0).P0(5) + W(1).P1(m, 5) + W(2).P2(n, 5).  (1) 

Where the numbers (1, 2, 3, 4, and 5) represent the five 
classes(A, B, C,D, and E) shown in Figure 1. 

[P0]represents the rowcorresponding to the present state. 
[P1] represents the row correspondingto the transition from 
the last state to the presentstate. [P2] represents the row 
corresponding to the transitionfrom the last-to-last to the last 
state and then to the presentstate. In our specific case, the m 
can be any value rangingfrom 1 to 5 and n can be any value 
ranging from 1 to 25 accordingto the previous and previous 
to previous weather state,respectively. 

Also, PWs presented in (5)can be written in asimple 
mathematical form as: 

PW(u) = W(0).P0(u) + W(1).P1(m, u ) + W(2).P2(n, u). (2) 
Where u ranges from 1 to 5 and PW represents the 

probabilityweight values of the five existing classes (A, B, C, 
D, and E),thus: 

 [PW] (u×1)= [PW(1) PW(2) PW(3) PW(4) PW(5)] 
= [PWAPWBPWCPWDPWE] .         (3) 

Therefore, the predicted rainfall rate (RRpr) will be 
belongingto the class that has the maximum probability 
weight ofPW vector collected from (7). 

Figure 4 shows a demonstration for the effectiveness of 
ourmethod for predicting rainfall rate. At the beginning, we 
usedrandomly generated values of rainfall rate to determine 
theweights and probability matrix elements for our 
model[15]. 

These values were then tested against rainfall rate 
valuesthat were collected by Environment Canada for almost 
twomonth duration at SouthWest of King City using weather 
radarnear Toronto, Ontario, Canada. We applied our 
methodologyto predict the future state out of past states. The 



 Journal of Wireless Networking and Communications 2012, 2(5): 143-157 147 
 

prediction dataobtained using our method and the measured 
rainfall data fromEnvironment Canada are provided in 
Figure 4 and in Table 1. 

 
Figure 4.  Comparison of actual and predicted rainfall rate values at South 
West of King City 

Table 1.  Comparison of Accurate and Predicted Rainfall Rate Data at 
Different Time 

Time 
 

 [hr] 

Accurate 
Time Data 
[mm/hr] 

Predicted 
Data 

 [mm/hr] 

Different Between 
Both Results 

[mm/hr] 
1 0 0 0 
3 0 0 0 
4 0 0 0 

80 0 0 0 
170 0 0 0 
200 0 0 0 
210 1 0 1 
220 0 0 0 
330 0 0 0 
338 1 1 0 
350 0 0 0 
510 1 1 0 
610 1 1 0 
620 0 0 0 
640 0 0 0 
650 1 1 0 
780 1 1 0 
790 0 0 0 
880 1 1 0 
890 0 0 0 
970 0 0 0 
1071 8 8 0 
1098 4 4 0 
1103 0 1 1 
1104 1 1 0 
1126 8 4 4 
1127 8 8 0 
1137 1 1 0 
1148 0 0 0 
1152 0 0 0 
1155 1 1 0 
1190 1 1 0 
1192 1 1 0 
1429 0 0 0 

Note thatonly small numbers of samples are presented in 
thetable to keep it readable and that the prediction matches 
closelywith the measured results. 

We conclude that, the Markovian  Chain has promising 
applicationin effectively predict ing the future weather result 
in statisticalterms. The results are astoundingly accurate. 
Therefore,our methodology for predict ing rainfall rate can be 
applied underdifferent weather conditions at any given 
location on earth. 

2.1.4. The Values of Weights and Transition Probabilities 

The values of the weight matrix as defined in (1) and the 
transitionprobabilities as defined in  (2), (3), and (4)were 
obtainedthrough an extensive exercise of iterative 
adjustments and theirtest of valid ity on rainfall rate data. At 
the end, the study notonly revealed a set of workable values 
but they also revealed the following behaviours: 

1- For a g iven set of transition probabilit ies, there is a 
correspondingweight that gives the best prediction of 
rainfallrate in Markov Chain theory. 

2- Studies done over actual rain data revealed that the 
fivestates model developed here gives extremely reliab le 
predictionof rain with the following values of weights 
(W’s)are: 

[ ][ ](1 3)W  = 0.495 0.335  0.170×           (8) 

and transition probabilit ies (P’s) are: 
[ ] [ ],P  =0 (1 5) 0.35 0.25  0.2 0.1 0.1×     

(9) 

[ ]

0.43 0.33 0.2 0.04 0

P  =1 (1 5) A B C D E

A

P P P P PE EA EB EC ED EE

×

 
 
 
  

     

 (10) 

and 

0.45 0.37 0.14 0.03 0.01

[ ]  =(5 25)

A B C D E

AA

P P P P PEE
EEA EEB EEC EED EEE

P2 ×

 
 
  

     

  (11) 

The full set of values could be obtained by contacting 
theauthors. 

3- When rain rate classification as done in Sect ion 2.1.1 
isaltered to better suite different locations on earth, the 
coefficientsmentioned above will change. However, 
thevalues listed here will give good starting values for 
theiterative process of finding the new values. 
Notice that, the weights and the transition probability 
matricesvalues are selected init ially based on the statistical 
investigationof historical field of data collected over several 
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years. Wediscovered that the coefficient of the matrices and 
the weightsremain relatively  stable alt- hough weather 
conditions vary significantly.Nevertheless, ome severe 
weather conditions notrecorded by the data analysed for this 
research could requiresomeadjustments. 

Note that, we acknowledge the dependence of 
Markoviantheory in stochastic assumptions and the potential 
errors in estimat ingthe weights and the coefficients of 
transition probabilitymatrices. This is denoted especially for 
the fact that themethod assumes stationary weather within 
one discrete timeperiod; its prediction is nothing more than a 
practical approximation.Nevertheless, the test on the fields’ 
data demonstratedhighly respectable results, yielding 
prediction values to containlow relative percentage error of 
(≤9.9%) for the presentedfifteen hundred hours for rainfall 
rate. 

2.2. Migrating ITU-R Model from the Design Domain to 
the Operational Domain 

ITU-R technique for estimating environmental 
attenuations based on weather data collected over a decade 
and a half has served us well in system design because it is 
able to provide average and boundary conditions that a 
communicat ion system would be subjected to. ITU-R 
provides not only the geographic parameters of a location, 
such as the height above the sea level and the average rain 
height as shown in Figure 5,but also the weather factors like 
probability of precipitation and mathematicalformula for 
estimating rainfall rate, and subsequentlyestimatingsignal 
attenuation due to rain, gas, cloud, fog, andscintillat ion. The 
knowledge of the attenuation servesuseful purpose in 
optimizing  the design by find ing the best combination of 
frequency, modulation,coding, and othertransmission and 
reception parameters for a given location in  relative to other 
locations. 

 
Figure 5.  Earth-space path 

The research work reported in this paper stemmed 
fromknowing that if these techniques were to be extended to 
estimatethe attenuations in a real-time environment, they 
wouldhave greatly served in the purpose of operating those 
designedsystems optimally by allowing selecting proper 
combination of controllable parameters. Therefore, the 
ITU-R methodologywas studied and extended to solve the 
problem of adapting thecontrol systems with instantaneous 
variations of weather attenuation. 

We propose the use of Markov theory in estimat ingthe 
weather condition for the immediately following 
timeperiodbased on the real-time data of immediately 
precedingperiods and the statistical probability of state 
changes. Subsequentexperiments demonstrated that the 
inclusion of Markovianpredict ion technique and its resulting 
data as an input to ITU-Rtechniques resulted in real-time 
prediction of weather attenuations. 

The next enhancement made in ITU-R techniques was 
estimatingattenuation as a function of rainfall rate, 
propagationangle, and operational frequencies so that they 
hold true evenunder high frequency operation above Ku 
band. The outcomeof these changes was that they yielded 
highly accurate estimationof RR and then that of rain, 
gaseous, fog, cloud, andscintillationattenuations. Such 
evolution in the ability to predict  weather attenuation in 
real-t ime had direct consequencein improving the real-time 
control by enhancing theability toselect the signal 
parameters. 

The following are the key benefits achieved by the 
proposedtechnique: 

1. Better estimation of attenuation including high 
frequencyoperations. 

2. Real-time estimat ion of RR. The prediction  of RR 
ismade by viewing the weather data from a moving 
windowof fixed time intervals and the impending rainfall 
rate isestimated based on current rate, previous rate, and 
previousto previous rate. 

3. Calcu lation of attenuations based on the real-t ime 
estimationof RR. 

4. Real-time signal adaptation to weather variation by 
selectingappropriate channel parameters. 

3. Calculation of Rain, Gaseous, 
Cloud,Fog, and Scintillation 
Attenuations 

In this paper, a new relat ionship model is proposed for 
estimatingvarious weather attenuations as a function of 
propagationangle, RRpr, and frequency, for any derived 
geographic locationof ground terminals. This model results 
in three dimensionalgraphs which relates the attenuation, 
RRpr, and propagationangle for a selected operational 
frequency, which may  be anyvalue from 0 to 55 GHz. RA is 
the single greatest weatherdependent signal attenuation 
factor, which occurs in  satellitenetworks largely due to 
signal absorption and scattering of incomingsignal. 
Fortunately rain forms only in the tropospherethat extends 
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around sixteen kilometers from sea level whilethe satellites 
are located in geostationary orbit at 35,800 kmabove earth[6]. 
Therefore, exposing signal to rain attenuationonly during a 
small portion of its transmission path as shownin Figure 6. 

Nevertheless as the frequency increase the losses 
increaseas shown in Table 2[32]- [35]. Even heavy rainfall of 
10 cm/hrseems to cause a small attenuation of 0.05 dB/km 
with RF signalsat 2.4 GHz. The Ku band attenuation for the 
same rain fall,however, is approximately nine times that of 
C-band, andthus very substantial for it to be ignored[36],[37]. 
Therefore,estimating different atmospheric attenuations at 
regional or indiv idualsites is important for improving control 
ofsatellite channel parameters especially  when h igher 
transmissionfrequencies are adopted to achieve greater 
transmissionrate through communication channels. 

 
Figure 6.  A satellite broadcast system in the presence of horrendous 
weather condition 

Table 2.  VSAT frequency spectrum allocation 

Band Frequency 
GHz 

Area 
Foot-print 

Power 
Delivered 

Rainfall 
effect 

C 3 - 7 Large Low Minimum 

Ku 10 - 18 Medium Medium Moderate 

Ka 18 - 31 Small High Severe 

In this section a new technique for estimating channel 
attenuationsis presented. This technique, estimates 
constituentcontributors of total attenuation separately and 
extends it togive good approximat ions for a wide range of 
signal frequencies,propagation angle, and RRpr. The 
technique uses ITU-Rcoefficients as shown in  Figure 5 while 
estimating the attenuationat grid locations in a weather 
collection map  that was used by ITU-R. Incases where the 
location of concern does not fall on  the grid, ab i-linear 
interpolat ion technique is then used to get the parameters [5]
,[13]. 

Most of the formulas and variables presented in this 
sectionare direct evolutions from the ITU-R method with 
notify modifications and enhanced presentation for different 
weather parameters. We implemented these formulas and 
variablesto handle real-time data of the present one hour 
window and used the Markovian predict ion that was 

presented earlier with proposed values of the matrices 
components to predict the data for the following period. 

This section is devoted first, to predict constituent 
contributorsof channel attenuation separately due to different 
weather variants,and then, to determine the total attenuation 
due to all of thefactors combined. Also, included in this 
section is the technique for calculatingthe signal to noise 
ratio (SNR) based onthese attenuations. 

3.1. Calculating Rain Attenuation (RA)  

The RA, represented as (Ar), is predicted by using a set 
offunctions and solving them for d ifferent satellite-location 
dependentvalues. The values of RA are calcu lated as a 
functionof frequency (f) and predicted rain fall rate (RRpr). 
The foundationalwork of this technique and its variab les are 
explainedin[5],[14] and [38]. 

The key destination of this technique is that we start with 
anattenuation value at a known frequency (fn), and then 
estimatethe attenuation at one increment higher frequency 
(fn+1).Then using the attenuation at (fn+1), we find attenuation 
at(fn+2), and so on. That is, once RA is known at any 
lowerfrequency, we will be able to compute RA at a higher 
frequency andcontinue the process until the maximum 
desiredfrequency is reached. 

This iterative calculation is made using the following 
threeequations. Equation (12) establishes the relationship 
betweenRA and RRpr(see[13],[19]for full description). 

Thesecond equation (13) establishes relationship between 
an intermediatevariable H with a known value of RA at a 
knownfrequency (fn). Then the next equation (14)calcu lates 
RA atthe next frequency (fn+1). Th is process is iterat ively 
repeateduntil RA reaches the desired frequency.  

The RA for different frequencies and RRpr values can 
beobtained from[13]: 

( ) ( ) ( ) dBPRRnfELPRRnfRPRRnfAr ,.,, γ= (12) 
Also, for any specific frequency ranging from 7 to 55 

GHzcan be obtained from: 
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 θθγθ (15) 

Where Ar(θ,RRpr) represents RA for a given value of 
RRpr,and propagation angle θ, as shown in Figure 7. As a 
reference,the variab les LE, φ, and γR are described in[13]. 

This method also has an added advantage by 
providinghigh CPU efficiency since we do not have to repeat 
the entirecalculat ion for each frequency ending with similar 
resultsto that for existing ITU-R. It is achieved by 
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eliminating the accumulated errorwhen compared to that of 
existing approximated ITU-Rsolution[13]. 

The predicted values of RA at any desired location, for 
differentpropagation angles, RRpr, and channel frequency, 
are important determinants in channel qualities. However, in 
orderto control the satellite  channels efficiently, we also 
need to factorother parameters like gaseous, cloud, fog, and 
scintillat ionattenuations as described below. 

 
Figure 7.  Rain attenuation at South West of King City 

3.2. Calculating Gaseous Attenuation 

In this section, an analytical method for estimat ing 
gaseousattenuation has been presented. This has been an 
extension ofthe methodology presented in ITU-R P. 676. The 
slant pathattenuation depends on various meteorological 
conditions createdby the distribution of temperature, 
pressure, and humidityalong the transmission path. Thus, the 
effective path lengthvaries with location, month of the year, 
height of the stationabove the sea level, and propagation 
angle. The gaseous attenuationis calculated using the 
following steps: 

1. Specific attenuation for dry air (γτ ) 
2. Specific attenuation for water vapour (γv) 
3. Equivalent path length for dry air (hτ) 
4. Equivalent path length for water vapour (hv). 
emat ical technique for obtaining the values of 

theseparameters is given below. The calculation of total 
gaseousattenuation (Ag), then follows: 

1. Specific Attenuation for the Dry A ir (γτ): 
The attenuation (dB/km) for the frequency (f≤54 GHz) is 

given as: 
( , , , , , )
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2. Specific Attenuation for the Water vapour (γv): 
The attenuation γv(dB/km) is given as: 
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Where ph: pressure (hPa), rph=ph=1013,rt= 288/ (273 + t), 
ρ water-vapour density (g/ m3),f: frequency (GHz), and t: 
mean temperature values(°C), can be obtained from ITU-R P. 
1510 when noadequate temperature data is available. 

3. Equ ivalent Path Length for the Dry A ir: 
The equivalent height of the dry air is given by: 
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and 
0.310.7    o phh r≤            (26) 

with the constraint that: 
whenf< 70 GHz: 
4. Equ ivalent Path Length for the Water Vapour: 
For water vapour, the equivalent height for f≤350GHzis: 
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Where 
1.013

(1 exp[ 8.6( 0.57)])v
phr

σ =
+ − −

(28) 

Notice that water vapour has resonance of (22.235 GHz), 
(183.31 GHz), and (325.1 GHz)respectively and that 
attenuation changes with theamount of water vapour in the 
atmosphere. 

• Calcu lating total gaseous attenuation inclined 
arrangementsof station. 

The above method calculates slant path attenuation for 
watervapour that relies on the knowledge of the profile of 
watervapourpressure (or density) along the attenuation path. 

This section proposes a method to obtain the path 
attenuationbased on surface meteorological data using the 
cosecant lawfor a given propagation angle and RRpr as: 

( ) ( )
,

sin
v pr

Gas pr
A A RR

A RR τθ
θ

+
=  (29) 

where vvv hAhA γγτττ == and dB,and θ ≤5°. Thus, 
the estimated gaseous values are computedat any desired 
location, for all ranges of propagation angle andRRpr, and for 
any frequency as shown in Figure 8. 

 
Figure 8.  Gaseous attenuation at South West of King City 

3.3. Calculating Cloud and Fog  Attenuations 

Cloud and fog can be described as a collection of smaller 
raindroplets, or alternatively, as different interactions from 
rain asthe water droplet size in fog and cloud is smaller than 
thewavelength of 3 GHz signals.  

The cloud and fog attenuations(Acf) can be expressed in 
terms of RRpr and propagationangle for a specific frequency 
and temperature valuestk (Kelvin), through the following 
series of equations, culminating into equation (37). 
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η = (2 + Dp1) / Dp2            (32) 
t1 = 300 / tk,                (33) 

where  
tk: Temperature (Kelvin) 

ε2 = 3.51, ε1 = 5.48,          (34) 
and 

ε0 = 77.6 + 103.3 (t1-1)         (35) 
fs = 590-1500(t1- 1),          (36) 

and 
fp = 20.09 - 142 (t1 - 1) + 294 (t1-1)2     (37) 

Kt = (0.819 .f) / (Dp2. (1+ η2))        (38) 
The estimated attenuation due to cloud and fog for a given 

value is: 
( ).( , ) ,
sin

v t
cf pr

L pr KA RR dBθ
θ

=      (39) 

 
Figure 9.  Cloud and Fog attenuations at South West of King City 

 
Figure 10.  Scintillation attenuation at South West of King City 

whereAcf (θ, RRpr) represent cloud and fog attenuations.Lv 
(kg/m2) is the statistics of the total columnar contentof liquid 
water. M(kg/m3) is the integration of liquid water 
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density,along a cross section of 1 m2 from surface to topof 
clouds for a given site. The Lv  is provided from ITU-R for the 
predicted probability of precipitation (pr) based on 
RRpr.Refer to[5] to  obtain the relation between pr  and RRpr. 
In allpredicted situations the value of pr is normally found to 
be in the range of 0.0001 to 0.5. These attenuations are 
presentedas a function of θ and RRprat a station in King City 
has beenshown in Figure 9. 

3.4. Calculating of ScintillationAttenuation 

The cumulat ive distribution of tropospheric scintillat ion 
isbased on monthly or longer average ambient 
temperature.Th is distribution reflects the specific climate 
condition of thesite[5],[39]. In satellite communicat ions, 
scintillat ion attenuationresults from rapid variations in the 
signal’s amplitude andphase due to changes in the refractive 
index of the earth’s atmosphere.A general technique for 
predicting this attenuationas a function of RRpr and 
propagation angle that is greaterthan 4° is given here. 

Calculate the standard deviation of the signal 
amplitude,σref as: 

σref= 3.6 . 10-3 + 10-4.NwetdB,        (40) 
where Nwet: rad io refractiv ity, given in ITU-R P. 453. 

 
Figure 11.  Atmospheric attenuation at South West of King City 

Calculate the effective path length L for the height of 
theturbulent layer hL equal to 1 km: 

2 4

2
.

sin 2.35 10 sin
LhL meter

θ θ−
=

+ × +
 (41) 

Estimate the effect ive antenna diameter, Deff, from the 
geometricaldiameter (meter) of the earth-station antenna 

(D),and the antenna efficiency (η) (with η= 0.5 if 
unknown), isused as: 

.effD D meterµ= ⋅         (42) 
Calculate the antenna aperture averaging factor from: 
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with  
x=1.22 . Deff

2 .( f/ L )         (44) 
and 
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g xfσ θ σ
θ  =         (45) 

Calculate time percentage factor, a(pr), for the 
predictedprobability of precipitation as follows: 

a(RRpr) = -0.061 . (log (pr))3. 
... . 0.072 (log (pr))2-1.71 log (pr) + 3.0.    (46) 

Finally, obtain the scintillation attenuation (As) from: 
As(θ, RRpr) = a(RRpr) . σ(θ) dB.       (47) 

The estimated scintillat ion attenuation calculated by 
using(45) on ITU-R data resulted in a set of As(θ, RRpr) 
valuesin relat ion to propagation angle, RRpr, frequency, and 
locationas shown in Figure 10. 

3.5. Calculating Total Attenuation 

The total attenuation At is made up of two components: 
Weather attenuation (AW) and free space attenuation 

(A0).The weather attenuation (AW) is calculated from the 
four constituentattenuations calculated in preceding 
subsections. Theyare: 

1. Ar(θ, RRpr): rain attenuation, as estimated in (15). 
2. Ag(θ,RRpr): gaseous attenuation due to water vapourand 

oxygen, as estimated in (29). 
3. Acf(θ,RRpr): cloud and fog attenuations, as estimatedin 

(39). 
4. As(θ,RRpr): attenuation due to tropospheric 

scintillat ion,as estimated in (47). 
Given these four attenuations, the total weather 

attenuationAW (θ,RRpr), can be calculated from[5],[8], 
and[13]: 

( )2 2
W Gas Rain Cloud&Fog ScintillationA A A A A= + + + (48) 

The results with the available measurement data for all 
latitudesfor the prediction of wide RRpr ranges and 
propagationangle are shown in Figure 7, Figure 8, Figure 9, 
Figure 10, and Figure 11.The second component of 
attenuation is caused by freespace [36, 37]. We call the loss 
that occurs in free space freespace attenuation.  

Table 3.  Antenna Noise temperature Ta (Kelvin) 

Directional 
satellite antenna 

 
Earth from space 

 
290 K 

Directional 
terminal 
antenna 

Space from earth at 
90˚elev. 

Space from earth at 
10˚elev. 

Sun (1…10 GHz) 

3 – 10 K 
≈ 80 K 

105….104K 

Hemispherical 
terminal 
antenna 

At night 
Cloudy sky 

Clear sky with sunshine 

290 K 
360 K 
400 K 

The free space attenuation, A0(f), is obtained as follows: 
A0(f) = (4.π.d/λ) 2,           (49) 

Whered is the distance between transmitter and receiver 
andthe wavelength λ = c/f. It would be significant to note that 
afree space is space with nothing at all in it.  

This phenomenondoes not exist in the known universe but 
interstellar space isa good approximation. The most 
important four features offree space are its uniformity 
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everywhere, absence of electricalcharge, no current flowing 
through it, and its infinite extent inall d irections[40],[41]. 

That we have obtained atmospheric attenuation and 
freespace loss, the total attenuation (At) can be calculated 
fromthe following relation: 

At(θ, RRpr) = AW (θ, RRpr) + A0(f),     (50) 
Where At(θ, RRpr) is the total attenuation, AW (θ, RRpr) isthe 

atmospheric attenuation described in (48)(48), and A0(f) isthe 
free space loss described in (49). 

A three dimensional relat ionship for these attenuations 
withrespect to propagation angle and RRpr is presented in 
Figure 12. 

These attenuations, for systems running at frequencies 
above10 GHz- especially those operating with low 
propagationangles and/or margins, must be considered along 
with the effectof multip le sources of simultaneous occurring. 

This method provides a useful general tool for scaling 
atmosphericattenuations according to these parameters. 

 
Figure 12.  Predicted total attenuation at South West of King City 

Also, ithelps to provide designers with a perceptib le v iew 
of approximateddifferent attenuation values that can be 
computed at anydesired location, for differentfrequencies, 
and for wide rangesof RRpr and propagation angles.The 
outcome becomes a key  factor in  diagnosing, adjustingand 
improving satellite signal power, modulat ion and 
codingschemes, monitored and controlled altogether by a 
powerfuland efficient intelligent-based attenuation 
countermeasure system. 

We found that practically the prediction of total 
attenuationobtained in this way is respectable approximation. 
The totalattenuation is used to calculate SNR, which is then 
used bythe IWACS in  determin ing channel quality and 
subsequentlyadjusting satellite propagation parameters as 
described in thenext section. 

3.6. Relating Total Attenuation with Signal to Noise 
Ratio (SNR)  

SNR is a measure of signal strength for satellite signal 
relativeto attenuations and background noise, usually 
measuredin decibels (dB)[41]. The signal energy (Es) to 
noise powerspectral density (N0) per symbol is calculated 

from the knowledgethat Es = C .Ts = C = Rs, where C is 
signal power,Ts is symbol duration, and Rs transmission rate. 

0 0 0

1. .s
s

s

E C CT
N N N R

= ⋅ =
          

(51) 

Where thermal noise power spectral density N0 = 
Kb .T,and Kb (Boltzmann constant) = 1.38.10e-23 Ws/K = 
228.6 dBWs/K. 

T (effective noise temperature) = Ta + Tr     (52) 
Where Tais noise temperature o f the antenna as 

represented in Table 3, and 
Tr (noise temperature of the receiver)  
= (10Nr/10 - 1) . 290.(53) 
In the above equation the Noise Figure (Nr) for a 

low-noiseamplifier is found to be in the range of 0.7 to 2 dB. 
The aboveequations can now be combined as: 

0

t tr r

b b t b
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= = = ⋅

⋅ ⋅ ⋅     
(54) 

Where Pt  and Pr are t rans mitter and  receiver power, and  
Gtand  Gr are antenna gain  at  trans mitter and  receiver 
sides respect ively.Therefore, 

0
t t t r b

C P G A G K T
N

= + − + − −        (55) 

( )
0

,s
t t t t t r b s

E A P P G A G K R
N

= + − + − −  (56) 

It shou ld  be no ted that the SNR est imat ion o f (54) willbe 
optimized  by the v irtue o f hav ing  better estimat ion  of 
Atthrough (56). 

4. Simulation Results and Discussions 
4.1. Simulation Environment and Implementation 

The mathemat ical solution for finding any weather 
attenuationand utilizing that informat ion to improve signal 
qualityin satellite  networks were tested in a simulated system 
namedIWACS. The system monitors channel qualities and 
appliescounter measures, which involves controlling of 
power, frequency,propagation angle, modulation, coding, 
and data rate. 

The outcome is the evolution in  signal fidelity, 
especiallyabove 10 GHz, through reduction in digital 
transmission errors. 

In this section, the architecture of the IWACS is 
brieflymentioned. Details are avoided because the material 
presentedin earlier section has been the main focus of this 
article. 

The IWACS was simulated in Mat lab simulat ions 
version7.10.0 running on i7 - 2630QM, 2.00 GHz CPU 
and6.00 GB RAM. A special module was written to read 
weatherdata from Environment Canada supplied in 
aspecially formattedtext stream and converted into a three 
hour sliding windowof moving weather data always 
proceeding the present moment. 

Software modules were written to extract propagation 
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related parameters shown in Figure 5 for the location from 
ITURsupplied data. Algorithm for predicting the RR based 
onMarkov theory with fixed-duration weather data was 
written. 

Also, the IWACS used heuristic algorithms that 
employedfield  inputs in problem solving, learning and 
discovery.The system adhered to formalized knowledge 
represent ations chemes practiced in the industry, and 
mach ine learning techniques,to reach optimal decisionin 
dealing with d ifferent atmosphericconditions[5],[8], [16],[42
], and[43].The key feature of the IWACS is that it  adjusts to 
signalvariations with a fast response time. In  accomplishing 
this, theemployed technique used feedback of SNR values 
from thereceiv ing end of the channel and uses that 
knowledge to mit igatefuture weather attenuations, thus 
preventing them fromactually manifest in  the channels. This 
proactive approachto the adjustment of signal characteristics 
is what makes thesystem meet  end-to-end QoS 
requirements.The core architecture of the IWACS is shown 
in Figure 13,where it  may  be noted that it consists of four 
control blocks,the first control b lock, the second control 
block, the third controlblock, and the fourth control block, a 
feedback loop andcounter iteration, along with a special 
module called decisionsupport system (DSS). This figure 
illus- trates the Interrelation-shipsof various blocks involved 
in tuning propagation characteristicsof a communication  

 
Figure 13.  Intelligent weather aware system for satellite networks 

The first control block collects vital data like 
propagationangle, frame size, frequency, transmit  signal 
power, andweather data. Based on these data, it computes 
atmosphericattenuation and SNR for the following time 
period. Th is iswhere the bulk of the techniques exp lained in 
earlier sections areemployed. 

The second control block compares the differences 
betweenthe estimated SNR and the minimum SNR values 
sought tomaintain a desired level of QoS, usually set by 
system’s designersbased on experience. These comparisons 
lead to oneof three d ifferent possible outcomes {A , B , o r C} 
as shown in  Figure 13. The first outcome {A}, is for 

estimated SNR valuessmaller than the threshold level. In this 
case the DSS willdecide to increase transmit power up to a 
maximum limit of -30 dB (0 dBm). The second outcome {B, 
is where estimatedSNR values equal to or exceed the 
threshold level. TheDSSwill be satisfied and will jump to the 
last block. The thirdoutcome {C}, is for estimated SNR 
smaller than the thresholdlevel even after increasing the 
transmit power to its maximumvalue. The DSS will go to the 
next b lock for selecting a combinationof transmission 
characteristics. 

In the third control block, based on adjusted SNR 
value,the DSS will opt for the adjustment of other parameters 
suchas data rate, frequency, modulation, and coding values. 
If thethreshold level value can be reached by using any of the 
differentvariable combinations, then the DSS will decide to 
moveto the last block for the final decision. This block 
employsan aid similar to Tab le 4 in  making these decisions, 
which areprepared based on field experience and expert 
suggestions. 

Table 4.  Forward link modes and performance at South West of King City 
for propagation angle = 45Degrees and frequency = 20GHz 

Modula
tion 

LPC 
Code 

Identifier 

Es/N0 
Estimated 

Values [dB] 

Transmitted 
Power 
[dB] 

Weather 
Attenuations 

[dB] 

QPSK 2/3 12.37 -55 214.36 
QPSK 4/5 5.90 -60 223.46 

8PSK 2/3 1.2 -62 221.13 
8PSK 8/9 4.86 -58 218.69 

16PSK 8/9 21.10 -57 216.23 

The fourth control block interacts with the remote end 
ofthe channel and determines the current SNR. It  then feeds 
thecurrent SNR value to the input block so that the system’s 
realtimestate is appropriately monitored. This in turn helps 
toiteratively adjust the channel state. 

In case a satisfactory SNR is not achieved through 
differentcombinations, the control system goes back to first 
controlblock through feedback and counter iteration block to 
re-adjustthe parameters (as exp lained earlier) andcomes to 
re-work withthe tables according to DSS decision, until a 
satisfactory valueis reached at which theprocedure will stop. 
In case significantimprovement is not achieved, the system 
will abandon the processafter a set number of iterations and 
gives a warning tothe operator. Whereas, the number of 
iteration can be set bysystem’s designers based on the 
specific location. 

The SNR and other measured parameters are fed to the 
DSS block to help make the decision to maintain 
QoSandsatisfy SLAs. The DSS and its network optimization 
blocksare depicted in Figure 14.  

The periodically-computed attenuationkeeps updating the 
knowledge input to the DSS, which is constructed from 
specific classes of algorithms that takesexperiential decision 
inputs from the user so that they couldbe factored in 
decision-making activit ies. Typical informat ionthat a DSS 
might gather and present would be: 
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a- Accessing current informat ion assets such as 
knowledgebase, satellite parameters, and triggering of 
periodicquery 

b- Maintaining the database of different combinations 
ofchannel parameters known to give acceptable system 
performance.The other blocks can then find the right 
combinationswith the aid of DSS. 

Thus, the IWACS min imizes the attenuation effect 
andmaximizes the channel robustness and efficiency by 
improvingSNR. Such improvement in turn improves QoS. 
The ability tobetter predict rain attenuation for different 
weather conditionsand operational frequencies makes the 
quest for improved QoSa reality. 

 
Figure 14.  Network optimization Decision Support System (DSS) 

4.2. Results 

The system, built on the foundation of the above 
mentionedprincip les, was found to deliver noteworthy 
improvements inthe performance of satellite networks.  

The system monitored the SNR atthe receiving end of the 
channels, compared it with a threshold,and searched for a 
blend of available power, frequency,propagation angle, 
coding, transmission rate, and modulationin response to 
predicted channel attenuation. It then attemptedto maintain a 
desired level of SNR as shown in Figure 12, Figure 13, 
Figure 14,Figure 15, andFigure 16. Such maintenance 
required the aid of anexpanded form of Table 4 for selecting 
the right combinationof propagation parameters. 

Figure 15 and Figure16 compare the SNR before and 
afterthe techniques discussed in this paper are put to usefor 
making improved system performance. These figures 
representcases when SNR fell between (-39 ~-16) dB,and 
transmit power from (-100 ~ -88) dB before 

intelligentdecision mechanism was turned on. The 
improvementsmade in SNR and transmit power level were 
significant afterthe IWACS was allowed to operate under the 
same conditions.The SNR improved to (5 ~ 27) dB and the 
transmit powerlevel ranged from (-63 ~-51) dB .Both cases 
were subjectedto identical weather conditions where total 
attenuationdue to weather rangedfrom (215 ~ 225) dB for a 
frequencyof 20 GHz at 40 degree propagation angle. Note 
that the systemwas able to bring the upper limit of transmit 
power to lessthan the maximum allowed of -30 dB. Any time 
this limitis reached, signal parameters are re-adjusted to 
prevent uncontrolledsignal transmission as shown in Figure 
16and Tab le 4. Itshould be noted that the improvements in 
channel performancemade by the scheme are significant. 

 
Figure 15.  Output SNR at South West of King City channel 

 
Figure 16.  Adjusted output SNR at South West of King City 

5. Conclusions 
Precip itation, gaseous formation, cloud, fog, and 

scintillat ioncause attenuation of satellite signals. These 
attenuationsbecome especially prominent at frequencies 
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above Ku band.Such attenuation makes it difficu lt to provide 
agreed upon QoSby satellite networks unless special 
mitigation measures aredevised to counter weather effects. 
Such control systems couldbe optimized to its most effective 
status if we had the bestpossible techniques for predicting 
channel attenuation due toweather related factors.This paper 
presents a technique forpredicting channel attenuation based 
on real-time weather dataand the use of the Markov theory. 
The results thus obtained, arefound to be able to make 
significant improvement over thetechniques known thus far. 
This technique positively contributesto QoS maintenance by 
allowing for better tuning andadaptation of signal 
propagation parameters such as frequency,power, 
propagation angle, modulation, coding, and transmissionrate 
with  changing weather conditions. The paper also 
introducesa three dimensional relat ionship model between 
attenuation, propagation angle, and RRprwith an  implication 
that for a given atmospheric condition, the signal 
attenuationcould be predicted with much improved accuracy 
thanthe techniques known to us. An IWACS, which controls 
modulation, coding, transmission power, frequency, 
propagationangle, and transmission rate to improve channel 
robustness, isbriefly described. It is believed that the 
technique presentedhere can be of significant interested to 
research and developmentcommunity interest in  improving 
the throughput of satellitenetworks. 
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