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The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust
adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including
matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear
gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the
fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive
fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability
theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of
uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a
neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the
proposed approach.

1. Introduction

In general systems, there exist some nonsmooth nonlinear-
ities in the actuators, such as dead-zone, saturation, and
backlash [1–7]. The information of the dead-zone is usually
poorly known and time variant. Recently, high accuracy posi-
tion control is required, such as DC servosystems, pressure
control systems, power systems, chemical reactor systems,
and machine tools [1–3, 8]. However, the dead-zone charac-
teristics in actuators may severely limit the performance of
the systems and let the output of the systems not reach our
requirements. The robust adaptive control was proposed to
deal with nonlinear systems with unknown dead-zone [2]. In
Corradini and Orlando [3], the sliding mode controller was
presented to robustly stabilize a nonlinear uncertain input.
Robust adaptive dead-zone compensation method was used
in a DC servo-motor control system [4]. Variable structure
control laws were proposed for uncertain large-scale system
with dead-zone input [5]. In [8, 9], adaptive control approach
was used to cope with nonlinear systems with nonsymmetric
dead-zone input. The proposed controllers in [10, 11] tackled

the plants with unknown dead-zone via dead-zone inverse.
However, the common feature of most previous results [1, 2,
4–6, 8, 9, 12] is the nonlinear gain function which is assumed
to be a constant. Although the Previous restrictive assump-
tion can be relaxed in [3, 7, 10, 11], the unmatched uncertainty
is not taken into account. Therefore, the motivation of this
paper is to synthesize a controller to handle the tracking
control problem for a class of uncertain nonlinear state time-
delay systems in the presence of an unknowndead-zone input
and unmatched uncertainties without constructing the dead-
zone inverse.

It is well known that a real system is difficult to be
described by the exact mathematical model, owing to the
existence of uncertain elements, such as parameter variation,
modeling errors, unmodeled dynamics, and external distur-
bances.These uncertainties may affect the stability of the sys-
tems. Robust stabilization of the nonlinear uncertain system
has widely been investigated [13–16]. In [13], the purpose of
this direct robust adaptive fuzzy controller was to deal with
a class of nonlinear systems containing both unconstructed
state-dependent unknown nonlinear uncertain and gain
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functions. Bartolini et al. [14] suggested the second-order
sliding mode controller to cope with the uncertain system
nonaffine in the control law and the presence of the unmod-
eled dynamic actuator. The methods of robust adaptive con-
trol [15, 16] were utilized to solve the nonlinear uncertain
problem. In [15], the robust adaptive controller for SISO non-
linear uncertain system was presented by the input/output
linearization approach. In the case where the nonlinear
uncertain systems include constant linearly parameterized
uncertainty and nonlinear state-dependent parametric un-
certainty, the direct robust adaptive control framework was
developed in [16].

In recent years, the design problem of nonlinear time-
delay systems has received considerable attention in [17–23]
because time-delay characteristic usually confronted in engi-
neering systems may degrade the control performance and
make the systems unstable. By employing the input-output
approach and the scaled small gain theorem, the filtering
problem for discrete-time T-S fuzzy systems with time-vary-
ing delay has been studied [17]. In [18], the stabilization of
LTI systems with time delay was considered by using a low-
order controller. The stability analysis and robust control for
time-delay systems attracted a large number of researchers
over the past years [19–21]. Recently, the problem of stability
analysis for stochastic neural networks with discrete interval
and distributed time-varyingwas investigated by applying the
idea of delay partitioning method [23].

On the other hand, the fuzzy control techniques have been
widely used in many control problems in recent years [24–
26]. The fuzzy logic system is constructed from a collection
of fuzzy IF-THEN rules. It becomes a useful way to approx-
imate the unknown nonlinear functions and uncertainties
in the nonlinear systems. An adaptive interval type-2 fuzzy
sliding mode controller for a class of unknown nonlinear
discrete-time systems corrupted by external disturbances was
presented [24]. In [25], an adaptive neural-fuzzy control de-
sign was examined for tracking of nonlinear affine in the
control dynamic systemswith unknownnonlinearities. Based
on a novel fuzzy Lyapunov-Krasovskii functional, a delay par-
titioningmethodhas been developed for the delay-dependent
stability analysis of fuzzy time-varying state delay systems
[26].

In this paper, the problem of output tracking control is
investigated for a class of uncertain nonlinear state time-delay
systems containing unknown dead-zone input and unmatch-
ed uncertainties. The main features of the proposed robust
adaptive fuzzy controller are summarized as follows. (i) By
utilizing a description of a dead-zone feature, an adaptive law
is used to estimate the properties of the dead-zone model
intuitively and mathematically, without constructing a dead-
zone inverse. (ii) Fuzzy logic systems with some appropriate
learning laws are applied to approximate the nonlinear gain
function and the upper bounded functions of matched and
unmatched uncertainties. (iii) The unknown upper bound of
the uncertainties caused by approximation (or fuzzy mod-
eling) error is estimated by a simple adaptive law. (iv) By
means of Lyapunov stability theorem, the proposed controller
cannot only guarantee the robust stability of thewhole closed-
loop system but also obtain the good tracking performance.

This paper is organized as follows. In Section 2, the form
of the uncertain nonlinear state time-delay system with
unknown dead-zone input is described. The fuzzy logic sys-
tems and fuzzy basis functions are also reviewed. Section 3
presents the robust adaptive fuzzy tracking controller to deal
with a class of nonlinear uncertain state time-delay systems
containing unknown dead-zone input. By Lyapunov stability
theorem, the presented controller can ensure the stability of
the controlled systems. Simulation results are demonstrated
along with the effectiveness and performance of the proposed
controller in Section 4. Finally, a conclusion is given in
Section 5.

2. Problem Statement and Preliminaries

2.1. Problem Statement. Consider a class of uncertain nonlin-
ear state time-delay systems containing an unknown dead-
zone in the following form:
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where x(𝑡) = [𝑥
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𝑛 is the system state
vector which is assumed to be available for measurement,
and 𝑣(𝑡) ∈ 𝑅 and 𝑦(𝑡) ∈ 𝑅 are the input and output of the
system, respectively. 𝜏 is the value of time delay.Theunknown
nonlinear system functions are assumed to be in the linearly
parameterized form and consist of two parts: (i) the sum
of 𝜃
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𝑛×1 is the vector of
unknown unmatched uncertainties. Without loss of
generality, it is assumed that the sign of 𝑔(x(𝑡)) is positive.
𝑍(𝑣(𝑡)) : 𝑅 → 𝑅 is the nonlinear input function containing
a dead-zone.

Now, let the output of the system and its derivatives be
expressed as follows:
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The dead-zone with input 𝑣(𝑡) and output as shown in
Figure 1 is described by
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slopes of the dead-zone, respectively. In order to investigate
the key features of the dead-zone in the control problems, the
following assumptions should be made.
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Figure 1: Dead-zone model.

where 𝑧(𝑣(𝑡)) can be calculated from (6) and (7) as

𝑧 (𝑣 (𝑡)) =

{

{

{

{

{

−𝑚𝑐

𝑎
for 𝑣 (𝑡) ≥ 𝑐

𝑎
,

−𝑚𝑣 (𝑡) for 𝑐

𝑏
< 𝑣 (𝑡) < 𝑐

𝑎
,

−𝑚𝑐

𝑏
for 𝑣 (𝑡) ≤ 𝑐

𝑏
.

(8)

From Assumptions 2 and 3, we can conclude that 𝑧(𝑣(𝑡)) is
bounded and satisfies |𝑧(𝑣(𝑡))| ≤ 𝜌, where 𝜌 is the upper
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2.2. Description of Fuzzy Logic Systems. The basic config-
uration of the fuzzy logic system consists of four main
components: fuzzy rule base, fuzzy inference engine, fuzzifier,
and defuzzifier [27]. The fuzzy logic system performs a
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3. Adaptive Fuzzy Tracking Controller Design
and Stability Analysis

According to (2.1), (7), and (10), the tracking error dynamic
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𝑖=1

𝜃

1𝑖
𝑓

1𝑖
(x (𝑡)) − Δ𝑓

1
(x (𝑡))

−

𝑁

∑

𝑗=1

𝜃

2𝑗
𝑓

2𝑗
(x (𝑡 − 𝜏)) − Δ𝑓

2
(x (𝑡 − 𝜏))

−𝑔 (x)𝑚𝑣 (𝑡) − 𝑔 (x) 𝑧 (𝑣 (𝑡)) − ΔΦ] .

(16)

It is worth noting that Δ𝑓
1
(x(𝑡)), 𝑓

2𝑗
(x(𝑡−𝜏)), and ΔΦ are

unknown uncertainties and satisfy the following assumption.
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Assumption 4. |ΔΦ| ≤ ℎ

1
(x), |Δ𝑓

1
(x(𝑡))| ≤ ℎ

2
(x(𝑡)), and

|Δ𝑓

2
(x(𝑡 − 𝜏))| ≤ ℎ

3
(x(𝑡 − 𝜏)), where ℎ

1
(x), ℎ

2
(x(𝑡)), and

ℎ

3
(x(𝑡 − 𝜏)) are unknown smooth positive functions and can

be estimated by fuzzy logic systems with some adaptive laws
which will be determined later.

First, the nonlinear gain function 𝑔(x) and the upper
bounded functions ℎ

1
(x), ℎ
2
(x(𝑡)), and ℎ

3
(x(𝑡 − 𝜏)) of

unmatched and matched uncertainties can be approximated,
over a compact set Ωx, by the fuzzy logic systems as follows:

𝑔 (x | 𝜃
𝑔
) = 𝜃
𝑇

𝑔
𝜉 (x) ,

̂

ℎ

1
(x | 𝜃
ℎ1
) = 𝜃
𝑇

ℎ1
𝜉 (x) ,

̂

ℎ

2
(x | 𝜃
ℎ2
) = 𝜃
𝑇

ℎ2
𝜉 (x) ,

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
) = 𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏)) ,

(17)

where 𝜉(x) and 𝜉(x(𝑡 − 𝜏)) are the fuzzy basis vectors, and
𝜃
𝑔
, 𝜃
ℎ1
, 𝜃
ℎ2
, and 𝜃

ℎ3
are the corresponding adjustable param-

eter vectors of each fuzzy logic system. It is assumed that
𝜃
𝑔
, 𝜃
ℎ1
, 𝜃
ℎ2
, and 𝜃

ℎ3
belong to compact sets Ω𝜃𝑔

, Ω𝜃ℎ1
, Ω𝜃ℎ2

,
and Ω𝜃ℎ3

, respectively, which are defined as

Ω𝜃𝑔 = {𝜃
𝑔
∈ 𝑅

𝑀
:

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑁

1
< ∞} ,

Ω𝜃ℎ1
= {𝜃
ℎ1

∈ 𝑅

𝑀
:

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ1

󵄩

󵄩

󵄩

󵄩

≤ 𝑁

2
< ∞} ,

Ω𝜃ℎ2
= {𝜃
ℎ2

∈ 𝑅

𝑀
:

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ2

󵄩

󵄩

󵄩

󵄩

≤ 𝑁

3
< ∞} ,

Ω𝜃ℎ3
= {𝜃
ℎ3

∈ 𝑅

𝑀
:

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ3

󵄩

󵄩

󵄩

󵄩

≤ 𝑁

4
< ∞} ,

(18)

where 𝑁

1
, 𝑁

2
, 𝑁

3
, and 𝑁

4
are the designed parameters, and

𝑀 is the number of fuzzy inference rules. Let us define the
optimal parameter vectors 𝜃∗

𝑔
, 𝜃
∗

ℎ1
, 𝜃
∗

ℎ2
, and 𝜃∗

ℎ3
as follows:

𝜃
∗

𝑔
= arg min

𝜃𝑔∈Ω𝜃𝑔

{sup
x∈Ωx

󵄨

󵄨

󵄨

󵄨

󵄨

𝑔 (x) − 𝑔 (x | 𝜃
𝑔
)

󵄨

󵄨

󵄨

󵄨

󵄨

} ,

𝜃
∗

ℎ1
= arg min

𝜃ℎ1∈Ω𝜃ℎ1

{sup
x∈Ωx

󵄨

󵄨

󵄨

󵄨

󵄨

ℎ

1
(x) − ̂

ℎ

1
(x | 𝜃
ℎ1
)

󵄨

󵄨

󵄨

󵄨

󵄨

} ,

𝜃
∗

ℎ2
= arg min

𝜃ℎ2∈Ω𝜃ℎ2

{sup
x∈Ωx

󵄨

󵄨

󵄨

󵄨

󵄨

ℎ

2
(x) − ̂

ℎ

2
(x | 𝜃
ℎ2
)

󵄨

󵄨

󵄨

󵄨

󵄨

} ,

𝜃
∗

ℎ3
= arg min

𝜃ℎ3∈Ω𝜃ℎ3

{sup
x∈Ωx

󵄨

󵄨

󵄨

󵄨

ℎ

3
(x (𝑡 − 𝜏))

−

̂

ℎ

1
(x (𝑡 − 𝜏) | 𝜃

ℎ1
)

󵄨

󵄨

󵄨

󵄨

󵄨

} ,

(19)

where 𝜃∗
𝑔
, 𝜃
∗

ℎ1
, 𝜃
∗

ℎ2
, and 𝜃∗

ℎ3
are bounded in the suitable closed

sets Ω𝜃𝑔
, Ω𝜃ℎ1

, Ω𝜃ℎ2
, and Ω𝜃ℎ3

, respectively. The parameter

estimation errors can be defined as
̃𝜃
𝑔
= 𝜃
𝑔
− 𝜃
∗

𝑔
,

̃𝜃
ℎ1

= 𝜃
ℎ1

− 𝜃
∗

ℎ1
,

̃𝜃
ℎ2

= 𝜃
ℎ2

− 𝜃
∗

ℎ2
,

̃𝜃
ℎ3

= 𝜃
ℎ3

− 𝜃
∗

ℎ3
,

󵄨

󵄨

󵄨

󵄨

𝜔

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜔

2

󵄨

󵄨

󵄨

󵄨

≤ 𝜔,

(20)

where 𝜔 is an unknown positive constant, and

𝜔

1
= (ℎ

1
(x) − ̂

ℎ

1
(x | 𝜃
∗

ℎ1
) )

+ (ℎ

2
(x (𝑡)) −

̂

ℎ

2
(x | 𝜃
∗

ℎ2
))

+ (ℎ

3
x (x (𝑡 − 𝜏)) −

̂

ℎ

3
(x | 𝜃
∗

ℎ3
)) ,

𝜔

2
= (𝑔 (x) − 𝑔 (x | 𝜃

∗

𝑔
)) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))

(21)

as the minimum approximation errors, which correspond to
approximation errors obtained when optimal parameters are
used.

Secondly, we define

̃

𝜙 =

̂

𝜙 − 𝜙,

̃𝜃
1
=

̂𝜃
1
− 𝜃
1
,

̃𝜃
2
=

̂𝜃
2
− 𝜃
2
,

𝜔̃ = 𝜔̂ − 𝜔,

(22)

where ̂

𝜙 is an estimate of 𝜙, which is defined as 𝜙 = (𝑚)

−1. ̂𝜃
1

and ̂𝜃
2
are the estimates of 𝜃

1
and 𝜃

2
, respectively, which are

defined as

𝜃
1
= [(𝑚)

−1
𝜃

11
, (𝑚)

−1
𝜃

12
, . . . , (𝑚)

−1
𝜃

1𝑀
]

𝑇

∈ 𝑅

𝑀
,

𝜃
2
= [(𝑚)

−1
𝜃

21
, (𝑚)

−1
𝜃

22
, . . . , (𝑚)

−1
𝜃

2𝑁
]

𝑇

∈ 𝑅

𝑁
,

(23)

and 𝜔̂ is an estimate of 𝜔.

Based on the previous discussion and under Assumptions
1–4, we are in a position to propose the robust adaptive fuzzy
controller in the following form:

𝑣 = 𝑣

1
+ 𝑣

2
+ 𝑣

3
+ 𝑣

4
+ 𝑣

5
, (24)

where

𝑣

1
=

1

𝑔 (x | 𝜃
𝑔
)

̂

𝜙

[

[

Ke + 𝑦

(𝑛)

𝑚
+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

× (

̂

ℎ

1
(x | 𝜃
ℎ1
) +

̂

ℎ

2
(x | 𝜃
ℎ2
)

+

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
))

]

]

,

(25)
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𝑣

2
= −

1

𝑔 (x | 𝜃
𝑔
)

f𝑇
1
(x (𝑡))

̂𝜃
1
,

𝑣

3
= −

1

𝑔 (x | 𝜃
𝑔
)

f𝑇
2
(x (𝑡 − 𝜏))

̂𝜃
2
,

𝑣

4
=

1

𝑚min

1

𝑔 (x | 𝜃
𝑔
)

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

𝜔̂,

𝑣

5
=

𝜌

𝑚min
tanh(

e𝑇PB
𝜀

) ,

(26)

where f
1
(x(𝑡)) = [𝑓

11
, 𝑓

12
, . . . , 𝑓

1𝑀
]

𝑇
∈ 𝑅

𝑀 and f
2
(x(𝑡 − 𝜏)) =

[𝑓

21
, 𝑓

22
, . . . , 𝑓

2𝑁
]

𝑇
∈ 𝑅

𝑁, 𝜌 is defined in (9), and P is a sym-
metric positive definite matrix, which is a solution of the
following Lyapunov equation:

A𝑇
𝑚
P + PA

𝑚
= −Q, (27)

where Q is a positive definite matrix, and the parameter
update laws are as follows:

̇𝜃
𝑔
= −𝛾

𝑔
e𝑇PB𝜉 (x) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) , (28)

̇𝜃
ℎ1

= 𝛾

ℎ1

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) ,

̇𝜃
ℎ2

= 𝛾

ℎ2

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) ,

(29)

̇𝜃
ℎ3

= 𝛾

ℎ3

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡 − 𝜏)) , (30)

̇

̂𝜃
1
= −𝛾

1
e𝑇PBf

1
(x (𝑡)) ,

(31)

̇

̂𝜃
2
= −𝛾

2
e𝑇PBf

2
(x (𝑡 − 𝜏)) ,

(32)

̇

𝜔̂ = 𝛾

𝜔

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

, (33)

̇

̂

𝜙 = 𝜂 (e𝑇PB){ [Ke + 𝑦

(𝑛)

𝑚
] +

(e𝑇PB)

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)} ,

(34)

where the scalars 𝛾

ℎ1
, 𝛾

ℎ2
, 𝛾

ℎ3
, 𝛾

𝑔
, 𝛾

1
, 𝛾

2
, 𝛾

𝜔
, and 𝜂 are positive

constants, determining the rates of adaptations, and

𝑧

1
(𝑣 (𝑡)) =

{

{

{

{

{

−𝑐

𝑎
for 𝑣 (𝑡) ≥ 𝑐

𝑎
,

−𝑣 (𝑡) for 𝑐

𝑏
< 𝑣 (𝑡) < 𝑐

𝑎
,

−𝑐

𝑏
for 𝑣 (𝑡) ≤ 𝑐

𝑏
.

(35)

Remark 1. Without loss of generality, the adaptive laws used
in this paper are assumed that the parameter vectors are
within the constraint sets or on the boundaries of the

constraint sets but moving toward the inside of the constraint
sets. If the parameter vectors are on the boundaries of the con-
straint sets but moving toward the outside of the constraint
sets, we have to use the projection algorithm [27] to modify
the adaptive laws such that the parameter vectors will remain
inside of the constraint sets.The proposed adaptive law (28)–
(30) can be modified as the following form:

̇𝜃
𝑔
=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

−𝛾

𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) ,

if (

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

< 𝑁

1
) or

(

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

= 𝑁

1
and

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

𝑔
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) ≥ 0

) ,

𝑃 {−𝛾

𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡)))} ,

if (

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

= 𝑁

1
and

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

𝑔
𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) < 0

) ,

(36)

where 𝑃{−𝛾

𝑔
‖e𝑇PB‖𝜉(x(𝑡))(𝑣(𝑡) + 𝑧

1
(𝑣(𝑡)))} is defined as

𝑃 {−𝛾

𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡)))}

= −𝛾

𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡)))

+ 𝛾

𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑔
𝜃
𝑇

𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑔

󵄩

󵄩

󵄩

󵄩

󵄩

2
𝜉 (x (𝑡))

× (𝑣 (𝑡) + 𝑧

1
(𝑣 (𝑡))) ,

̇𝜃
ℎ1

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝛾

ℎ1

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) ,

if (

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ1

󵄩

󵄩

󵄩

󵄩

< 𝑁

2
) or

(

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ1

󵄩

󵄩

󵄩

󵄩

= 𝑁

2
and 󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

ℎ1
𝜉 (x (𝑡)) ≤ 0) ,

𝑃 {𝛾

ℎ1

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡))} ,

if (

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ1

󵄩

󵄩

󵄩

󵄩

= 𝑁

2
and 󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

ℎ1
𝜉 (x (𝑡)) > 0) ,

(37)

where 𝑃{𝛾

ℎ1
‖e𝑇PB‖𝜉(x(𝑡))} is defined as

𝑃 {𝛾

ℎ1

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡))}

= 𝛾

ℎ1

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡))

− 𝛾

ℎ1

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ1
𝜃
𝑇

ℎ1

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ1

󵄩

󵄩

󵄩

󵄩

2
𝜉 (x (𝑡)) ,

̇𝜃
ℎ2

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝛾

ℎ2

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡)) ,

if (

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ2

󵄩

󵄩

󵄩

󵄩

< 𝑁

3
) or

(

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ2

󵄩

󵄩

󵄩

󵄩

= 𝑁

3
and 󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

ℎ2
𝜉 (x (𝑡)) ≤ 0) ,

𝑃 {𝛾

ℎ2

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡))} ,

if (

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ2

󵄩

󵄩

󵄩

󵄩

= 𝑁

3
and 󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

ℎ2
𝜉 (x (𝑡)) > 0) ,

(38)
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where 𝑃{𝛾

ℎ2
‖e𝑇PB‖𝜉(x(𝑡))} is defined as

𝑃 {𝛾

ℎ2

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡))}

= 𝛾

ℎ2

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡))

− 𝛾

ℎ2

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ2
𝜃
𝑇

ℎ2

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ2

󵄩

󵄩

󵄩

󵄩

2
𝜉 (x (𝑡)) ,

̇𝜃
ℎ3

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝛾

ℎ3

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡 − 𝜏)) ,

if (

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ3

󵄩

󵄩

󵄩

󵄩

< 𝑁

4
) or

(

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ3

󵄩

󵄩

󵄩

󵄩

=𝑁

4
and 󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏)) ≤ 0) ,

𝑃 {𝛾

ℎ3

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡 − 𝜏))} ,

if (

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ3

󵄩

󵄩

󵄩

󵄩

= 𝑁

4
and

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏)) > 0) ,

(39)

where 𝑃{𝛾

ℎ3
‖e𝑇PB‖𝜉(x(𝑡 − 𝜏))} is defined as

𝑃 {𝛾

ℎ3

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡 − 𝜏))}

= 𝛾

ℎ3

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜉 (x (𝑡 − 𝜏))

− 𝛾

ℎ3

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ3
𝜃
𝑇

ℎ3

󵄩

󵄩

󵄩

󵄩

𝜃
ℎ3

󵄩

󵄩

󵄩

󵄩

2
𝜉 (x (𝑡 − 𝜏)) .

(40)

The main result of the proposed robust adaptive fuzzy
tracking control scheme is summarized in the following
theorem.

Theorem2. Consider the uncertain nonlinear state time-delay
system (1) with unknown dead-zone input (7). If Assumptions
1–4 are satisfied, then the proposed robust adaptive fuzzy track-
ing controller defined by (24)–(3) with some adaptation laws
(28)–(34) ensures that all the signals of the whole closed-loop
system are bounded, and the output tracking errors converge to
a neighborhood of zero exponentially.

Proof. Consider the Lyapunov function candidate

𝑉 =

1

2

(

1

𝑚

e𝑇Pe +

1

𝛾

1

̃𝜃
𝑇

1

̃𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̃𝜃
2
+

1

𝑚 ⋅ 𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

+

1

𝑚 ⋅ 𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

+

1

𝑚 ⋅ 𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

+

1

𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
+

1

𝜂

̃

𝜙

2
+

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
) .

(41)

Differentiating the Lyapunov function𝑉with respect to time,
we can obtain

̇

𝑉 =

1

2𝑚

ė𝑇Pe +

1

2𝑚

e𝑇Pė +

1

𝛾

1

̃𝜃
𝑇

1

̇

̃𝜃
1

+

1

𝛾

2

̃𝜃
𝑇

2

̇

̃𝜃
2
+

1

𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̇

̃𝜃
ℎ1

+

1

𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̇

̃𝜃
ℎ2

+

1

𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̇

̃𝜃
ℎ3

+

1

𝛾

𝑔

̃𝜃
𝑇

𝑔

̇

̃𝜃
𝑔
+

1

𝜂

̃

𝜙

̇

̃

𝜙 +

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̃.

(42)

From (16) and by the fact that ̇

̃𝜃
1
=

̇

̂𝜃
1
,

̇

̃𝜃
2
=

̇

̂𝜃
2
,

̇

̃𝜃
ℎ1

=

̇𝜃
ℎ1
,

̇

̃𝜃
ℎ2

=

̇𝜃
ℎ2
,

̇

̃𝜃
ℎ3

=

̇𝜃
ℎ3
,

̇

̃𝜃
𝑔

=

̇𝜃
𝑔
,

̇

̃

𝜙 =

̇

̂

𝜙, and ̇

𝜔̃ =

̇

𝜔̂, the
previous equation becomes

̇

𝑉 =

1

2𝑚

e𝑇 [A𝑇
𝑚
P + PA

𝑚
] e

+

1

𝑚

e𝑇PB[Ke + 𝑦

(𝑛)

𝑚
−

𝑀

∑

𝑖=1

𝜃

1𝑖
𝑓

1𝑖
(x (𝑡))

− Δ𝑓

1
(x (𝑡)) −

𝑁

∑

𝑗=1

𝜃

2𝑗
𝑓

2𝑗
(x (𝑡 − 𝜏))

− Δ𝑓

2
(x (𝑡 − 𝜏)) − 𝑔 (x)𝑚𝑣 (𝑡)

−𝑔 (x) 𝑧 (𝑣 (𝑡)) − ΔΦ]

+

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2
+

1

𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̇𝜃
ℎ1

+

1

𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̇𝜃
ℎ2

+

1

𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̇𝜃
ℎ3

+

1

𝛾

𝑔

̃𝜃
𝑇

𝑔

̇𝜃
𝑔
+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min𝛾𝜔
𝜔̃

̇

𝜔̂.

(43)

Applying (27) and Assumption 4 to (43) yields

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe +

1

𝑚

e𝑇PB

× [Ke + 𝑦

(𝑛)

𝑚
−

𝑀

∑

𝑖=1

𝜃

1𝑖
𝑓

1𝑖
(x (𝑡))

−

𝑁

∑

𝑗=1

𝜃

2𝑗
𝑓

2𝑗
(x (𝑡 − 𝜏))

−𝑔 (x)𝑚𝑣 (𝑡) − 𝑔 (x) 𝑧 (𝑣 (𝑡)) ]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

ℎ

1
(x) + 1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

ℎ

2
(x (𝑡))

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

ℎ

3
(x (𝑡 − 𝜏)) +

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1

+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2
+

1

𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̇𝜃
ℎ1

+

1

𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̇𝜃
ℎ2
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+

1

𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̇𝜃
ℎ3

+

1

𝛾

𝑔

̃𝜃
𝑇

𝑔

̇𝜃
𝑔

+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min𝛾𝜔
𝜔̃

̇

𝜔̂.

(44)

Substituting (17) and (23) into (44), we obtain

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe + e𝑇PB

× {

1

𝑚

[Ke + 𝑦

(𝑛)

𝑚
] − f𝑇
1
(x (𝑡)) 𝜃

1
− f𝑇
2
(x (𝑡 − 𝜏)) 𝜃

2
}

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

(

󵄨

󵄨

󵄨

󵄨

𝜔

1

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝜔

2

󵄨

󵄨

󵄨

󵄨

) −

1

𝑚

e𝑇PB

× [𝑔 (x | 𝜃
𝑔
) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))]

+

1

𝑚

e𝑇PB [

̃𝜃
𝑇

𝑔
𝜉 (x) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

[

̂

ℎ

1
(x | 𝜃
ℎ1
) −

̃𝜃
𝑇

ℎ1
𝜉 (x)]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

[

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
) −

̃𝜃
𝑇

ℎ2
𝜉 (x (𝑡))]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

[

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
) −

̃𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏))]

+

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2
+

1

𝑚 ⋅ 𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̇𝜃
ℎ1

+

1

𝑚 ⋅ 𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̇𝜃
ℎ2

+

1

𝑚 ⋅ 𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̇𝜃
ℎ3

+

1

𝛾

𝑔

̃𝜃
𝑇

𝑔

̇𝜃
𝑔
+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̂

≤ −

1

2𝑚

e𝑇Qe + e𝑇PB

× {

1

𝑚

[Ke + 𝑦

(𝑛)

𝑚
] − f𝑇
1
(x (𝑡)) 𝜃

1
− f𝑇
2
(x (𝑡 − 𝜏)) 𝜃

2
}

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜔 −

1

𝑚

e𝑇PB

× [𝑔 (x | 𝜃
𝑔
) (𝑚𝑣 (𝑡) + 𝑧 (𝑣 (𝑡)))]

+

1

𝑚

e𝑇PB [

̃𝜃
𝑇

𝑔
𝜉 (x) (𝑚𝑣 (𝑡) + 𝑚 ⋅ 𝑧

1
(𝑣 (𝑡)))]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

[

̂

ℎ

1
(x | 𝜃
ℎ1
) −

̃𝜃
𝑇

ℎ1
𝜉 (x)]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

[

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
) −

̃𝜃
𝑇

ℎ2
𝜉 (x (𝑡))]

+

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

[

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
) −

̃𝜃
𝑇

ℎ3
𝜉 (x (𝑡 − 𝜏))]

+

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2
+

1

𝑚 ⋅ 𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̇𝜃
ℎ1

+

1

𝑚 ⋅ 𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̇𝜃
ℎ2

+

1

𝑚 ⋅ 𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̇𝜃
ℎ3

+

1

𝛾

𝑔

̃𝜃
𝑇

𝑔

̇𝜃
𝑔
+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̂.

(45)

According to adaptive laws (28)–(30), (45) can be rewritten
as

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe +

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜔

+

1

𝑚

e𝑇PB
{

{

{

[Ke + 𝑦

(𝑛)

𝑚
]

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)

}

}

}

+ e𝑇PB {−𝑔 (x | 𝜃
𝑔
) 𝑣 (𝑡) − 𝑔 (x | 𝜃

𝑔
)

𝑧 (𝑣 (𝑡))

𝑚

}

− e𝑇PBf𝑇
1
(x (𝑡)) 𝜃

1
− e𝑇PBf𝑇

2
(x (𝑡 − 𝜏)) 𝜃

2

+

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2
+

1

𝜂

̃

𝜙

̇

̂

𝜙

+

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̂

≤ −

1

2𝑚

e𝑇Qe +

1

𝑚

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝜔 +

1

𝑚

e𝑇PB

×

{

{

{

[Ke + 𝑦

(𝑛)

𝑚
] +

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)

}

}

}

− e𝑇PB𝑔 (x | 𝜃
𝑔
) 𝑣 (𝑡) +

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝑔 (x | 𝜃
𝑔
)

×

|𝑧 (𝑣 (𝑡))|

|𝑚|

− e𝑇PBf𝑇
1
(x (𝑡)) 𝜃

1

− e𝑇PBf𝑇
2
(x (𝑡 − 𝜏)) 𝜃

2
+

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1

+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2
+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̂.

(46)
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Using the control laws (24)–(3), the previous equation can be
rewritten as

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe +

1

𝑚min

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

⋅ (𝜔 − 𝜔̂)

+ e𝑇PB (𝜙 −

̂

𝜙)

×

{

{

{

[Ke + 𝑦

(𝑛)

𝑚
] +

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)

}

}

}

+

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝑔 (x | 𝜃
𝑔
)

|𝑧 (𝑣 (𝑡))|

|𝑚|

− e𝑇PB (𝜃
𝑇

1
−

̂𝜃
𝑇

1
) ⋅ f
1
(x (𝑡))

− e𝑇PB (𝜃
𝑇

2
−

̂𝜃
𝑇

2
) ⋅ f
2
(x (𝑡 − 𝜏))

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min

⋅ tanh(

e𝑇PB
𝜀

) +

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2

+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̂

= −

1

2𝑚

e𝑇Qe −

1

𝑚min

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

⋅ 𝜔̃

− e𝑇PB ̃

𝜙

{

{

{

[Ke + 𝑦

(𝑛)

𝑚
] +

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

1
(x | 𝜃
ℎ1
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

2
(x (𝑡) | 𝜃

ℎ2
)

+

(e𝑇PB)

𝑇

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

̂

ℎ

3
(x (𝑡 − 𝜏) | 𝜃

ℎ3
)

}

}

}

+

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝑔 (x | 𝜃

𝑔
)

|𝑧 (𝑣 (𝑡))|

|𝑚|

+ e𝑇PB ⋅

̃𝜃
𝑇

1
⋅ f
1
(x (𝑡)) + e𝑇PB ⋅

̃𝜃
𝑇

2
⋅ f
2
(x (𝑡 − 𝜏))

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ tanh(

e𝑇PB
𝜀

)

+

1

𝛾

1

̃𝜃
𝑇

1

̇

̂𝜃
1
+

1

𝛾

2

̃𝜃
𝑇

2

̇

̂𝜃
2

+

1

𝜂

̃

𝜙

̇

̂

𝜙 +

1

𝑚min ⋅ 𝛾

𝜔

𝜔̃

̇

𝜔̂.

(47)

According to adaptive laws (31)–(33), we have

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe +

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝑔 (x | 𝜃
𝑔
)

|𝑧 (𝑣 (𝑡))|

|𝑚|

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ tanh(

e𝑇PB
𝜀

)

≤ −

1

2𝑚

e𝑇Qe +

󵄩

󵄩

󵄩

󵄩

󵄩

e𝑇PB󵄩

󵄩

󵄩

󵄩

󵄩

𝑔 (x | 𝜃
𝑔
)

𝜌

𝑚min

− e𝑇PB ⋅ 𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ tanh(

e𝑇PB
𝜀

) .

(48)

By considering the inequality |𝜙|−𝜙 tanh(𝜙/𝜀) ≤ 0.2785𝜀. We
obtain

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe + 0.2785𝑔 (x | 𝜃
𝑔
) ⋅

𝜌

𝑚min
⋅ 𝜀

= −

1

2𝑚

e𝑇Qe −

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1
−

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2

−

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

−

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

−

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

−

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
−

1

2𝜂

̃

𝜙

2

−

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
+

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1
+

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2

+

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

+

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

+

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

+

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
+

1

2𝜂

̃

𝜙

2

+

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
+ 0.2785𝑔 (x | 𝜃

𝑔
) ⋅

𝜌

𝑚min
⋅ 𝜀.

(49)

Let

𝐿 =

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1
+

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2

+

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

+

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

+

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

+

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔

+

1

2𝜂

̃

𝜙

2
+

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2

+ 0.2785𝑔 (x | 𝜃

𝑔
) ⋅

𝜌

𝑚min
⋅ 𝜀.

(50)
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Then,

̇

𝑉 ≤ −

1

2𝑚

e𝑇Qe −

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1

−

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2
−

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

−

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

−

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

−

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
−

1

2𝜂

̃

𝜙

2
−

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
+ 𝐿

≤ −

1

2𝑚

𝜆min (Q) e𝑇e −

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1

−

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2
−

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

−

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

−

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

−

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
−

1

2𝜂

̃

𝜙

2
−

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
+ 𝐿

≤ −

1

2𝑚

𝜆min (Q)

𝜆max (P)
e𝑇Pe −

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1

−

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2
−

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

−

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

−

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

−

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
−

1

2𝜂

̃

𝜙

2
−

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
+ 𝐿.

(51)

Let 𝜆
𝑣
= 𝜆min(Q)/𝜆max(P). We obtain

̇

𝑉 ≤ −

1

2𝑚

𝜆

𝑣
e𝑇Pe −

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1

−

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2
−

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

−

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

−

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

−

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔
−

1

2𝜂

̃

𝜙

2
−

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
+ 𝐿

≤ −min{𝜆

𝑣
,

1

𝛾

1

,

1

𝛾

2

,

1

𝑚 ⋅ 𝛾

ℎ1

,

1

𝑚 ⋅ 𝛾

ℎ2

,

1

𝑚 ⋅ 𝛾

ℎ3

,

1

𝛾

𝑔

,

1

𝜂

,

1

𝑚 ⋅ 𝛾

𝜔

}

× [

1

2𝑚

e𝑇Pe +

1

2𝛾

1

̃𝜃
𝑇

1

̃𝜃
1
+

1

2𝛾

2

̃𝜃
𝑇

2

̃𝜃
2

+

1

2𝑚𝛾

ℎ1

̃𝜃
𝑇

ℎ1

̃𝜃
ℎ1

+

1

2𝑚𝛾

ℎ2

̃𝜃
𝑇

ℎ2

̃𝜃
ℎ2

+

1

2𝑚𝛾

ℎ3

̃𝜃
𝑇

ℎ3

̃𝜃
ℎ3

+

1

2𝛾

𝑔

̃𝜃
𝑇

𝑔

̃𝜃
𝑔

+

1

2𝜂

̃

𝜙

2
+

1

2𝑚min ⋅ 𝛾

𝜔

𝜔̃

2
] + 𝐿.

(52)

Setting 𝑐 = min{𝜆
𝑣
, 1/𝛾

1
, 1/𝛾

2
, 1/(𝑚 ⋅ 𝛾

ℎ1
), 1/(𝑚 ⋅ 𝛾

ℎ2
), 1/(𝑚 ⋅

𝛾

ℎ3
), 1/𝛾

𝑔
, 1/𝜂, 1/(𝑚 ⋅ 𝛾

𝜔
)}, it yields that

̇

𝑉 ≤ −𝑐𝑉 + 𝐿. (53)

Then, it is easy from (53) to show that

𝑉 (𝑡) ≤ 𝑒

−𝑐𝑡
𝑉 (0) +

𝐿

𝑐

. (54)

Therefore, the output tracking error converges to a neighbor-
hood of zero exponentially.

Remark 3. In the future work, the control problem of uncer-
tain T-S fuzzy time-varying delay systems with unknown
dead-zone input is an important topic and is worth to be
studied. Based on a novel fuzzy Lyapunov-Krasovskii func-
tional, a delay partitioning method has been developed for
the delay-dependent stability analysis of fuzzy time-varying
state delay systems [26]. Obviously, it provides a useful idea
to deal with the aforementioned future research.

4. An Example and Simulation Results

Consider the second-order uncertain nonlinear time-delay
system containing an unknown dead-zone that is modified
from the simulation example in [7] as follows:

𝑥̇

1
= 𝑥

2
+ Δ𝜙

1
(x) ,

𝑥̇

2
= 𝑥

1
+ 𝑓

11
(x (𝑡)) + 𝑓

22
(x (𝑡 − 𝜏))

+ Δ𝑓

1
(x (𝑡)) + Δ𝑓

2
(x (𝑡 − 𝜏))

+ 𝑔 (x) 𝑍 (𝑣 (𝑡)) + Δ𝜙

2
(x) ,

𝑦 = 𝑥

1
,

(55)

where the nonlinear functions 𝑓

11
(x(𝑡)) = −0.3 sin𝑥

1
(𝑡),

𝑓

12
(x(𝑡)) = 0,𝑓

21
(x(𝑡 − 𝜏)) = 0, and 𝑓

22
(x(𝑡 − 𝜏)) = 0.1𝑥

2

1
(𝑡 −

𝜏) are assumed to be known, and Δ𝑓

1
(x(𝑡)) =

−0.1𝑥

1
sin(3𝑥

2
(𝑡)), Δ𝑓

2
(x(𝑡 − 𝜏)) = −0.1𝑥

1
sin(3𝑥

2
(𝑡 − 𝜏))

are unknown system uncertainties with unknown upper
bound functions, where 𝜏 is the time delay. Δ𝜙

1
(x) =

0.1𝑥

1
sin(𝑡) and Δ𝜙

2
(x) = 0.3𝑥

2
sin(𝑡) are unknown exter-

nal disturbances, and 𝑔(x(𝑡)) = 2 − sin2(𝑥
1
(𝑡)). |Δ𝑓

1
(x(𝑡))| ≤

ℎ

2
(x(𝑡)), |Δ𝑓

2
(x(𝑡 − 𝜏))| ≤ ℎ

3
(x(𝑡 − 𝜏)), and 𝑍(𝑣(𝑡)) is an

output of a dead-zone. The goal of control is to maintain
the system output 𝑦 to follow the reference signal 𝑦

𝑚
=

0.5[sin(𝑡) + sin(0.5𝑡)].
In the simulation, parameters of the dead-zone are 𝑚 =

1, 𝑐
𝑟

= 0.5, and 𝑐

𝑙
= −0.5. And their bounds are chosen as

𝑚max = 1.5,𝑚min = 0.6, 𝑐
𝑟max = 0.9, 𝑐

𝑟min = 0.1, 𝑐
𝑙max = −0.1,
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Figure 2: The trajectories of state 𝑥

1
and desired output 𝑦

𝑚1
.

and 𝑐

𝑙min = −0.8. In the implementation, six fuzzy sets are
defined over interval [−3, 3] for both 𝑥

1
and 𝑥

2
, with labels

𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, and 𝐹6, and their membership functions
are

𝜇

𝐹1
(𝑥

𝑖
) =

1

1 + exp (5 (𝑥

𝑖
+ 2))

,

𝜇

𝐹2
(𝑥

𝑖
) = exp (−(𝑥

𝑖
+ 1.5)

2

) ,

𝜇

𝐹3
(𝑥

𝑖
) = exp (−(𝑥

𝑖
+ 0.5)

2

) ,

𝜇

𝐹4
(𝑥

𝑖
) = exp (−(𝑥

𝑖
− 0.5)

2

) ,

𝜇

𝐹5
(𝑥

𝑖
) = exp (−(𝑥

𝑖
− 1.5)

2

) ,

𝜇

𝐹6
(𝑥

𝑖
) =

1

1 + exp (−5 (𝑥

𝑖
− 2))

, 𝑖 = 1, 2.

(56)

In this section, we apply the proposed robust adaptive
fuzzy tracking control approach in Section 3 to deal with the
output tracking control problem of the second-order uncer-
tain nonlinear time-delay system as shown in (55). Choose
K = [10, 10] andQ = diag[5, 5]; then, we solve the Lyapunov
equation (27) to obtain

P = [

5.25 0.25

0.25 0.275

] . (57)

In this example, the sampling time is 0.01 sec. Initial values
are chosen as x(0) = [−2, 3]

T, 𝜃
𝑔
(0) = 1, 𝜃

ℎ1
(0) = 0,

𝜃h2(0) = 0, and 𝜃h3(0) = 0. The initial values of the para-
meters to be estimated are selected as ̂

𝜙(0) = 0.85, ̂𝜃
1
(0) =

[0 0]

𝑇, ̂𝜃
2
(0) = [0 0]

𝑇. 𝛾
𝑔
= 2, 𝛾

ℎ1
= 1.5, 𝛾

ℎ2
= 1.5, 𝛾

ℎ3
= 1.5,

𝛾

1
= 1.5, 𝛾

2
= 1.5, 𝛾

𝜔
= 1.5, 𝜂 = 1.0, 𝜏 = 0.5 s, and 𝜀 =

0.06.The simulation results are shown in Figures 2–5. Figures
2 and 3 show the trajectories of states 𝑥

1
and 𝑥

2
and the
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Figure 3: The trajectories of state 𝑥

2
and desired output 𝑦

𝑚2
.
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Figure 4: The phase plane of tracking errors 𝑒
1
and 𝑒

2
.

desired outputs 𝑦

𝑚1
and 𝑦

𝑚2
, respectively. The phase plane

of tracking errors of 𝑒
1
and 𝑒

2
is shown in Figure 4. Figure 5

shows the trajectory of the control signal. Obviously, the
proposed robust adaptive fuzzy tracking control scheme can
achieve the objective of good tracking performance and
robust stability simultaneously in spite of the controlled
system containing an unknown dead-zone and uncertainties.

5. Conclusion

The dead-zone input characteristics widely exist in the actu-
ators of practical control systems, which are usually poorly
known.The time-delay characteristics are usually confronted
in engineering systems. The two characteristics may severely
limit the performance of control. In this paper, the robust
adaptive fuzzy tracking controller is designed to overcome the
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Figure 5: The trajectory of the control input 𝑣(𝑡).

stabilization problem of a class of uncertain nonlinear state
time-delay systems containing unknown dead-zone input
and unmatched uncertainties. By utilizing a description of
a dead-zone feature to estimate the properties of the dead-
zonemodel intuitively andmathematically, the adaptive fuzzy
tracking controller is proposed without constructing the
dead-zone inverse. The nonlinear uncertainties are approx-
imated by the fuzzy logic system according to the adaptive
laws. Based on the Lyapunov stability theorem, the proposed
robust adaptive tracking fuzzy controller can ensure that the
output tracking error of the resulting closed-loop system con-
verges to a neighborhood of zero exponentially. Finally, some
simulations results are illustrated to verify the effectiveness
and performance of the proposed approach.
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