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Summary

This paper gives an introduction and overview to the often under-used measurement error model.
The purpose is to provide a simple summary of problems that arise from measurement error and
of the solutions that have been proposed. We start by describing how measurement error models
occur in real-world situations. Then we proceed with defining the measurement error model, initially
introducing the multivariate form of the model, and then, starting with the simplest form of the model
thoroughly discuss its features and solutions to the problems introduced due to measurement error.
We discuss higher-dimensional and more advanced forms of the model and give a brief numerical
illustration.
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1 Introduction

Measurement error models are models with at least one independent variable that is measured
with error. Aside from the term measurement error models, this area of statistics is known
by several other names: errors in variables and regression with errors in x are but two others
(Stefanski, 2000). The measurement error problem occurs often in practice. The medical field,
agriculture, and econometrics are just a few areas that contain problems involving predictor
variables that are contaminated by measurement error.

One major impact of measurement error in independent variables, when it exists and is over-
looked, is that standard estimation methods for model parameters result in biased estimates
(see, for example, Carroll et al., 1995). In the common simple linear regression model, for
example, the ordinary least squares estimates of the regression parameters, in the presence of
ignored measurement error, lead to a slope estimate that is attenuated towards zero and thus
underrepresents the parameter of interest on average. There is a diverse collection of topics in
the known measurement error literature, but no single, clear presentation of the basic results.
The purpose of this paper is to shed further light on the under-studied and often under-used
measurement error model. We present known, standard solutions to the effects of measurement
error in normal theory structural models and promote the idea that among the solutions, the
instrumental variable solution often provides the most tractable and realistic means of handling
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measurement error problems. A data example is provided illustrating an instrumental variable’s
correction of attenuation in the estimate of a slope parameter.

1.1 Common Occurrences of the Measurement Error Problem

The general measurement error problem occurs often in medical research when the association
between an unobservable predictor variable and a response variable is of interest. One of the
many examples involves Alzheimer’s disease. It is thought that the level of aluminium deposits,
which may build up in the brain over time, have an effect on an evaluation score for diagnosing
an individual developing Alzheimer’s (Campbell, 2002). If one were to estimate the association
between the likelihood of Alzheimer’s disease and the level of aluminium deposits in the brain,
problems would arise because a perfectly accurate measure of aluminium levels is simply not
attainable. Measurement error models have also been used to assess the reliability and validity
of a measuring method in the absence of a true “gold standard” method. Carter (1981), for
example, assessed the reliability and validity of a measure of specific activity of the enzyme
sucrase that was obtained from a homogenated sample of the small intestine of intestinal bypass
patients.

Measurement error in exposure dose is often an issue in epidemiologic studies. In the study of
late-term effects of atomic bomb radiation, for example, measurement error in dose could result
in attenuated estimates of effects. This, in turn, would lead to higher thresholds for acceptable
occupational exposures, which are based (in part) on atomic bomb survivors’ data. Researchers
at the Radiation Effects Research Foundation in Hiroshima, Japan, have recognized this problem
and continue to address it (Pierce et al., 1990, 1992).

Problems with measurement error in predictor variables often occur in economics. Klepper &
Leamer (1984), for example, faced this problem when estimating the quantity of a good exported
by a country as a linear function of the country’s land, labour and capital. They could not apply
usual linear regression techniques to correctly estimate the quantity exported, because these
three explanatory variables were, in their words, “doubtlessly measured with error” (Klepper &
Leamer, 1984, p. 180).

2 The Multivariate Measurement Error Model

Let {y
i
}∞i=1 and {ei }∞i=1 be sequences of p-dimensional random column vectors and let {xi }∞i=1

be a sequence of k-dimensional independent column vectors. Further, let β ∈ ψ ⊂ Rkp be a
kp × 1 column vector of parameters and f be a p-dimensional vector whose components are

real valued Borel measurable functions mapping Rk × ψ into R1 and describing E(Y i | xi ) as a
function of xi . Then,

Y i = f (xi ; β) + ei , i = 1, 2, . . . , (1)

where ei may be a combination of model error and measurement error on Y i , if it exists. Also,
assume

E(ei j ) = E(xilei ′ j ) = 0 (2)

for all j = 1, 2, . . . , p, l = 1, 2, . . . , k, i = 1, 2, . . ., and i ′ = 1, 2, . . . . That is, assume that model
errors and measurement errors in Y i , if they exist, are uncorrelated with the xi . If the elements
of β are not functionally related and

f (xi ; β) = Bxi , i = 1, 2, . . . , (3)
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where B is a p × k matrix of parameters formed by placing the first k elements of the kp × 1
vector β in the first row of B, the next k in the second row, and so on, then the model defined by
Equations (1), (2) and (3) is called the multivariate linear regression model. Without the addition
of Equation (3), the model defined by 1 and 2 is called the multivariate nonlinear regression
model. Note that if the model contains an intercept, the first element of xi is unity.

Sometimes the vectors xi , i = 1, 2, . . . , are not directly observable. Instead, assume that one
observes

Xi = xi + ui , i = 1, 2, . . . , n (4)

where

E(uil) = E(uil xi ′l ′) = E(uil yi ′ j ) = 0 (5)

for all j = 1, 2, . . . , p, l = 1, 2, . . . , k, l ′ = 1, 2, . . . , k, i = 1, 2, . . . , n, and i ′ = 1, 2, . . . , n.
That is, assume that the Xi are unbiased measurements of the xi , that the measurement errors (ui )
and true values (xi ) are all uncorrelated, and that the measurement errors are not correlated with
model errors nor measurement errors on Y i , if they exist. The model defined by Equations (1),
(2), (4), and (5) is called the general measurement error (henceforth, ME) model. With the
addition of Equation (3), the model is called the linear measurement error model (linear ME).
When the unobservable xi are fixed, the model is known as the functional model and when they
are non-constant random vectors, the model is known as the structural model.

The term functional model arose from early distinctions of a special case of the functional
model, as described above, where the ei in Equation (1) is comprised of measurement error only
(Kendall & Stuart 1979, pp. 375–379). That is, purely functional relationships between two sets
of nonrandom variables hold,

y
i
= f (xi ; β)

but those variables are measured with error,

Y i = y
i
+ ei

Xi = xi + ui

where E(eilyi ′ j ) = 0. In this case, no estimation of β would be required in the absence of
measurement error, as the elements of β then could be obtained by solving the functional
equations. If the ei in Equation (1) is comprised of model error and measurement error, or
comprises model error only, then E(eilyi ′ j ) �= 0 and Equation (1) defines a regression model
with parameters that must be estimated even in the absence of measurement error in y

i
. In

either case, the parameters of Equation (1) would be estimated by regression methods, if the
values of the xi were observed without error. The complicating factor is that they are not
observed. In the functional model they are unknown constants, i.e. parameters that need to be
estimated. Unfortunately, they cannot be estimated, because they increase in number with the
sample size (Neyman & Scott, 1948). Neyman & Scott (1948) referred to parameters that enter
the distribution of the observable random variables for only finitely many individuals in the
population (e.g. parameters that are unique to individuals) as incidental parameters. Generally,
it is only the structural parameters (e.g. β in the above discussion) that we can hope to estimate
consistently.

Functional models arise naturally when the relationship of interest is deterministic in the
absence of measurement error. For example, the relationship between pressure (P) and volume
(V ) in the condition of adiabatic expansion is a functional one of the form P × Vα = γ , where
α and γ are constants. This functional relationship describes a modified version of Boyle’s law.
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Functional relationships also arise when the underlying model is a regression model, where the
values of xi are fixed. In the latter case, the xi , i = 1, 2, . . . , n, are either the conditional values
of a random vector (as would be the case if we condition on the aluminium values in an observed
sample in the Alzheimer’s example) or are the fixed values in a finite population of individuals
(such as in the atomic bomb example). In either of the latter two cases, however, the models
alternatively could be treated as structural by not conditioning on the xi , i = 1, 2, . . . , n, but
by treating them as random instead.

This paper is mainly devoted to the structural model, but it is nonetheless important to
distinguish between the structural and functional models. Again, the (x1, x2, . . .) in Equation (1)
may be observations on nonrandom variables in which case the model is defined to be the
functional model. In this case, xi can be thought of as a constant vector and they appear
as parameters in the distribution function of (Y i , Xi ). In the structural model with normal
true values, xi are assumed to be independent drawings from a N (μ

x
, �xx ) distribution. The

name “structural” comes from the fact that these models describe the structure of the specified
relationship between the random variables x and Y .

3 The Linear ME Model with Normal Errors and True Values

3.1 The Simple Linear ME Model

For illustrative purposes, we will begin with the simple linear ME model, which contains one
dependent and one independent variable and has normally distributed model error. Consider the
model defined by

Yi = β0 + β1xi + ei (6)

Xi = xi + ui , (7)

where i = 1, 2, . . . , n, ei are independent N(0, σ ee) and may potentially be a combination of
model and measurement error, and ui is a N(0, σ uu) random variable. So, at this point, we have
the following assumptions:⎡⎢⎣xi

ei

ui

⎤⎥⎦ ∼i id N

⎛⎜⎝
⎡⎢⎣μx

0

0

⎤⎥⎦ ,

⎡⎢⎣σxx σxe σxu

σxe σee σeu

σxu σeu σuu

⎤⎥⎦
⎞⎟⎠ , (8)

where ∼i id means “independently and identically distributed” and N means “normally” dis-
tributed. For some estimation purposes, it may be assumed that xi , ei and ui are independent for
all i. When there is no measurement error (i.e. the classical regression model), it is well known
that the least squares estimator of β1 is

β̂1 =
[

n∑
i=1

(xi − x)2

]−1 n∑
i=1

(xi − x)(Yi − Y ).

This estimator is also the maximum likelihood estimator and is unbiased for β1 in both the
functional and structural models.

In addition to the assumptions in (8) that the (x1, x2, . . . , xn) in Equations (6) and (7) are
random (i.e. they are drawn from a N(μx , σ xx) distribution) we may in some applications also
assume that xi , ei , and ui are independent for all i. Then we have that the vector

(xi , ei , ui )
′ ∼i id N

[
(μx , 0, 0)′, diag(σxx , σee, σuu)

]
, (9)
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where diag() represents a diagonal matrix with the given elements on the diagonal. Then the
vector (Yi , Xi )

′, where Yi is defined by Equation (6) and Xi is defined by Equation (7), has a
bivariate normal distribution with mean vector E{(Yi , Xi )

′} = (μY , μX ) ′ = (β0 + β1 μx , μx ) ′
and variance–covariance matrix

Var{(Yi , Xi )
′} =

[
σY Y σXY

σXY σX X

]
=

[
β2

1σxx + σee β1σxx

β1σxx σxx + σuu

]
.

3.2 Non-Identifiability and Asymptotic Bias of the OLS Estimator

Under the model defined by Equations (6) and (7) and under the assumptions stated in (9),
using the observed variables, one might naively estimate the regression coefficient, β1, as

β̂1,O L S =
[

n∑
i=1

(Xi − X )2

]−1 n∑
i=1

(Xi − X )(Yi − Y ). (10)

By the properties of the bivariate normal distribution, this naive estimator has expected value
E{β̂1,O L S} = σ−1

X XσXY = β1(σxx + σuu)−1σxx . One can see that, because the denominator is
inflated by σ uu, the least squares regression coefficient is biased towards zero, and that the bias
does not vanish with increasing sample size. It is important to note that the key assumptions used
to derive the properties of this estimator were that the measurement error, ui , was independent
of both the true values, xi , and the model errors, ei . This bias towards zero in the regression
coefficient is also referred to as attenuation of the coefficient toward zero. The ratio κxx =
σ−1

XX σ xx, which defines the degree of attenuation, is known as the reliability ratio, and measures
the reliability of X as a measurement of x. Note that the ratio ranges from zero to 1.0 with larger
values indicating greater reliability of measurement.

Another important concept that we will discuss is that of identifiability of a model. Fuller
(1987, pp. 9–10) provides the following definition of identifiability: “Let Z be the vector of
observable random variables and let FZ(a : θ ) be the distribution function of Z, evaluated at a,
for the given parameter θ in the parameter space 
. The parameter θ is identified if, for any θ1 ∈

 and θ2 ∈ 
, θ1 �= θ2 implies that FZ(a : θ1) �= FZ(a : θ2) for some a.” In addition, we say that if
the vector θ is identified, then the “model” is identified (Fuller, 1987, p. 10). By the term “model”,
we mean a specification of the variables and parameters of interest, the relationships among the
variables, and the assumptions about the stochastic properties of the random variables. For the
structural model defined by Equations (6) and (7) the vector of unknown parameters, θ , is given
by (μx , σ xx, σ ee, σ uu, β0, β1). Under the assumptions of the stated model, the observations (Yi , Xi )
have a bivariate normal distribution. Properties of the bivariate normal distribution state that it
will be completely characterized by the elements of its mean vector and variance–covariance
matrix. Thus the distribution of (Yi , Xi ) is characterized by the five parameters in its mean vector
and variance–covariance matrix, namely, (μY , μX , σ YY , σ XX , σ XY ). Because the model contains
six different parameters in the vector θ , the relationship between the elements of θ and the
parameters of the distribution of the observable random variables is not invertable. That is,
there are infinitely many sets of θ ’s that produce the same parameters of the distribution of the
observable variables. In other words, there exist multiple parametric configurations (i.e. different
θ ) that would lead to the same distribution of the observations. So by applying the definition
of identifiability, there exist vectors θ1 ∈ 
 and θ2 ∈ 
, such that θ1 �= θ2, but FZ(a : θ1) =
FZ(a : θ2), for all a. Thus, the model is not identified.

It is possible, however, that certain individual parameters are identifiable. For this model, μx

is identified since the mean of x is equal to the mean of X . In order to construct a consistent
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estimator for the entire vector θ , however, one must have additional information to identify the
model.

3.3 Additional Information Required for Identifiability

Known parameters
Identifying information could come in the form of known parameters, such as known

measurement error variance, σ uu, or reliability coefficient, κxx, for the measured value of xi .
If the reliability ratio, κxx = σ−1

XX σ xx, defined in Section 3.2, is assumed to be known, then the
unbiased estimator for the regression coefficient β1, in the structural model, is given by

β̂1 = κ−1
xx β̂1,O L S,

where β̂1,O L S is the least squares coefficient defined by Equation (10). Here, β̂1 is referred to as
the regression coefficient corrected for attenuation.

Now let us assume that σ uu is known. Under the given model, Zi = (Yi , Xi ) has a bivariate
normal distribution and therefore the sample mean Z = (Y , X ) and the sample covariances
(mYY , mXY , mXX ) form a set of sufficient statistics for parameter estimation. The sample
covariances are computed in their usual way, e.g. m XY = (n − 1)−1

∑n
i=1(Xi − X )(Yi − Y ).

Fuller (1987, p. 14) refers to mYY , mXY and mXX as the maximum likelihood estimators adjusted
for degrees of freedom. This is due to the fact that when there are no parametric restrictions
on the covariance matrix of Zi , n−1(n − 1)mZZ is the maximum likelihood estimator of the
covariance of Zi . When the parameter vector is identified, the maximum likelihood estimator
will be a function of the sufficient statistics. Recall that the population moments of (Yi , Xi ) under
the model defined by (6) and (7) satisfy

(σY Y , σXY , σX X ) = (
β2

1σxx + σee, β1σxx , σxx + σuu

)
(μY , μX ) = (β0 + β1μx , μx ). (11)

By substituting the sample estimators of the unknown population moments into the left-hand
side of Equation (11), one creates a system of equations that can be solved to obtain the parameter
estimates. Doing so results in the following estimators:

β̂1 = (m X X − σuu)−1m XY ,

(̂σxx , σ̂ee) = (m X X − σuu, mY Y − β̂1m XY ),

(μ̂x , β̂0) = (X , Y − β̂1 X ),

where σ̂xx and σ̂ee can be negative with positive probability. Knowing σ uu allows us to construct
a one-to-one mapping of the minimal sufficient statistic to the vector (μ̂x , σ̂xx , β̂0, β̂1, σ̂ee). In
order for these estimators to be proper estimators, they must lie in the parameter space. So σ̂xx

and σ̂ee must both be non-negative. These two estimators will both be positive as long as mXX −
σ uu > 0 and mY Y − β̂1m XY > 0, or equivalently, mYY (mXX − σ uu) − m2

XY > 0.

SIMEX and Regression Calibration
Two other methods for making use of this type of additional information are described next.

First, a method known as simulation-extrapolation, or SIMEX, was first introduced by Cook
& Stefanski (1994) and is also discussed in detail in Carroll et al. (1995). This method is
employed when there is some additional information available and is useful in the general
ME model (Carroll et al., 1995). The basic idea behind SIMEX is that in a simulation step,
additional independent measurement error is simulated and added to the original measured
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Figure 1. SIMEX Plot. A generic SIMEX plot showing the effect of measurement error of size (1 + λ)σ uu on parameter
estimates. Note that the SIMEX estimate occurs at λ = −1 and the Naive Estimate occurs at λ = 0.

values in order to create additional data sets with successively more variable values of the
independent variable. In the extrapolation step, the trend of the bias induced by the measurement
error versus the variance of the additional measurement error is determined and then the trend
is extrapolated back to the case of no measurement error to provide a nearly unbiased parameter
estimate.

The SIMEX procedure is easiest to understand under the simple linear ME model defined by
Equations (6)–(9). We still assume that σ uu is known. First additional, independent measurement
error with variance λmσ uu, where 0 = λ1 < λ2 < . . . < λM , is generated and added to the original
data. Cook & Stefanski (1994, p. 1317) recommend letting lambda range from zero to two and
in most of their examples they use a rather coarse grid, namely, λ ∈ {0, 0.5, 1, 1.5, 2}. So the total
measurement error in the m-th data set is (1 + λm)σ uu and the least squares estimator of the slope
parameter in the m-th data set, β̂1, m , would consistently estimate β1( σxx

σxx +(1+λm )σuu
). Finally, the

problem is thought of as a nonlinear regression problem with β̂1, m as the dependent variable and
λm as the independent variable, having a mean function of the form G(λ) = ( β1σxx

σxx +(1+λ)σuu
), λ ≥ 0,

and extrapolation back to λ = −1, the “no-measurement error” case, yields the parameter
estimate. See Figure 1 for a generic SIMEX plot.

A second general approach to incorporating additional identifying information into a mea-
surement error analysis was first introduced by Prentice (1982) for the proportional hazards
model and as a general approach by Carroll & Stefanski (1990). It is known as the regression
calibration method. This method is discussed in detail by Carroll et al. (1995). Regression
calibration, like SIMEX, cannot be implemented without some additional information. In fact,
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these should be viewed as methods of incorporating the additional information that allows
parameter identification.

The basic idea of regression calibration is to replace xi by an estimate of E(xi | Xi ) and
then perform a standard analysis. One drawback of this method is that estimating E(xi | Xi )
often requires information that is specific to the current problem only, and there is no general
methodology to estimate this quantity. In the simple linear ME model with known κxx or σ uu,
the regression calibration method produces the usual correction for attenuation. This is easily
seen with the present simple linear ME model under the current normality assumptions since
it is known that E(xi | Xi ) = μx + σ−1

XX σ xX (Xi − μx ). Note that X is an unbiased estimate of
μx and σ−1

XX σ xX = σ xx/(σ xx + σ uu) = κxx is known or can be estimated when κxx or σ uu is
known or estimated. So regression calibration, under the current model, amounts to needing to
estimate or have knowledge about κxx. The resulting estimator using the regression calibration
technique under the model defined by (6) and (7) and with assumptions defined in (9) with
σ uu known, for example, is β̂1 = (m X X − σuu)−1m XY = κ̂−1

xx β̂1,O L S . When κxx is known the
regression calibration estimator is β̂1 = κ−1

xx β̂1,O L S .
Often in the measurement error literature, it is discussed how to include error-free covariates

into the model. Using the notation from Carroll et al. (1995), we let Zi represent covariates
in the model, which are not contaminated by measurement error. Note that there are no such
error-free covariates in the simple linear ME model. The reason a brief discussion of such
covariates is given here is that much of the existing literature that specifically implements
regression calibration includes such error-free covariates. The extension to include such terms
in a regression calibration setting, for example, is straight forward. In the presence of error-free
covariates, regression calibration replaces xi by an estimate of E(xi | Zi , Xi ), rather than just
an estimate of E(xi | Xi ), and then runs the standard analysis. Other results from above remain
substantively unchanged when error-free terms are included in the model. For example, the bias
term in the slope parameter would be denoted as (σ xx|z + σ uu)−1σ xx|z = (σ XX |z)−1σ xx|z where
σ XX |z is the residual variance of the regression of xi on Zi and σ xx|z is the residual variance of the
regression of Xi on Zi (see, for example, Carroll et al., 1995, p. 25). If such error-free covariates
exist in a measurement error model, the parameter estimates for their regression coefficients, in
general, are biased as well.

Repeated measures of true values
Independent, repeated measures of the truth allows for an independent estimate of σ uu in the

simple linear ME model. Suppose there are two replicate observations, then we would have Xi1 =
xi + ui1 and Xi2 = xi + ui2. So (Xi1 − Xi2) = (ui1 − ui2) and S2

X1−X2
= V̂ar(ui1 − ui2) = 2σ̂uu .

Therefore σ̂uu = S2
X1−X2

/2. Then a consistent estimate of κxx, the reliability ratio, is κ̂xx =
(m X X − σ̂uu)/m X X , since V̂ar(X ) = V̂ar(x) + V̂ar(u) under assumption (9), and the resulting
estimator, derived from the method of moments, is β̂1,O L S /̂κxx , the bias-adjusted version of
β̂1,O L S . As in the case with known measurement error, this estimator is also the regression
calibration estimator. Usually in cases with repeated observations, the replicate means may
be thought of as a better measure of x than a single observation (Carroll et al., 1995, p. 13).
Therefore these replicate means are used in place of the single observation throughout the
analysis when repeated measures are available, i.e. rewrite the model as Yi = β0 + β1 xi + ei and
Xi . = xi + ui ..

With an independent estimate of σ uu, Carroll et al. (1995) state that either SIMEX or the
regression calibration technique can be used to develop estimators for β1. The regression
calibration estimator is given there as β̂1,O L Sm X X/(m X X − σ̂uu) = κ̂−1

xx β̂1,O L S .
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Instrumental variables
Assume, again, that the model defined by (6), (7) and (8), the simple linear ME model, holds.

In this context, the definition of an instrumental variable (IV), given by Carroll et al. (1995,
p. 107), is a variable that is correlated with the true variable, xi , but is uncorrelated with the
measurement error, ui , and the model error, ei . One possible choice of an instrumental variable
is a second measure of xi from a conditionally independent (given xi ) method of measurement
(see, for example, Carter, 1981), or similarly from a second response variable that is correlated
to xi but independent both of ui and ei . Greenland (2000) provides a nice introduction and
overview of IV’s for a nonstatistical audience by discussing their role in epidemiological studies.
We will denote the instrumental variable as Wi . Fuller (1987, p. 51) provides a formal definition.
According to his definition, under the model defined by (6) and (7), Wi is an instrumental
variable if the following two conditions are met:

(i) E

{
n−1

n∑
i=1

(Wi − W )(ei , ui )

}
= (0, 0)

(i i) E

{
n−1

n∑
i=1

(Wi − W )xi

}
�= 0 (12)

where W = n−1
∑n

i=1 Wi . For convenience, let us express the fact that xi and Wi are related
by using a parametric expression. To do this, we will denote the parameters of the population
regression of xi on Wi by π2, for the slope, and π1, for the intercept. Using these parameters we
can write xi = π1 + π2Wi + ri , i = 1, 2, . . . , n. Here, ri represents the failure of xi to be perfectly
linearly related to Wi , or simply, the model error in this regression equation. By the least squares
regression method used to construct this equation, ri has zero correlation with Wi , i.e. the “error”
term is independent of the “independent” variable. By substituting the fact that Xi = xi + ui ,
we have Xi = π1 + π2Wi + (ri + ui ) = π1 + π2Wi + ai . Note that E{∑n

i=1 Wi ai } = 0 by the
assumption E{n−1

∑n
i=1(Wi − W )ui } = 0.

Under the model defined by (6), (7) and (8) and in the presence of an instrumental variable,
there are now 12 independent unknown parameters, namely β0, β1, μW , π1, π2, σ xx, σ xe, σ ee,
σ xu , σ eu , σ uu, and σ WW . Here μx = π1 + π2μW and note that we do not assume that σ eu or
σ xu is zero. Assuming that the IV is normally distributed, along with the assumptions from
Equation (8), we have that the vector of the observed data, (Yi , Xi , Wi ), is normally distributed
with mean (μY , μX , μW ) = (β0 + β1π1 + β1π2μW , π1 + π2μW , μW ) and variance–covariance
matrix ⎡⎢⎣ β2

1σxx + 2β1σxe + σee β1σxx + σxe + β1σxu + σeu β1π2σW W

β1σxx + σxe + β1σxu + σeu σxx + 2σxu + σuu π2σW W

β1π2σW W π2σW W σW W

⎤⎥⎦ .

We assume σ xW = π2σ WW �= 0. There are 9 sample statistics that make up the set of minimal
sufficient statistics for a sample of n observations. They are from the sample mean vector and
sample variance–covariance matrix of (Yi , Xi , Wi ). An estimator for β1 can then be developed by
noting that the ratio of covariances σ−1

XWσ YW = (π2σ WW )−1 β1 π2 σ WW = β1. So, we estimate
β0 and β1 by

β̂1 = m−1
X W mY W , (13)

β̂0 = Y − β̂1 X , (14)
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where Y and X are the sample means and mXW and mYW are the sample covariances. Under
the stated assumptions, β̂0 and β̂1 are the maximum likelihood estimators as well as consistent
estimators, since the sample moments are consistent estimators of the population moments. Note,
however, that due to the number of minimal sufficient statistics we cannot hope to estimate all
12 population parameters, unless additional assumptions are made.

Fuller (1987, p. 53) provides a theorem and proof concerning the asymptotics of the estimators
given in (13) and (14). The theorem does not depend on the normality assumption, but does
require, along with finite fourth moments, that σ We and σ Wu are zero, σ xW �= 0, and E{(Wi −
μW )2 v2

i } = σ WW σ vv and E{v2
i (Wi − μW )} = 0, where vi = ei − β1ui . If the stated conditions

hold,

n1/2

[
β̂0 − β0

β̂1 − β1

]
→L N

([
0

0

]
,

[
σvv + μ2

x V22 −μx V22

−μx V22 V22

])
,

where V22 = σ−2
xWσ WWσ vv . The reason for the assumptions of zero covariance between Wi and

the error terms, ei and ui , and the non-zero covariance between xi and Wi is to allow for the
estimation of β1 when measurement error and xi are correlated.

Carter & Fuller (1980) discuss instrumental variable estimation and its properties in the simple
ME model with slightly more restrictive assumptions. The reason for their more restrictive
assumptions, as alluded to above, is to allow for the estimation of all unknown parameters in the
model. They assumed that (xi , ei , ui , Wi )

′, i = 1, 2, . . . n, are distributed as independent drawings
from a multivariate normal distribution with a zero mean vector and a covariance matrix, �,
given by

� =

⎡⎢⎢⎢⎣
σxx 0 0 σxW

0 σee σeu 0

0 σeu σuu 0

σxW 0 0 σW W

⎤⎥⎥⎥⎦ .

They derived restricted maximum likelihood estimators for the models where the error
covariance, σ eu , is known to be zero and where σ eu is unknown. The consistency of the restricted
maximum likelihood estimator of β1 was also shown and it’s asymptotic distribution derived.
See Carter (1981) for details of similar work under these assumptions.

Recall in regression calibration an estimate of E(xi | Xi ) is used to replace xi and then a
standard analysis can be run. In the presence of an unbiased IV Wi , (i.e. where E(xi | Xi ) =
E(Wi | Xi ), which is the case, for example, when xi = π0 + π1Wi + ri and π0 = 0, π1 = 1)
Carroll et al. (1995) point out that Ê(Wi | Xi ) is obtained from the regression of Wi on xi and is
an unbiased estimate of E(xi | Xi ). When no such unbiased instrument exists, which is usually
the case, and one wishes to estimate E(xi | Xi ), recall under normality that this expectation is
μx + σ−1

XX σ xX (Xi −μx ), where μx is estimated unbiasedly by X and one is left with the estimation
of σ−1

XX σ xX = κxx. When an IV is present, it can be shown that an estimate of κxx may be obtained
by regressing W on X . The resulting estimator is κ̂xx = m XY m X W (mY W m X X )−1, which can be
seen from the variance–covariance matrix of the observed data since σ XYσ XW (σ YWσ XX )−1 =
β1σ xxπ2σ WW (β1π2σ WW (σ xx + σ uu))−1 = σ xx(σ xx + σ uu)−1, when σ xe, σ xu , and σ eu are zero.
In the presence of Zi covariates measured without error, the extension is again straightforward.
In such cases, for example, an estimate of E(xi | Zi , Xi ) may be used to replace xi prior to running
the analysis.

SIMEX estimators rely on knowing or estimating the measurement error variance and using this
to generate data sets with successively larger measurement error variances and using these new
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data sets then to extrapolate back to the no measurement error case. Because the SIMEX method
uses measurement error variance as the identifying piece of information, SIMEX estimators
could be used with instrumental variables by using the IV to estimate σ uu and then using σ̂uu in
the SIMEX procedure.

3.4 Extension to the Multivariable Linear ME Model

Building up in complexity, the model that follows the simple linear ME model is the
multivariable linear ME model. The extension to the multivariable linear ME model is straight-
forward and thus only briefly mentioned here. A multivariable linear ME model contains
more than one x variable and hence writing the multivariable model amounts to using matrix
notation to extend the notation of the simple linear ME model. Using standard matrix notation
(e.g. underlines indicating column vectors), in the presence of multiple independent variables
measured with error, Equation (6) may be written as Yi = β0 + x ′

iβ1
+ ei and Equation (7)

becomes Xi = xi + ui . Other concepts discussed above in the context of the simple linear
ME model extend naturally as well. For example, the bias in the naive ordinary least squares
estimator of the coefficient vector is expressed as (�xx + �uu)−1�xx, where � would represent
the appropriate variance–covariance matrix of the subscripted variable. Another illustration of the
extension in matrix notation is seen by providing the IV estimator of the vector of parameters:
β̂

1
= (W X ′)−1(W Y ), where capital letters represent appropriate design matrices of observed

random variables. More details on the multivariable linear ME model being expressed in matrix
notation may be found in references such as Fuller (1980, 1987).

3.5 Numerical Illustration

We give a numerical example that illustrates the correction for attenuation in the simple linear
ME model. We present an example that uses an IV as the identifying information. The data
presented in Table 1 are measurements of blood glucose taken from three different measurement
techniques on 16 “normal” patients. Of the three measurement techniques, one is a manual
method, which is thought to be relatively accurate, but is also expensive. The other two techniques,
which are less expensive are done by machines, labelled as machine A and machine B. The goal
of such a study may be to determine which of the two less expensive techniques, machine A or
B, could be used to measure blood glucose.

Assume the model defined in (6), (7) and (8), holds, and that further there exists a normally
distributed IV, Wi as defined in Subsection 3.3. Let Yi be the measurement on the i-th patient taken
by machine B, Xi be the measurement on the i-th patient taken by the manual method, and Wi be
the measurement on the i-th patient taken by machine A. Here, machine A may be considered an
IV since it provides a measure of xi taken from a conditionally independent method. True blood
glucose is the variable contaminated by measurement error and the manual method provides an
unbiased measure of it. Normal probability plots of the data reveal no obvious violations to the
assumptions of normality of the three observed variables. We further assume that σ xe = σ xu =
σ eu = 0 so that all remaining model parameters may be estimated.

Using the method of IV estimation discussed in Subsection 3.3 and the maximum likelihood
estimates of the covariances, we have β̂1 = 376.26/440.91 = 0.853 with estimated standard
error 0.228. Computations of the standard error are done similarly to that given by Carter
(1981). To illustrate that an attenuation towards zero has been corrected, if we run the regression
of the measurements of machine B on the measurements of the manual method and ignore
the measurement error, the naive ordinary least squares estimate of the slope parameter is
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Table 1.
Three Measures of Blood Glucose.

Patient Manual Machine A Machine B

1 99 100 94
2 118 118 111
3 94 92 90
4 98 102 96
5 71 70 67
6 96 96 92
7 133 132 125
8 86 88 86
9 137 132 127
10 99 100 96
11 153 150 140
12 116 116 112
13 74 80 78
14 108 108 102
15 88 90 85
16 117 116 110

β̂1,O L S =0.847. To address the over-all main goal of the study that investigates a comparison of
the less expensive machines, one would perform a formal analysis to determine, for example,
if the error variance of machine A is less than the error variance of machine B. This can be
done by regressing the IV on xi , as opposed to regressing xi on the IV, as was demonstrated
in Subsection 3.3, and then estimating the variance of the error term of that linear regression.
When all parameters are estimated by making use of the IV defined above as the identifying
information, it can be shown that the estimates of these variances are 0.27 for machine A and
1.13 for machine B. One, of course, would conduct a formal test of hypotheses on these variances
prior to stating the formal conclusion that machine A should be used to measure blood glucose
over machine B.

4 Nonlinear ME Models

In this section we discuss ME models that are nonlinear in either xi or β. Fuller (1987)
says that it is conventional to consider ME models to be nonlinear only when the β’s enter the
mean function in a nonlinear manner or when the mean function is nonlinear in the explanatory
variables measured with error. Let the model be defined by

yi = h(xi ; β) + qi , (15)

Yi = yi + wi , (16)

Xi = xi + ui , (17)

where i = 1, 2, . . . , n and h(.) is a real valued continuous, nonlinear function. We may combine
Equations (15) and (16) into one equation giving Yi = h(xi ; β) + ei , where ei is the sum of
both measurement error, wi , and random equation error, qi , if they exist, and ε′

i = (ei , u′
i ) are

independent random vectors having mean 0 and covariance matrix �εε. Often it is assumed that
the errors are normally distributed. We will primarily be interested in estimating the unknown
vector β. Fuller (1987, p. 226) provides a formal definition of a nonlinear ME model stating the
model defined by (15), (16) and (17) is nonlinear if h(x ; β) is nonlinear in x when β is fixed or
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if h(x ; β) is nonlinear in β when x is fixed. We will once again focus mainly on the structural
case where the xi are assumed to be random with mean E(xi ) = μ

x
and variance–covariance

matrix �xx. If xi are assumed to be independent of the errors, then we have⎡⎣ xi

ei

ui

⎤⎦ ∼ F

⎛⎜⎝
⎡⎣μ

x

0
0

⎤⎦ ,

⎡⎢⎣�xx 0 0

0 σee �eu

0 �′
eu �uu

⎤⎥⎦
⎞⎟⎠ , (18)

where F might be any distribution assumed for the model. In the next subsection, we discuss the
case where F is a multivariate normal distribution.

Not much research has been done on fully general forms of the nonlinear ME model and
thus presents an area open for further research. Results on specific forms and under certain
assumptions of nonlinear ME models may be found, for example, in Carroll et al. (1995).

4.1 Normal Theory Models: Non-Identifiability and Bias

This class of ME models are those whose error distributions are independent of their mean
function. Griliches & Ringstad (1970, p. 370) showed that the bias in the classical least squares
estimators is exacerbated when the regression function is nonlinear. Their results are for a specific
nonlinear model, but they state that their work “can be viewed, however, as an approximation to
the estimation of more general nonlinear models”. They assumed additive measurement error,
X = x + u, with u and x normally distributed, E(u) = 0, E(xu) = 0, and parameterized the model
such that σ XX = 1. The authors denoted σ uu by λ. Their model was Y = β0 + β1x + β2x2 +
e, nonlinear in the random variable x, with E(e) = E(xe) = E(x2e) = 0, and all variables were
univariate. They showed that the naive ordinary least squares estimate of β1, β̂1, is biased towards
zero by a factor of (1 − λ), where in their notation, λ was the fraction of error variance in the
total variance in the observed variable, i.e. σ uu. The problem became even more serious for the
nonlinear terms, in that the naive ordinary least squares estimate of β2, β̂2, was biased towards
zero by the square of the bias factor of the linear term. As in the linear ME model, the naive
estimator would result from least squares estimation using the observed X in place of the latent,
unobserved x .

In the general model, the naive approach is to fit the model Yi = h(Xi ; β) + ei by classical
least squares or by a semi-parametric or non-parametric fitting method. Gleser (1990) improves
upon this naive estimator in a paper from the proceedings of the 1989 AMS-IMS-SIAM Joint
Summer Research Conference. He works under the assumptions that E(e) = E(u) = 0 and that
e, u, and x are mutually statistically independent. In fitting the model, he takes independent and
identically distributed (i.i.d.) observations, (Yi , Xi ), on (Y , X ) and therefore (xi , ei , ui ) are i.i.d.
each with the same distribution as (x, e, u). In his words, the naive approach “in general, leads to
inconsistent estimators with a high degree of asymptotic bias” (Gleser 1990, p. 99). He points
out that consistent estimators have been obtained in special cases, but the general problem of
finding consistent and efficient estimators is still unsolved.

4.2 Normal Theory Models: Additional Information Required

Known parameters
Gleser (1990) discusses solutions to the problem of parameter estimation where identifying

parameters are assumed to be known, a case not realistic in application, and also the case where
they are estimated from the data. His solution is to replace x with the best linear predictor, x̂ , of
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x given X . This amounts to the regression calibration method. He points out that when μ
x
, �xx ,

and �uu are known, x and u are independent, and X is normally distributed

E(x | X ) = X� + μ
x
(Ik − �), (19)

where � = (�xx + �uu)−1�xx is the reliability matrix, I is the k × k identity matrix, and k is the
dimension of X . Of course, in practice, some of these quantities may not be known. The equality
in (19) does not hold when X is not normally distributed, but the right-hand side of Equation (19)
is still the best linear (in X ) predictor of x under mean square error (Gleser, 1990). So when these
parameters are known, Gleser suggests fitting the model Y = h(X� + μ

x
(Ik − �); β) + e =

h(E(x | X ); β) + e.
An iterative estimation procedure for coefficients of nonlinear “functional” relations was

proposed by Wolter & Fuller (1982) and assumes a known covariance matrix of (ei , u′
i ), i.e.

�eu , or minimally its order is known. Their estimator is a modification of the maximum
likelihood estimator for the nonlinear model with normal measurement error. Assuming (ei , u′

i )
are independent normal (0, �eu) random variables, the maximum likelihood estimators are those
values of x and β that minimize the sum of squares

n∑
i=1

q(β, xi ; Yi , Xi ) =
n∑

i=1

{Yi − h(xi ; β), Xi − xi }�−1
eu {Yi − h(xi ; β), Xi − xi }′.

Under their nonlinear model it is not possible to derive an explicit expression for the MLE of
β but Wolter and Fuller do develop two estimators under slightly different assumptions of the
order of �eu and provide theorems for the limiting distributions of these iteratively defined
estimators.

Repeated measures
In Gleser’s solution mentioned above, when μ

x
and/or � are unknown, consistent estimators

μ̂ and �̂ can be used as substitutes. Such consistent estimators can be obtained from the data,
X1, . . . , Xn , and information from prior calibration studies on (x, X ) (Gleser, 1990). Using
repeated measures, an estimate of �uu can be obtained as previously mentioned in the sections on
repeated measures under the linear ME models, and �̂uu can then be used to estimate � by �̂ =
S−1

X X (SX X − �̂uu). In such cases, the model Y = h (̂x ; β) + e, where x̂ = X�̂ + μ̂
x
(Ik − �̂),

should be fitted to estimate β. Gleser (1990) also points out that a better substitution for h(x ; β)
may be obtained from a Taylor series expansion of h(x ; β) about x̂ . He proved consistency and
asymptotic distributional properties for his estimator.

Instrumental variables
In addition to the model defined by (15), (16) and (17), assume that there are observations

available on an instrumental variable, W i . In nonlinear models, IV’s must still satisfy the same
requirements as those stated in Subsection 3.3 for the simple linear ME model. That is, IV’s
must be correlated with xi , independent of the measurement error in xi , i.e. independent of ui ,
and must also be surrogate, i.e. W i must be independent of Yi given xi (which is equivalent to
saying independent of model error, qi ).

Not much research has been done on general forms of structural nonlinear ME models that
use IV’s as the identifying information. In fact, in a recent paper, Carroll et al. (2004, p. 736)
mention that many of the results in IV estimation methods “are applicable either only for special
parametric models or for general parametric models that rely on small-error approximations
known to fail for some nonlinear and nonparamteric models”.
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Buzas (1997) does assume a structural model in using a regression calibration approach with
IV’s to construct unbiased score equations in nonlinear measurement error models. His method,
however, requires the use of an unbiased estimate of the true, unknown variable.

Carroll et al. (2004) use Bayesian Markov Chain Monte Carlo to arrive at asymptotically
efficient estimators for nonlinear and non-parametric regression models. Their approach uses
a Bayesian penalized spline, or P-spline, fitting method similar to that of Berry et al. (2002).
Details of P-spline fitting are not discussed here, but can be found in Eilers & Marx (1996).
In their solution, Carroll et al. (2004) present a method for estimating the measurement error
variance that makes use of IV’s that are linearly related to the unknown, true values. This estimator
for the measurement error variance makes use of a root-n-consistent estimator of the variance of
the unobserved true measurements that, in turn, is based on the covariance between the IV and
the error contaminated observations. They also provide theorems that state identification results
for nonlinear and non-parametric models under relatively weak conditions, in the presence
of such IV’s. They present a polynomial regression case which, in their words, “illustrate(s)
how difficult the estimation problem of IV for nonlinear models can be” (Carroll et al., 2004,
p. 737).
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Résumé

Cet article donne une introduction et une vue d’ensemble au modèle souvent sous-utilisé d’erreur de mesure. Le but est
de fournir un résumé simple des problèmes qui surgissent de l’erreur de mesure et des solutions qui ont été proposées.
Nous commençons par décrire comment les modèles d’erreur de mesure se produisent dans des situations réelles.
Alors nous continuons de définir le modèle d’erreur de mesure, présentant au commencement la forme multivariable
du modèle, et puis, commençant par la forme la plus simple du modèle discutez complètement ses dispositifs et
solutions à l’en raison présenté par problèmes de l’erreur de mesure. Nous discutons des formes dimensionnelles et
plus avançées plus élevées du modèle et donnons une brève illustration numérique.
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