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This paper presents an original adaptive slidingmode control strategy for a class of nonlinear systems on the basis of uncertainty and
disturbance estimator.The nonlinear systems can be with parametric uncertainties as well as unmatched uncertainties and external
disturbances.The novel adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly,
discontinuous sign function does not exist in the proposed adaptive sliding mode controller, and it is not replaced by saturation
function or similar approximation functions as well. Therefore, chattering is avoided in essence, and the chattering avoidance is
not at the cost of reducing the robustness of the closed-loop systems. Secondly, the uncertainties do not need to satisfy matching
condition and the bounds of uncertainties are not required to be unknown. Thirdly, it is proved that the closed-loop systems have
robustness to parameter uncertainties as well as unmatched model uncertainties and external disturbances. The robust stability is
analyzed from a second-order linear time invariant system to a nonlinear system gradually. Simulation on a pendulum system with
motor dynamics verifies the effectiveness of the proposed method.

1. Introduction

Sliding mode control (SMC) is one of distinguished control
methods because of its strong external disturbance rejection
and parameter variations insensibility performance when
matching condition holds. Since 1950s, SMC has attracted
many attentions both in theory study and application area;
see [1–7].

As known to all, one of the main obstacles for application
of SMC is chattering, and when discontinuous term exists
in control signal, chattering cannot avoid essentially. Many
researches have proposed lots of methods to reduce or
eliminate chattering. Reference [2] presented a chattering-
free second-order sliding mode control method for a class
of multi-input systems. While [3] analyzed the chattering
phenomenon in systems with second-order sliding modes.
Since the amplitude of chattering is proportional to the dis-
continuity magnitude in control signal, adaptivity principles
are employed to reduce the effect of chattering. Based on
the evaluations of the equivalent control by a low-pass filter,
[7] introduced an adaptation methodology for searching the
minimum possible value of control. Reference [8] discussed

sliding order and proposed “super-twist” controller, [9] pro-
posed an adaptive sliding mode control for discrete-time sys-
tems. Reference [10] developed and discussed different SMC
algorithms with adaptive process to tune control gain. In [11],
the control gain is of varying magnitude according to an
adaptation process, but the adaptation process is terminated
once sliding mode starts.

In addition to chattering, some other disadvantages of
SMC include that the bounds of uncertainty and external dis-
turbances are required to be known usually and SMCmerely
guarantees complete robustness to uncertainties and external
disturbances which satisfy matching condition. Hence, some
researchers endeavor to improve SMC from these aspects.
Reference [12] proposed a dynamical approach of slid-
ing variable formulation, which can deal with unmatched
uncertainties for a class of single-input linear systems, to
achieve the asymptotical stability. Based on the thought of
combining adaptive control and SMC, [13] presented an
adaptive robust control of multi-input multioutput non-
linear systems transformable to two semistrict feedback
forms. Reference [14] applied multiple-surface and adaptive
backstepping design technique to a class of single-input
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single-output nonlinear systems and achieved asymptotical
stability for the application to a single-link flexible-joint
robot plant. Reference [15] introduced predictive control stra-
tegy into the design of SMC, and strong robustness to
matched/unmatched uncertainties was possessed for a class
of discrete time nonlinear uncertain coupled systems, on the
condition that the change rate of uncertainty is bounded.
Reference [16] proposed a robust control algorithm with
slidingmode for stabilization of a three-axis stabilized flexible
spacecraft in the presence of parametric uncertainty, external
disturbances, and control input nonlinearity/dead zone. Ref-
erence [17] discussed an adaptive sliding mode control for a
piezo-actuated stage. Reference [18] considered the develop-
ment of constructive sliding mode control strategies based
on measured output information only for linear, time-delay
systems with bounded disturbances that are not necessarily
matched. Reference [19] combined immersion and invariance
(I&I) adaptive scheme with SMC, in order to control a
class of nonlinear systems with parametric uncertainties
and unmatched external disturbance, while retaining discon-
tinuous term in controller and requiring the bound of uncer-
tainties. In [20], a controller design method based on uncer-
tainty and disturbance estimator (UDE) was proposed for
linear time invariant (LTI) systems. In [21], the results of
[20] were extended to SMC; however, [21] only considered a
class of single input single output linear plants with matched
uncertainties.

So far, there is little adaptive SMC methods that can
complete the following goals at the same time: (i) to avoid
chattering in essence, (ii) to have strong robustness to param-
eter uncertainties as well as unmatched model uncertainties
and external disturbances, and (iii) to avoid knowing the
bounds of uncertainties. Besides, on one hand, a common
way to eliminate chattering is replacing sign function sgn(⋅)
in the slidingmode controller with saturation function sat(⋅)
or similar approximation approaches. However, such a way is
at the cost of reducing the robustness of closed-loop systems.
On the other hand, adaptive control methods often consider
parameter uncertainties while SMC methods usually only
have strong robustness to matched uncertainties. Therefore,
the study of parameter uncertainties, as well as unmatched
model uncertainties and external disturbances at the same
time, is not a trivial thing. When the bounds of uncertainties
are unknown, the difficulty of the closed-loop system design
is increased further.

The purpose of this paper is to eliminate chattering fun-
damentally and to deal with parameter uncertainties as well
as unmatched model uncertainties and external disturbances
without requiring to know the bound of uncertainties.

In order to realize the objective, a novel uncertainty and
disturbance estimator based adaptive sliding mode control
(UDE-based ASMC) method is presented to avoid chatter-
ing in essence. According to I&I adaptive control strategy,
parameter uncertainties can be handled well, and a con-
troller component which acts as an equivalent control is
obtained. While applying uncertainty and disturbance esti-
mator (UDE), another controller component which is used
to deal with model uncertainties and external disturbances,
is constructed.This controller component is continuous, sign

function sgn(⋅) does not appear, and no saturation function
sat(⋅) or similar approximation approaches are employed;
therefore, the notorious chattering is avoided essentially and
it is not at the cost of reducing the robustness of closed-loop
systems. Then by adding these two controller components
together, the expected UDE-based adaptive sliding mode
controller is obtained. The robust stability is analyzed from
a second-order linear time invariant system to a nonlinear
system gradually on the basis of Lyapunov stability theory.

The remainder of this paper is organized as follows. In
Section 2, for a second-order LTI system, the basic ideology
of the UDE-based ASMC is deduced, including the design of
sliding mode, the constructing of parameter estimation law,
and the obtaining of adaptive sliding mode controller. Then
for a class of multi-input multioutput nonlinear systems, the
corresponding UDE-based ASMC algorithm and robustness
analysis are given in Section 3. Simulation on a pendulum
system with motor dynamics is illustrated in Section 4.
Section 5 draws the conclusions of the paper.

2. Adaptive Sliding Mode Control for
Second-Order Linear Time Invariant System

First of all, consider the following second-order linear time
invariant (LTI) system:
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where 𝑥
1

∈ R and 𝑥
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∈ R are states, 𝑢 ∈ R is input, 𝜃
is unknown constant parameter, Δ𝑑 denotes the unknown
model uncertainties and external disturbances, and 𝛼
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12

̸= 0. Assume the change
rate of Δ𝑑 is bounded; namely, Δ̇𝑑 < 𝐷, where 𝐷 is a known
constant.

2.1. Sliding Mode Design. Define a sliding surface,
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On one hand, one can see from (1a) that there exists
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On the other hand, the control objective is to realize that
the equilibrium 𝑥

1
= 0, 𝑥

2
= 0 is stable.

Hence, let 𝜃 = 𝜃 + 𝛽(𝑥
1
) be the estimate of unknown

parameter 𝜃 and
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)) − 𝜃 = 𝜃 − 𝜃, (4)

where 𝑧 ∈ R is parameter estimation error, 𝜃 and 𝛽(𝑥
1
)

are auxiliary variable and auxiliary function, respectively, and
𝛽(𝑥
1
) : R → R is a smooth function.
Thus, to construct 𝑥
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where 𝑘 is a designable parameter.
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2.2. Parameter Estimation Law Design. According to I&I
adaptive control approach, it is suitable to suppose a param-
eter estimation law as

̇̂
𝜃 = 𝜔 (𝑥, 𝜃) , (6)

where 𝑥 is state vector. For systems (1a) and (1b), 𝑥 = [𝑥
1
,

𝑥
2
]
T.
Since 𝜃 is constant parameter, the derivative of 𝑧 is
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Due to that fact that (4) can be rewritten into

𝜃 = 𝜃 − 𝑧, (8)

substituting (1a), (6), and (8) into (7) yields
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Now, one can choose parameter estimation law as
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�̇� = −
𝜕𝛽 (𝑥
1
)

𝜕𝑥
1

𝛼
12
𝑥
1
𝑧. (11)

2.3. Adaptive Sliding Mode Control Law Design. Let the
required control be expressed as
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Select Lyapunov function as
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and then

�̇� = 𝑥
1
�̇�
1
+ 𝜎�̇� + 𝑧�̇�. (14)

Because of (2), (4), and (5), (1a) can be rewritten into

�̇�
1
= −𝑘𝑥

1
+ 𝛼
12

[𝑥
2
−

1

𝛼
12

(−𝛼
11

− 𝑘) 𝑥
1
− 𝑥
1
𝜃]

− 𝛼
12
𝑥
1
(𝜃 − 𝜃)

= −𝑘𝑥
1
+ 𝛼
12

(𝑥
2
− 𝑥
2𝑑
) − 𝛼
12
𝑥
1
(𝜃 − 𝜃)

= −𝑘𝑥
1
+ 𝛼
12
𝜎 − 𝛼
12
𝑥
1
𝑧.

(15)
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where 𝜆 > 0 is a designable parameter.
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Here, we select
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According to Lyapunov stability theory, the derivative of
the Lyapunov function should be negative in order to guaran-
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Because 𝑢𝑑𝑒 is the estimate of Δ𝑑, there exists

𝑢𝑑𝑒 ≈ Δ𝑑; (34)
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thus,

𝑢
𝑛
≈ −Δ𝑑; (35)

therefore, (26) can be simplified to

�̇� ≤ − (𝑘 −
1

2
) 𝑥
2

1
− (𝛾 − 1) 𝛼

2

12
𝑥
2

1
𝑧
2

− (𝜆 −
1

2
)(

𝜕𝑥
2𝑑

𝜕𝑥
1

)

2

𝜎
2
.

(36)

Hence, �̇� ≤ 0 will be held, if design parameters are chosen as

𝑘 >
1

2
,

𝛾 > 1,

𝜆 >
1

2
,

𝜍 > 0.

(37)

Up to now, adaptive sliding mode control law for second-
order LTI system is obtained:

𝑢 = −𝜆(
𝜕𝑥
2𝑑

𝜕𝑥
1

)

2

𝜎 − Φ(𝑥
1
, 𝑥
2
, 𝜃,

̇̂
𝜃) − 𝛼

12
𝑥
1

+ 𝜍𝜎L
−1

{
𝐺
𝑓
(𝑠)

1 − 𝐺
𝑓
(𝑠)

} .

(38)

Theorem 1. For second-order LTI systems (1a) and (1b), the
equilibrium [𝑥∗

1
, 𝜎∗]

T
= [0, 0]

T is globally asymptotically
stable under the adaptive sliding mode controller (38), with
adaptive linear sliding modes (2), (5), and parameter estima-
tion laws (6), (10), and (21), and design parameters 𝑘, 𝛾, 𝜆, 𝜍

satisfy (37).

Proof. According to the above derivation process, the results
can be directly obtained from Barbashin-Krasovskii theorem
[22].

Remark 2. The above result is based on the premise that (34)
holds. Here, we analyse the accuracy of estimation briefly.
Generally speaking, the low-pass filter 𝐺

𝑓
(𝑠) can be chosen

by designers arbitrarily; however, it is practical to select𝐺
𝑓
(𝑠)

to be of a simple form such as

𝐺
𝑓
(𝑠) =

1

𝑇𝑠 + 1
, (39)

where 𝑇 = 1/𝜔
𝑓
is a small positive constant. Thus,

1 − 𝐺
𝑓
(𝑠) =

𝑇𝑠

𝑇𝑠 + 1
= 𝑇𝑠𝐺

𝑓
(𝑠) . (40)

Define the error in estimation as

𝑒 = Δ𝑑 − 𝑢𝑑𝑒. (41)

With the above 𝐺
𝑓
(𝑠) and in view of (28), (29), and (41), it

gives

𝑒 = (−𝜍𝜎 − 𝑢
𝑛
) ⋆ (1 − 𝑔

𝑓
(𝑡)) = Δ𝑑 ⋆ (1 − 𝑔

𝑓
(𝑡))

= Δ𝑑L
−1

{𝑇𝑠𝐺
𝑓
(𝑠)} = 𝑇Δ̇𝑑L

−1
{𝐺
𝑓
(𝑠)} .

(42)

Therefore, (34) will hold, if the term 𝑇Δ̇𝑑 is sufficiently small.

Remark 3. When the low-pass filter (39) is employed, because

𝐺
𝑓
(𝑠)

1 − 𝐺
𝑓
(𝑠)

=
1

𝑇𝑠
(43)

and (33), the control component 𝑢
𝑛
can be simplified to

𝑢
𝑛
= 𝜍𝜎L

−1
{

1

𝑇𝑠
} =

𝜍

𝑇
∫
𝑡

0

𝜎𝑑𝜏. (44)

From (44), it is easy to find that an integral action is included
in the controller (38). In traditional SMC method, sgn(𝜎) is
used to deal with uncertainties and disturbances. However,
there is no such a discontinuous term in our method, an
integral term instead. Therefore, chattering is eliminated
essentially.

Remark 4. The smooth function 𝛽(𝑥
1
) in (21) is only one of

choices for the system. According to the Lyapunov stability
theory, any smooth function 𝛽(𝑥

1
) which makes the deriva-

tive of the Lyapunov function negative is applicable.

3. Adaptive Sliding Mode Control for
Nonlinear System

Consider the following nonlinear system, which is with
parametric uncertainties as well as unmatched model uncer-
tainties and external disturbances,

ẋ
1
= f
0
(x
1
) + f
1
(x
1
) 𝜃 + g

1
(x
1
) x
2
, (45a)

ẋ
2
= f
2
(x) + g

2
(𝑥) u + ΔF (x, 𝑡) , (45b)

where x = [x
1
, x
2
]
T is state vector, x

1
∈ R𝑛−𝑚, and

x
2

∈ R𝑚, u ∈ R𝑚 is input vector, 𝜃 ∈ R𝑞 is unknown
constant parameter vector, ΔF(x, 𝑡) denotes the unknown
unmatched model uncertainties and external disturbances,
f
0
(x
1
) : R𝑛−𝑚 → R𝑛−𝑚 and f

2
(x) : R𝑛 → R𝑚 are

known nonlinear smooth function vectors, f
1
(x
1
) : R𝑛−𝑚 →

R(𝑛−𝑚)×𝑞 and g
1
(x
1
) : R𝑛−𝑚 → R(𝑛−𝑚)×𝑚 are known

nonlinear smooth function matrices, and g
2
(x) : R𝑛 →

R𝑚×𝑚 is a known nonzero matrix.
In the following, when there is no confusion, we will use

f
1
instead of f

1
(x
1
) for simplicity, and other functions are the

same.

Theorem5. For nonlinear systems (45a) and (45b), the closed-
loop system is globally asymptotically stable under the adaptive
sliding mode controllers (46a), (46b), and (46c) with adaptive
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linear sliding modes (49a) and (49b) and parameter estimation
law (50), if Assumptions 1, 2, 3, and 4 are held.

(1) Adaptive Sliding Mode Controller. Consider

u = u
0
+ u
𝑛
, (46a)

u
0
= −g+
2
(𝜆



𝜕x
2𝑑

𝜕x
1



2

𝜎 + g T
1

𝜕𝑉
0

𝜕x
1

) − Φ, (46b)

u
𝑛
= g+
2
[(1 − 𝑔

𝑓
(𝑡))
−1

𝑔
𝑓
(𝑡)] ⋆ 𝜍𝜎

= g+
2
L
−1

[(1 − 𝐺
𝑓
(𝑠))
−1

𝐺
𝑓
(𝑠)] 𝜍𝜎,

(46c)

where 𝜆 is designable parameters,Φ = g+
2
[f
2
−(𝜕x
2𝑑
/𝜕x
1
) (f
0
+

f
1
�̃� + g
1
x
2
) − (𝜕x

2𝑑
/𝜕�̂�)

̇̂
𝜃], g+
2

= [g T
2
g
2
]
−1

g T
2

is the pseudo-
inverse of g

2
, �̃� = �̂� + 𝛽 is the estimate of 𝜃, �̂� is auxiliary vari-

able, 𝛽(⋅) : R𝑛−𝑚 → R𝑞 is a smooth function with respect to
x
1
, and z is parameter estimation error defined as

z = �̃� − 𝜃. (47)

𝜎 ∈ R𝑚 is sliding mode variable, and 𝜍𝜎 is defined as

𝜍𝜎 =

[
[
[
[

[

𝜍
1
𝜎
1

𝜍
2
𝜎
2

...
𝜍
𝑚
𝜎
𝑚

]
]
]
]

]

. (48)

𝜍
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑚) are designable parameters.

(2) Adaptive Sliding Mode. Consider

𝜎 = x
2
− x
2𝑑
, (49a)

x
2𝑑

= ^ (x
1
, �̃�) . (49b)

(3) Parameter Estimation Law. Consider

̇̂
𝜃 = −

𝜕𝛽

𝜕x
1

(f
0
+ f
1
�̃� + g
1
x
2
) . (50)

(4) Assumptions

Assumption 1. There exists a full information bounded con-
trol law ^(x

1
, 𝜃) which satisfies Lipschitz condition:
^ (x1, 𝜃 + 𝜁) − ^ (x

1
, 𝜃)

 ≤ M ‖𝜁‖ (51)

for all 𝜁 ∈ R𝑞 and for certain function M(x
1
), where M(⋅) :

R𝑛 → R > 0, such that the closed-loop system

ẋ
1
= f
0
+ f
1
𝜃 + g
1
^ (x
1
, 𝜃) ≜ f∗ (x

1
) (52)

has a globally asymptotically stable equilibrium at x∗
1
with a

radially unbounded function 𝑉
0
(x
1
) satisfying

𝜕𝑉
0

𝜕x
1

f∗ + 𝐿


𝜕𝑉
0

𝜕x
1

g
1



2

≤ 0 (53)

for certain 0 < 𝐿 < ∞.

Assumption 2. 𝛽(⋅) satisfies

𝜕𝛽

𝜕x
1

f
1
+ (

𝜕𝛽

𝜕x
1

f
1
)

T
≥ M2I

𝑞
+ fT
1
f
1
. (54)

Assumption 3. Designable parameters 𝜆, 𝛿, 𝜇, 𝜖, and 𝜍 are
chosen to satisfy

𝜇 > 0,

𝜖 > 0,

𝜍
𝑖
> 0, (𝑖 = 1, 2, . . . , 𝑚) ,

𝜆 >
1

2𝜖
,

𝛿 > 𝜇 + 𝜖.

(55)

Assumption 4. The change rate of ΔF
𝑖
(x, 𝑡), (𝑖 = 1, 2, . . . , 𝑚)

is bounded; namely, Δ̇F
𝑖
(x, 𝑡) < F

𝑖
, F
𝑖
, (𝑖 = 1, 2, . . . , 𝑚) are

known constants.

Proof. Based on the UDE method, the way to obtain control
component u

𝑛
for nonlinear systems (45a) and (45b) is

similar to that of Section 2.
Equation (56) is expected to be held:

g
2
u
𝑛
+ ΔF = −𝜍𝜎. (56)

Rewrite (56) into

ΔF = −𝜍𝜎 − g
2
u
𝑛
. (57)

Suppose ude is the estimate of ΔF; by utilizing (57), ude
can be accurately estimated as

ude = (−𝜍𝜎 − g
2
u
𝑛
) ⋆ 𝑔
𝑓
(𝑡) . (58)

Now, the estimate variable ude enables the design of u
𝑛
as

g
2
u
𝑛
= −ude; (59)

hence, it is easy to get u
𝑛
as shown in (46c).

Because ude is the estimate of ΔF, there exists

ude ≈ ΔF; (60)

thus, according to (59), it is easy to get

g
2
u
𝑛
≈ −ΔF. (61)

Substituting (47), (49a), (49b), and (52) into (45a) yields

ẋ
1
= f
0
+ f
1
𝜃 + g
1
(𝜎 + x

2𝑑
) = f
0
+ f
1
𝜃 + g
1
[𝜎 + ^ (x

1
, �̃�)]

= f
0
+ f
1
𝜃 + g
1
^ (x
1
, 𝜃) + g

1
[𝜎 + ^ (x

1
, �̃�)] − g

1
^ (x
1
, 𝜃)

= f∗ (x
1
) + g
1
𝜎 + g
1
[^ (x
1
, �̃�) − ^ (x

1
, 𝜃)]

= f∗ (x
1
) + g
1
𝜎 + g
1
[^ (x
1
, 𝜃 + z) − ^ (x

1
, 𝜃)] .

(62)
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According to estimation error (47), parameter estimation
law (50), and system dynamic (45a), the dynamic of estima-
tion error z can be given by

ż =
̇̂
𝜃 +

𝜕𝛽

𝜕x
1

ẋ
1

= −
𝜕𝛽

𝜕x
1

(f
0
+ f
1
�̃� + g
1
x
2
)

+
𝜕𝛽

𝜕x
1

[f
0
+ f
1
(�̃� − z) + g

1
x
2
]

= −
𝜕𝛽

𝜕x
1

f
1
z.

(63)

Based on (47), (49a), (45a), and (45b) the dynamic of
sliding mode 𝜎 can be rewritten into

�̇� = ẋ
2
− ẋ
2𝑑

= f
2
+ g
2
u + ΔF −

𝜕x
2𝑑

𝜕�̂�

̇̂
𝜃 −

𝜕x
2𝑑

𝜕x
1

ẋ
1

= f
2
+ g
2
u + ΔF −

𝜕x
2𝑑

𝜕�̂�

̇̂
𝜃

−
𝜕x
2𝑑

𝜕x
1

[f
0
+ f
1
(�̃� − z) + g

1
x
2
] .

(64)

Select Lyapunov function as

𝑉 (x,𝜎, z) = 𝑉
0
(x
1
) +

1

2
𝜎
T
𝜎 +

𝛿

2
zTz, (65)

where 𝛿 > 0.
Then, due to (46a), (46b), (46c), (61), (62), (63), and (64)

and Assumptions 1, 2, 3, and 4, one can get

�̇� =
𝜕𝑉
0

𝜕x
1

{f∗ + g
1
[^ (x
1
, 𝜃 + z) − ^ (x

1
, 𝜃)]} − 𝛿zT (

𝜕𝛽

𝜕x
1

f
1
z)

− 𝜆



𝜕x
2𝑑

𝜕x
1



2

𝜎
T
𝜎 + 𝜎

T
(g
2
u
𝑛
+ ΔF) + 𝜎T

𝜕x
2𝑑

𝜕x
1

f
1
z

≤
𝜕𝑉
0

𝜕x
1

f∗ + 1

2𝜇



𝜕𝑉
0

𝜕x
1

g
1



2

+
𝜇

2
M2‖z‖2 − 𝛿zT 𝜕𝛽

𝜕x
1

f
1
z

+
𝜖

2
zTfT
1
f
1
z − (𝜆 −

1

2𝜖
)



𝜕x
2𝑑

𝜕x
1



2

𝜎
T
𝜎 < 0.

(66)

Therefore, the closed-loop system is globally asymptotically
stable under the presented UDE-based adaptive slidingmode
control.

Remark 6. Assumptions 1 and 2 are the prior knowledge of
the nonlinear system. They are reasonable assumptions, and
readers can find them in [23].

Remark 7. In LTI systems (1a) and (1b), the equilibrium
point is [𝑥

∗

1
, 𝜎∗]

T
= [0, 0]

T. According to (2) and (5), it is

convenient to obtain 𝑥
∗

2
= 0. However, in nonlinear systems

(45a) and (45b), the equilibrium point is [x∗
1
,𝜎∗]

T
= [0, 0]T.

Because of (49a) and (49b), x∗
2

= x∗
2𝑑

= ^ (x∗
1
, �̃�
∗

). When
x
2𝑑

is bounded, the nonlinear systems (45a) and (45b) can
converge to x∗

1
= 0 and realize that x∗

2
is bounded.

Remark 8. Similar to that of Remarks 2 and 3, for nonlinear
systems (45a) and (45b), with low-pass filter (39), (60) will
hold if the term 𝑇Δ̇𝐹

𝑖
(𝑖 = 1, 2, . . . , 𝑚) is sufficiently small

and an integral action is included in

u
𝑛
= g
2

+ 1

𝑇
∫ 𝜍𝜎 𝑑𝜏. (67)

Because discontinuous term sgn (𝜎), which often appears
in conventional sliding mode control method, is displaced
by integral term in our method, chattering is eliminated
essentially.

From (67) and (56), (58), it is clear that smaller 𝑇 implies
a smaller estimation error but a larger magnitude of control
if 𝜎 is not small. Fortunately, 𝜍 gives designer an option to
obtain a satisfying compromise in this aspect.

4. Simulation

In order to verify the validity of the proposed UDE-based
ASMC method, a pendulum with motor dynamics given in
[12] is considered in the following:

�̇�
1
= 𝑥
2
,

�̇�
2
= −𝑎 sin (𝑥

1
) − 𝑞 cos (𝑥

1
) + 𝑥
3
,

�̇�
3
= −𝑥
3
+ 𝑢 + 𝑑 (𝑥, 𝑡) ,

(68)

where 𝑎 and 𝑞 represent constant unknown parameters to
the pendulum and 𝑑(𝑥, 𝑡) denotes uncertainties and distur-
bances.

According to the form of (45a) and (45b), there exists

x
1
= [

𝑥
1

𝑥
2

] ,

x
2
= 𝑥
3
,

𝜃 = [
𝑎

𝑞
] ,

f
0
= [

𝑥
2

0
] ,

f
1
= [

0 0

− sin (𝑥
1
) − cos (𝑥

1
)
] = [

f
11

f
12

] ,

g
1
= [

0

1
] ,

f
2
= −𝑥
3
,

g
2
= 1,

ΔF = 𝑑.

(69)
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Select

x
2𝑑

= [−1, −𝑘] x1 − f
12
�̃�,

𝜕𝛽

𝜕x
1

= 𝛿fT
1
,

𝑉
0
=

1

2
xT
1
x
1
,

(70)

where 𝑘 ∈ R > 0 and 𝛿 ∈ R > 0 are designable parameters.
Then 𝜕x

2𝑑
/𝜕𝑥
1
= −1 + 𝜃

1
cos(𝑥
1
), 𝜕x
2𝑑
/𝜕𝑥
2
= −𝑘, 𝜕x

2𝑑
/

𝜕�̂� = [sin(𝑥
1
), cos(𝑥

1
)], 𝜕𝑉

0
/𝜕x
1

= x
1
, and 𝛽 = ∫(𝜕𝛽/

𝜕x
1
)𝑑x
1
= 𝛿fT
1
x
1
+C(x
1
), whereC(x

1
) is certain smooth func-

tion vector.
According to (39), (46a), (46b), (46c), (49a), and (49b),

the parameter estimation law and adaptive sliding mode
control law for system (68) are

̇̂
𝜃 = −𝛿fT

1
(f
0
+ f
1
�̃� + g
1
x
2
) ,

u = −(𝜆



𝜕x
2𝑑

𝜕𝑥
1



2

𝜎 + gT
1
x
1
) − f
2

+
𝜕x
2𝑑

𝜕𝑥
1

(f
0
+ f
1
�̃� + g
1
x
2
) + xT
1

̇̂
𝜃

+
1

𝑇
∫ 𝜍𝜎 𝑑𝜏.

(71)

In Figures 1 and 2, solid line shows the presented method
in this paper, while dot line shows the method given in [12].

Figures 1 and 2 show the result by employing the pre-
sented UDE-based ASMC method under 𝑘 = 2, 𝛿 = 2,
𝜆 = 0.1, C = [0, 0]

T, 𝑎 = 11, 𝑞 = 4, 𝑑 = 5𝑥
1
sin(0.2𝑡),

𝑇 = 0.01, and 𝜍 = 0.0003.
To make comparison, simulation results with the method

proposed by [12] are given in Figures 1 and 2 simultaneously,
by selecting 𝑝

1
= 2, 𝑝

2
= 1, 𝑝

3
= 2, 𝜏

1
= 2, 𝜏

2
= 2, 𝑔

1
= 1,

𝑔
2

= 2, 𝜂 = 10, 𝜌 = 5, and other necessary parameters or
functions are the same as that of the above simulation. The
corresponding adaptive law, sliding mode, and controller are
chosen as follows according to [12]:

̇̃
𝜃
1
= −𝜏
1
(𝑝
2
𝑥
1
+ 𝑝
3
𝑥
2
) sin (𝑥

1
) ,

̇̃
𝜃
2
= −𝜏
2
(𝑝
2
𝑥
1
+ 𝑝
3
𝑥
2
) cos (𝑥

1
) ,

𝑥
3𝑑

= −𝑔
1
𝑥
1
− 𝑔
2
𝑥
2
+ 𝜃
1
sin (𝑥

1
) + 𝜃
2
cos (𝑥

1
) ,

𝜎 = 𝑥
3
− 𝑥
3𝑑
,

𝑢 = − [𝜂𝜎 + 𝑝
2
𝑥
1
+ 𝑝
3
𝑥
2
− 𝑥
3
− (−𝑔

1
+ cos (𝑥

1
) 𝜃
1
) �̇�
1

− (−𝑔
2
− sin (𝑥

1
) 𝜃
2
) (𝑥
3
− 𝜃
1
sin (𝑥

1
) − 𝜃
2
cos (𝑥

1
))

− sin (𝑥
1
)

̇̃
𝜃
1
− cos (𝑥

1
)

̇̃
𝜃
2
] − 𝜌sgn (𝜎) .

(72)
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Figure 1: Comparison about states 𝑥
1
, 𝑥
2
, and 𝑥

3
.

From the comparison, one can find that, under the pre-
sentedUDE-basedASMC, the states converge faster than that
of [12] method. The amplitude of input is especially around
20 at the beginning and the input is without chattering in our
method; however, the maximal amplitude of input is greater
than 80 and the input is with strong chattering in [12]method.
Although state 𝑥

2
is a bit larger in our method, [12] method

requires about 10 seconds to force state 𝑥
2
to arrive origin;

on the contrary, state 𝑥
2
can converge in 3 seconds under the

presented method.Therefore, the created UDE-based ASMC
method in this paper is better on the whole (see Table 1).

5. Conclusions

In this paper, a novel uncertainty and disturbance estimator-
based adaptive sliding mode control (UDE-based ASMC)
method is presented for nonlinear systems, which are with
parameter uncertainties as well as unmatched model uncer-
tainties and external disturbances. Parameter estimation law
is obtained according to immersion and invariance (I&I)
adaptive control approach, and uncertainty and disturbance
estimator is employed to realize chattering elimination in
essence. UDE-based ASMC can guarantee closed-loop sys-
tems that have strong robustness without requiring to know
the bounds of uncertainties. At the end of this paper, UDE-
based ASMC is applied to a pendulum with motor dynam-
ics, simulation results illustrate the approving performance,
including chattering elimination, control peak decreasing,
fast convergence, and strong robustness to parameter uncer-
tainties and external uncertainties.
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Table 1: Comparison between the two methods.

𝑥
1

𝑥
2

𝑥
3

𝑢

Method in this paper Peak value 1 −1.0301 10.2015 20.9345
Converge time 2 3 2.5 3

Method in Kwan (1995) [12] Peak value 1 −0.4604 10.8797 81.243
Converge time 7 6 8 ∞
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Figure 2: Comparison about sliding mode 𝜎 and control signal 𝑢.
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