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Abstract—This paper proposes a framework for fault detection
and isolation (FDI) in electrical energy systems based on tech-
niques developed in the context of invertibility of switched systems.
In the absence of faults—the nominal mode of operation—the
system behavior is described by one set of linear differential
equations or more in the case of systems with natural switching
behavior, e.g., power electronics systems. Faults are categorized as
hard and soft. A hard fault causes abrupt changes in the system
structure, which results in an uncontrolled transition from the
nominal mode of operation to a faulty mode governed by a dif-
ferent set of differential equations. A soft fault causes a continuous
change over time of certain system structure parameters, which
results in unknown additive disturbances to the set(s) of differen-
tial equations governing the system dynamics. In this setup, the
dynamic behavior of an electrical energy system (with possible
natural switching) can be described by a switched state-space
model where each mode is driven by possibly known and unknown
inputs. The problem of detection and isolation of hard faults is
equivalent to uniquely recovering the switching signal associated
with uncontrolled transitions caused by hard faults. The problem
of detection and isolation of soft faults is equivalent to recovering
the unknown additive disturbance caused by the fault. Uniquely
recovering both switching signal and unknown inputs is the con-
cern of the (left) invertibility problem in switched systems, and we
are able to adopt theoretical results on that problem, developed
earlier, to the present FDI setting. The application of the proposed
framework to fault detection and isolation in switching electrical
networks is illustrated with several examples.

Index Terms—Electrical energy systems, fault detection and iso-
lation (FDI), invertibility, switched linear systems, switch-singular
pairs.

I. INTRODUCTION

F AULT-TOLERANCE (self-healing) may be defined as the
ability of a system to adapt and compensate in a planned,

systematic way to random component faults and keep delivering
completely or partially the functionality for which it was de-
signed [1]. Two main elements should be engineered into an
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electrical energy system to ensure fault-tolerance: 1) compo-
nent redundancy and 2) fault detection and isolation mecha-
nisms. Choosing the appropriate level of redundancy impacts
other metrics, e.g., cost and weight. In this regard, the problem
of optimal redundancy allocation has been addressed before [2].
The task of fault detection and isolation (FDI) is indispensable
to ensure that component redundancy is managed appropriately.
Failure to remove the faulty component from the system, even
with sufficient redundant resources to tackle the fault, may en-
tail further damage in other components and eventually bring the
system down. A fault detection and isolation (FDI) system exe-
cutes two actions: 1) detection makes a binary decision whether
or not a fault has occurred and 2) isolation determines the fault
location, i.e., which component is faulty.

The literature in FDI is extensive [3]–[6], and the methods
used for the implementation of FDI can be broadly classified
into three different categories:

1) model-based: uses control-theoretic methods to design
residual generators that can point to specific faults;

2) artificial intelligence: uses neural networks and fuzzy logic
to develop expert systems that once trained can point to
specific faults;

3) empirical and signal processing: use spectral analysis to
identify specific signatures of a certain fault.

The following are a few references of each category application
to FDI in electrical energy systems. The work in [7]–[11]
is model-based, artificial intelligence methods are used in
[12]–[15], and empirical and signal processing methods in [16]
and [17].

The focus of this work is on model-based FDI methods, the
foundations of which are built on control-theoretic concepts.
Model-based methods include observer-based and parameter
estimation approaches [18]. As the proposed work is closer to
observer-based FDI, fundamental ideas behind this approach to
FDI will be reviewed. Observer-based FDI was first introduced
by Beard in [19] and further developed by Jones in [20]. The
idea is based on using a Luenberger observer (see, e.g., [21]).
In a non-switched linear system, it can be used to estimate
the system states, given some output measurements and the
inputs to the system. In the absence of faults, the state estimates
obtained from the observer converge to the actual state values
asymptotically. If a fault occurs, the state predicted with the
Luenberger observer no longer converges to the true state of
the system. By appropriately choosing the observer gain, the
estimation error in the presence of a certain fault has certain
geometrical characteristics that make the fault identifiable. The
Beard-Jones approach is only applicable to deterministic linear
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time-invariant systems (LTI). The idea of using observers for
FDI was extended to stochastic systems, where a Kalman filter
approach was used to formulate the FDI problem [22]. This
overcame the limitations of the Beard-Jones approach. There
has been some work on FDI for nonlinear systems (see, e.g.,
[23]), where linearization around the system operating point,
together with FDI techniques for linear systems, is used. The
limitations of this approach are obvious. The Beard-Jones ap-
proach cannot handle systems with inherent switching behavior,
e.g., power electronics systems. The goal of this research is to
overcome these limitations by developing methods that apply
to both non-switched and switched linear systems. To address
this problem, the application of recent results in invertibility of
switched systems will be investigated [24], [25].

In our framework, the system behavior in the absence of faults
is described by a set of linear dynamical equations. Faults are
categorized as hard, the occurrence of which causes an abrupt
change in the system structure, and soft, which result in con-
tinuous variation of certain parameters of the system structure.
When a hard fault occurs, the system trajectories follow a dif-
ferent set of linear dynamical equations and it is assumed that the
dynamics of the system in the presence of such faults are known.
If there is a finite number of hard faults under consideration, then
we have a finite number of dynamical subsystems describing
each possible system operational mode, including the nominal
modes and all possible faulty modes. The occurrence of a hard
fault results in the transition from a non-faulty mode to a faulty
mode. The occurrence of soft faults will result in additional
unknown forces driving the system dynamics. In this regard,
the system can be thought of as a switched system where the
switching signal and inputs are possibly unknown. In this setup,
detecting and isolating a hard fault is equivalent to uniquely
recovering the switching signal associated with the transition
caused by the fault. Detection and isolation of soft faults is
equivalent to recovering the unknown inputs that arise from the
fault occurrence. To achieve this, we will use the notion of invert-
ibility for switched systems. The problem of (left) invertibility of
switched systems, introduced in [24], concerns with the recovery
of switching signal and input using the knowledge of the output
and the initial state. The realization of FDI using invertibility
can be summarized as follows. For hard faults, detection is
equivalent to determining that the non-faulty mode can no longer
produce the observed outputs, and isolation is equivalent to
uniquely recovering the switching signal by identifying which
faulty mode can produce the observed output. For soft faults,
detection is equivalent to detecting the presence of an input
disturbance, isolation is equivalent to uniquely identifying the
parameter change that cause this input disturbance to appear.

In the framework of non-switched systems, the problem of
FDI using classical invertibility techniques has been studied
before in [26]. In this work, the authors consider faults as additive
unknown inputs to the system, and recover them as outputs of
another dynamic system—the inverse system. Since the initial
values of the state variables are not assumed to be known, the
authors require the inverse system to be minimum phase which
is possible for non-switched systems. Also, minimal realization
is considered to save excessive computational effort. In this
paper, we also model soft faults as additive unknown inputs to

the system. As the systems under consideration are switched
systems, classical inversion techniques can no longer be used for
detection of such faults and hence we use newly developed tools
of invertibility for switched systems [24]. Also, we assume the
initial conditions to be known and hence do not require stability
of the inverse system. Furthermore, we do not consider using
a minimal realization of the inverse system because the state
variables of these minimal realizations for different modes might
not coincide and therefore mode detection would not be possible.

The structure of this paper is as follows. In Section II, the
system dynamical model, the notations and the formulae that
lead to the construction of an inverse switched system are
presented. In Section III, the notions introduced in Section II
are used to construct the proposed FDI framework. Section IV
presents several case-studies that illustrate the ideas presented
in Section III, followed by some simulation results in Section V.
Concluding remarks are presented in Section VI.

II. PRELIMINARIES: INVERSION OF DYNAMICAL SYSTEMS

In the context of this work, it is assumed that, without loss of
generality, the dynamic behavior of switching electrical systems
can be described by a switched state-space model1 of the form

(1)

where , , , , the func-
tion , called the switching signal,2 indicates the
active subsystem at every time, is called the “index set;” and

, , , with define the subsystems in (1). The
input is assumed to be unknown, whereas the input is as-
sumed to be known.

For a fixed and known , denote by the
trajectory of the corresponding subsystem with the initial state

and the input , and the corresponding output by .
Since switching signals are right-continuous, the outputs are
also right-continuous and whenever we take derivative of the
output, we assume it is the right derivative.

A. Invertibility of Non-Switched Linear Systems

Consider affine linear systems of the form

(2a)

(2b)

where is assumed to be unknown and is assumed to be
known.

The invertibility problem for linear systems concerns
with finding conditions for a LTI system so that for a given
initial state and known input , the input-output map

is injective (left invertibility) or surjective
(right invertibility), where is the space of input functions
and is the corresponding output function space. The main
computational tool for studying the problem in an algebraic

1For a detailed discussion on the conditions for existence of solutions of
switched systems the reader is referred to [27].

2A switching signal, as defined in [27], is a piecewise constant and every-
where right-continuous function that has a finite number of discontinuities � ,
which we call switching times, on every bounded time interval and thus ���� �
� � � , � � � �� � � �.
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Fig. 1. RLC circuit.

setting is the structure algorithm, introduced in [28] and [29].
In the original formulation of this algorithm, it was assumed
that all inputs were unknown. In this section, we tailor this
formulation to the system (2), where some inputs are known,
which is a more appropriate formulation for the FDI framework
to be discussed in Section III. Before proceeding with the
formal formulation of the structure algorithm, we introduce an
example that will help illustrating the main ideas behind it.

1) Example 1: Consider the circuit of Fig. 1, where it is as-
sumed that the input voltage is known, the load current
is unknown, and both the states and are measurable. By
using the notation of (2), , , ,

, and

(3)

The main idea behind the structure algorithm is that by differ-
entiating the output, it is possible under certain conditions to
invert the system, i.e., find a one-to-one mapping between the
output (and its derivatives) and the unknown input. In this ex-
ample, it is straightforward to find such a mapping by differen-
tiating the second output: , from
where it follows that the unknown input can be uniquely
recovered from the output and its derivatives: .
Another important observation for solving the problem of in-
version in switched affine linear systems, and later formalized
in the form of the so-called range theorem [29], can be made
regarding the outputs that can be generated by the system from
all possible initial conditions. To explore the idea behind the
generation of such an output set, consider the state-space de-
scription of a system without inputs which is not necessarily
observable. For such a system, higher order derivatives of the
output can be written as a linear combinations of its lower order
derivatives. Similarly, for the system of Fig. 1, it is easy to verify
that the outputs produced by this system satisfy the constraint:

. The con-
struction is later formalized in this section. To determine how
the outputs in this set are related to the state variables, con-
sider the relation between outputs and states given by the ob-
servation equation and differentiate the first output:

. It fol-
lows that the output and the state are related by the following
functional relation:

(4)

Such relations are useful in mode identification of switched sys-
tems especially when the subsystems have same output sets.

2) Structure Algorithm: We now proceed to formalize the
ideas introduced in Example 1. Consider the linear system (2).
Differentiate to get ; let

, then there exists a nonsingular matrix

such that , where has rows and

rank . Let ; , and . Thus,
we have , where . Suppose that
at step , we have , where has the

form ; has rows and is full rank. Let the partition

of , be , , respectively, where , are the

first rows; is partitioned as , where has the first

elements; and has the form . If ,
let be the differential operator

Then

where

Let

then there exists a nonsingular matrix such that

where has rows and rank . Let

Then and we can
repeat the procedure. Let ,

, ,
and . Then ,

, and . Using these notations,
, , and . No-

tice that since has rows and columns,
for all and since , using the Cayley-Hamilton
theorem, it was shown in [29] that there exists a smallest integer

such that , . If , the system is
left-invertible and the inverse is

(5)
with the initial state .
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3) The Range Theorem: From the structure algorithm, it can
be seen that , for each and hence

(6)

where

...
...

... ...
...

Using the Cayley-Hamilton theorem, Silverman and Payne
have shown in [29] that there exists a smallest number ,

, such that , .
There also exists a number , such that

for some matrices from
the structure algorithm and some constant matrices (see [29,
p. 205] for details). The number is not easily determined as
and . The significance of , , and is that they can be used
to characterize the set of all outputs of a linear system as in
the range theorem [29, Th. 4.3]. We include the range theorem
from [29] below in a modified form because of the presence
of known input . The proof however follows the same
argument and is not repeated here. Define the differential op-
erators

and

for some

matrices from the structure algorithm. The notation
means “evaluating at .”

Theorem 1 [29]: A function is in the range
of if and only if

(i) is such that is defined and continuous;
(ii) , ;

(iii)

for all .
Compared to [29, Th. 4.1], condition (ii) in Theorem 1 of this
paper has additional equations due to the presence of in-
homogeneity which, unlike [29], make the additional
constraints linearly independent of the first equations. Condi-
tion (iii) also gets modified.

With the help of extra notations, the range theorem is para-
phrased in the following proposition for better understanding.
Let , , , ,

be the class of continuous functions, and denote by the set
of functions for all which satisfy (i)
and (iii) of Theorem 1.

Proposition 1: For a linear system , using the structure al-
gorithm on the system matrices, construct a set of functions, a
differential operator , and the matrices , . There
exists such that if and only if and

.

For square invertible systems with , condition
(iii) in Theorem 1 always holds and the set is simplified to
the set of functions for which is defined and continuous.
In particular, any function will be in . Also, note from the
structure algorithm that regardless of what the unknown input
is, the output, the state, and the known input are related by the
equation , for all , not just at the
initial time . It is important to note that Proposition 1 provides
the necessary and sufficient condition in terms of a differential
operator , some matrices , and some set of functions .
Roughly speaking, the set characterizes continuous functions
that can be generated by the system from all initial positions
(the components of the output must be related to the system
matrices in some sense). This relation will be used
later to identify the mode of operation in a switched system
as the condition guarantees that the
particular can be generated starting from the particular initial
state and at time . We evaluate and at , to reflect
that do not need to be defined for . This is especially
useful later when we consider switched systems where inputs
and outputs can be piecewise right-continuous.

B. Switched Linear Systems

For switched linear systems (1), the map under consideration
is a (switching signal input)-output map
, where is the space of switching signals. The problem of in-
vertibility is to find a characterization of the output space
and a condition on the subsystems, independent of , such
that the map is injective. In other words, we are inter-
ested in knowing whether the preimage is
unique. The issue of left-invertibility is of central importance in
detection and isolation of hard faults because occurrence of a
hard fault is the same as the transition of system from nominal
mode to a faulty mode. Thus, recovering the unknown switching
signal is equivalent to identifying the hard fault in the system.

The reason we have a different notion of invertibility is be-
cause in switched systems, if a subsystem is invertible at for
a given output , then it is possible that another subsystem might
produce the same output starting from the same initial condition.
This means that the pre-image of at such is not
unique and hence the switched system is not invertible at if
such pairs exist. We call all such pairs switch-singular
pairs.3 The concept of switch-singular pairs for switched sys-
tems basically refers to the ability of more than one subsystem to
produce a segment of the desired output starting from the same
initial condition. The formal definition of switch-singular pairs
is given in the following.

Definition 1: Let and on some time interval.
The pair is a switch-singular pair of the two subsystems

, if there exist , such that
.
We proceed to develop a formula for checking if is a

switch-singular pair of , , utilizing the range theorem by
Silverman and Payne (Theorem 1 in this paper). We will use
our notations in Proposition 1. For the subsystem indexed by

3This is similar to the concept of singular pairs conceived in [24] We use the
term “switch-singular pair” to emphasize that these singularities are induced by
switching.
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, denote by , , , , and the corresponding objects
of interest as in Proposition 1. It follows from Definition 1 and
Proposition 1 that is a switch-singular pair if and only if

and

(7)

where is the initial time of . For a given , the condition
(7) can be directly verified as all entities are known. One special
case is . It is obvious that with and
any switching signal, we always have , i.e.,

regardless of the subsystem dynamics and therefore, the
map is not one-to-one if the function . So, whenever

, there exists an that forms switch-singular

pair with such outputs.
Essentially, if a state and an output function (the time domain

can be arbitrary) form a switch-singular pair, then there exist
inputs for the two systems to produce that same output starting
from that same initial state. Stated otherwise, if there are no
switch-singular pairs between any of the subsystems then the
active subsystem is determined uniquely. From fault detection
viewpoint, the absence of switch-singular pairs guarantees the
detection and isolation of faults as demonstrated in Example 3
of Section III.

Based on the concept of switch-singular pairs, it has been
shown in [24] that a switched system is invertible if and only if
all subsystems are invertible and subsystem dynamics are such
that there exist no switch-singular pairs among them. If these
conditions are satisfied and the switched system is invertible, a
switched inverse system can be constructed to recover the input

and switching signal from the knowledge of given , , and
. For the switched inverse system, let be the set of piecewise

smooth functions such that if and
for some , , then (7) does not hold. Define
the index inversion function as

and

(8)

where is the initial time of , and . The function
is well-defined since is unique by the fact that there are

no switch-singular pairs. The existence of is guaranteed if it
is assumed that is an output from the modeled switched
system.

III. INVERSION-BASED FDI

We categorize faults in electrical energy systems as hard
faults and soft faults. Hard faults often result in an abrupt
change of the system structure; examples include component
open- and short-circuits or certain switching elements getting
stuck in an open or close position. We assume that the system
configuration resulting from the hard faults can be modeled.
Then in the context of the switched state-space description (1)
discussed in the previous section, a hard fault can be thought
of as an uncontrolled transition between two modes in . Soft
faults, on the other hand, refer to a continuous variation—as
opposed to an abrupt change—in certain parameters over the

period of time; they may occur due to graceful degradation of
the capacitance or the equivalent series resistance (ESR) of a
capacitor. In the context of the switched state-space description
(1), a soft fault can be thought of as an unknown additive dis-
turbance and therefore can be naturally included in the vector
of unknown inputs .

The problem of detection and isolation of hard faults is equiv-
alent to uniquely recovering the switching signal associated with
the uncontrolled transition caused by the fault. The problem of
detection and isolation of soft faults is equivalent to recovering
the unknown additive disturbance caused by the fault. The the-
oretical concepts discussed in Section II are the foundations to
develop the framework introduced in this section for detection
and isolation of hard and soft faults in systems with inherent
switching.

A. Generalized System Model

The state-space description given in (1) can be tailored to de-
scribe the non-faulty behavior of an electrical energy system
with inherent switching and the faulty features described above.
In this regard, the index set of (1) is partitioned into two sets
such that . The first set contains the non-faulty
modes among which transitions occurs due to the possible in-
herent system switching, e.g., the different physical configura-
tions of a buck or a boost converter dictated by the controlled
position of the switches. The second set contains the faulty
modes that result from hard faults. Since the transitions from a
mode in to a mode in are caused by a fault, these transi-
tions are uncontrolled and, in general, unknown. The unknown
system input of (1) is also partitioned into two vectors as

. The first vector contains unknown inputs, e.g.,
a load in a buck converter modeled as a randomly varying cur-
rent source, the measures of which are not available. The second
vector contains unknown disturbances that arise due to soft
faults.

Thus, formalizing the above ideas, system dynamic behavior
under both non-faulty and faulty conditions can be described by
a generalized switched state-space model of the form

(9)

where , , ,
, , and , , , with

defining the subsystems in (9).
1) Example 2: Consider again the circuit of Fig. 1 and

assume the resistors and are subject to faults that
can abruptly cause an open circuit across their terminals.

represents the nominal mode of operation without any
faults; describes the dynamics of the system when
fails open, and corresponds to the case where fails
open. Additionally the capacitor is subject to graceful degra-
dation, thus its capacitance is given by ,
where is the nominal capacitance, and the unknown func-
tion captures the decrease in capacitance over
time. Now, it is assumed that both the input voltage and
the load current are known and both states and
are measurable. In this scenario, following the notation of
(9), ,
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, , and
, where and

(10)

(11)

(12)

where describe the non-faulty circuit dynamics;
describe the circuit dynamics after an open circuit in ; and

describe the circuit dynamics after an open circuit in
. It is important to note that the disturbance due to ca-

pacitor degradation in reality arises as a perturbation of the state-
space representation matrices. However, as it was shown in [20],
and without loss of generality, it is always possible to rewrite
this perturbation as an unknown additive disturbance as shown
here.

It should be noted that, in the above example, denotes the
degradation in the value of capacitance which is varying with
time and is unknown. The capacitance can also be regarded as
one of the model parameters and in the case of Example 2, this
parameter is time varying and the variation in this parameter is
unknown. So, in general, uncertainties in model parameters may
also be included as part of the unknown vector in (9).

B. Fault Detection and Isolation

The first step in designing a fault detection and isolation
system is to obtain the system generalized model (9), which
includes non-faulty modes, faulty modes arising from hard
faults and unknown disturbances caused by soft faults.

Once this generalized model (9) is obtained, the problem of
fault detection and isolation is equivalent to finding such
that , where is the input-output operator
for a given initial state and a known input , and is the
observed output. For (1), denote by the preimage of a
function

(13)

If the set in (13) reduces to a singleton, then the switched system
is left invertible,4 that is, there is a unique switching signal and
input that generates the given output.

It is entirely possible that the preimage is not
unique. It happens because: 1) there is a subsystem that can
produce the same output with more than one input or 2) there
is more than one subsystem that can produce the measured
output. In the first case, there exist infinitely many inputs that

4An algebraic characterization of conditions under which a switched linear
system is left invertible appears in [24, Lemma 3].

can produce a given output on any compact interval with same
initial and terminal state [24, Lemma 4] and therefore, it is not
possible to detect and isolate the occurrence of a particular soft
fault. In the second case, it is the existence of switch-singular
pairs that prevents the mode identification. If such pairs exist
among the faulty modes, then the occurrences of hard faults can
still be detected but such faults cannot be isolated. In practice,
in order to compute , it is necessary to: 1) conduct
mode identification and 2) recover the unknown input .

1) Mode Detection or Hard Fault Detection and Isolation:
The first step to obtain the inverse system is to conduct mode
identification using the index-inversion function which is de-
fined as follows:

and

(14)

If the resulting mode is unique and belongs to , then the oc-
currence of a hard fault is ruled out. However, if belongs to ,
then a hard fault occurrence has been detected. If (14) results
in more than one that belongs to but does not belong to ,
then a fault has occurred and it can be detected; however it is not
possible to isolate the fault as the faulty mode that is producing
the observed output cannot be identified. In case (14) results in
modes that belong to and , then there is a switch-singular
pair between a faulty and non-faulty mode, so one cannot con-
clude whether or not a fault has occurred.

It is true that the detection of hard faults depends upon the
modeling of faulty modes and there maybe cases where an un-
modeled fault has occurred. In this case, the observed output of
the system is not related to any of the modes and the index-in-
version function in (14) is ill-defined as the system is operating
with unknown dynamics. So, in case the active mode cannot be
identified then the system has switched to a faulty mode that has
not been modeled. Hence, the detection is still possible but one
cannot identify where the fault has occurred.

2) Input Recovery or Soft Fault Detection and Isolation:
Once the mode has been identified, and perhaps a hard fault has
been detected and isolated, it is still necessary to check for the
presence of soft faults, which can be accomplished by inverting
the particular subsystem associated to the mode identified in
(14), and then recovering from the inverse of that particular
subsystem. Practically, this can be achieved by running the
following inverse switched system:

with the initial condition . For each particular mode,
the matrices , , , are obtained similarly as ex-
plained in Section II-A. The notation denotes the object in
the parenthesis calculated for the subsystem with index .
The initial condition determines the initial active sub-
system at the initial time , from which time onwards, the active
subsystem indexes and the input as well as the state are deter-
mined uniquely and simultaneously.
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Remark 1: Ideally, for hard fault detection, one may only be
interested in knowing whether any mode in is active, and not
necessarily the exact value of the switching signal at all times.
But note that the value of state trajectory is required to deter-
mine the transition between modes, and the state trajectory can
only be simulated if the exact value of the switching signal is
known. However, to find relaxed conditions for hard fault de-
tection without requiring the exact knowledge of state trajec-
tories is a topic of ongoing research. Another similar direction
of future work is to find less restrictive conditions which allow
us to detect nonzero values of the unknown inputs induced by
soft faults without necessarily recovering the unknown input ex-
actly.

3) Example 3: Consider again the circuit in Fig. 1 with the
same assumptions as in Example 2, which resulted in (10)–(12).
In this case, mode detection is possible since

and
, ,

. If
for some , then ,

so that for each contained in , , or , we must
have , implying that . Further, the
expressions for suggest that the mode
cannot be identified using the index inversion function in (14).
Conversely, if at any time, then the mode can always be
recovered using (14). It follows that there are no switch-singular
pairs as long as is not identically zero. Therefore the occur-
rence of a fault in either or can be detected. However, if

, even if a fault in either or can be detected, it
cannot be isolated, i.e., we cannot determine whether the fault
occurred in or . Thus, in this example, isolation of hard
faults is only possible if and only if . Inversion of the
individual subsystems is also possible and is given by

and therefore the detection of soft faults in the capac-
itor is also possible. It is important to note that

, and since everything
is known except , which happens to be proportional to
the magnitude of the fault, recovering gives a measure of
the component degradation.

Let us assume now that apart from the measurements of both
states, only is known, while is unknown, so that ,

and . In this case, mode identification is possible
since

and remain unchanged. However, inversion of the
individual subsystems is not possible as, by taking derivatives
of the outputs, we get

and since the matrix multiplying is not invertible, it
is not possible to uniquely recover .

Finally, let us assume that apart from the measurements of
both states, only is known, while is unknown. In this
case, , ,

. The operators in this case are of dimen-
sion lower than the previous two cases because the first deriva-
tive of each output is affected by a different unknown input.
Since the system now has two unknown inputs and two outputs,

, , consists of set of differentiable outputs. Thus, it is
not possible to do mode identification, and therefore hard faults
in resistors will go undetected. In terms of soft faults in the ca-
pacitor, it is still possible to detect them even if it is not possible
to detect the mode as for all , it results that

This is not true in general, i.e., the expression for inverting
each subsystem is usually different, so to detect and isolate soft
faults, it is necessary to identify the mode in which the system
is operating.

IV. ANALYTICAL CASE-STUDIES

In this section, the application of the framework developed
in Section III is illustrated by analyzing several power elec-
tronics circuits. Due to temperature variations, very high fre-
quencies, and other variable conditions at which power elec-
tronics systems operate, the parameters of the components that
comprise these systems may drift away over time from their
nominal value. In this regard, we consider soft faults in capac-
itors and inductors and analyze how these faults affect typical
power electronics circuits such as boost, buck, and boost-buck,
and the conditions under which these faults can be detected and
isolated in these circuits. We leave the illustration of hard fault
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Fig. 2. Boost converter.

detection to the simulation examples of Section V. It is impor-
tant to note that both hard and soft faults may cause performance
degradation if not detected and accounted for. Although not dis-
cussed in this paper, the system controller could be reconfigured
to account for these variations so as to maintain a prescribed
level of performance.

A. Boost Converter

Consider the boost converter of Fig. 2 where we assume both
and can be measured, and the voltage is perfectly

known. Let , then the two modes of operation of
this converter are

(15)

which corresponds to the case when is closed and is
open, and

(16)

which corresponds to the case when is open, the diode
is conducting. We will assume that the switching signal is not
available to the FDI system.

1) Capacitor Soft Faults: We can assume that as the capacitor
degrades, its capacitance will decrease. Thus, without loss of
generality, the capacitance of the capacitor can be described as

, where is the nominal capacitance, with
describing the fault magnitude. Then, the system

dynamics can be described in a more general form to account
for this fault as follows:

(17)

where ,
and

(18)

where . Define as

if
if .

(19)

Then (17) and (18) can be rewritten as

(20)

(21)

Note that basically represents the unknown degrada-
tion in the value of the capacitor. We now use the tools from
Section III to recover the switching signal and the un-
known function . It is important to note that there might
be cases in which the switching signal is available to the fault
detection and isolation system, in which case, it would only be
necessary to recover .

2) Mode Identification: Following the notation used in
Section III, it results that the operators , , , , ,
are

Also, , and
. The

active mode can then be identified using (8), and the only
possibility of switch-singular pair is if

, or equivalently . Thus,
if the original system has switching when , then it
would not be observable in the output and in that case
cannot be recovered uniquely.5 However, this would mean that
the voltage across the load becomes zero, which is not possible
without a large variation on the capacitance; but before this
occurs, since the capacitor degrades gracefully, the voltage

will remain greater than zero and therefore, the existence
of a switch-singular pair is ruled out. Thus, other than the
particular case described, the switching signal can be recovered
using the following formula:

if and

if and .
(22)

5To recover non-unique switching signals in the presence of switch-singular
pairs, see the algorithm proposed in [24]. A conceptually similar algorithm tai-
lored for FDI framework appears in Section V. It must be noted that these al-
gorithms are non-causal and require the knowledge of future outputs to recover
the value of switching signal in the past.
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Having recovered the switching signal , one can activate the
corresponding inverse subsystem to compute and hence
the change in the nominal value of the capacitor.

3) Unknown Input Recovery: In this case, both subsystems
are invertible, so the detection and isolation of capacitor soft
faults is possible. Applying the structure algorithm to and
differentiating the output, we obtain

from where it follows that and therefore .
Furthermore, , which is equal to the di-
mension of the input space and thus . Then following
the notation used in Section III, it results that ,

, and ; hence the inverse system is
described by

(23)

The similar procedure can be applied to to get dynamic rep-
resentations for

(24)

The inverse switched system, comprising of these inverse sub-
systems, produces as an output provided the initial condition
is .

4) Inductance Soft Faults: Following the same procedure as
in the case of capacitor faults, the variation of the inductance
over time can be described by , and the system
dynamics is then given by

(25)

(26)

where the expression for is given by (27), shown at the
bottom of the page.

Fig. 3. Buck converter.

5) Mode Identification: Following the notion used in
Section III, it results that the operators , , , , , are

Also, , and
. Note that , so the

mode identification can only be carried out using (8) and the
switch-singular pairs exist when , but this is only possible
in discontinuous conduction mode (DCM), and before DCM is
reached, will remain greater than zero for certain amount of
time, so it is possible to recover the unknown input and therefore
identify the fault. Thus, other than this case, the switching signal
can be recovered by using

if and

if and .
(28)

6) Unknown Input Recovery: In this case, both subsystems
are also invertible, so the detection and isolation of inductor soft
faults is possible. The inverse subsystems are described by

(29)

and

(30)

B. Buck Converter

Consider the buck converter of Fig. 3 where we assume both
and can be measured, and the voltage is perfectly

known. Let . The case of capacitance soft-faults is

if

if
(27)
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similar to the boost converter case, so we omit the analysis and
we focus on the more interesting case of inductor soft faults.

1) Inductor Soft Faults: Assuming as before that the induc-
tance variation over time can be described by ,
the converter dynamics are described by

(31)
and

(32)

where the expression for appears in the equation at the
bottom of the page. So to recover the value of , one must
first recover the switching signal using (14).

For subsystems (31), (32), the operators involved in mode
identification are: , and

and .
Since for any output produced by the system it is true that ei-
ther or , it follows that the equality
in (7) always holds. In other words, every output produced by
the switched system forms a switch-singular pair and the mode
detection is not possible in this case. Since the recovery of the
mode is the first step in the recovery of the unknown signal

, it is not possible to detect the faults in the inductor using
this approach. If the switching signal were already available to
the FDI system, then we could bypass this problem and it would
be possible to recover the unknown disturbance introduced by
the inductance soft faults. The corresponding inverse subsys-
tems would be described by

(33)

and

(34)

Fig. 4. Boost-buck converter.

C. Boost-Buck Converter

Consider a boost-buck converter given in Fig. 4, the dynamics
of which are governed by

(35)
and

(36)
where . We assume that the switching signal
and the load voltage are both unknown and that measure-
ments of all state variables are available. In the absence of faults,
it is possible to recover both the switching signal and . We
show that in the presence of soft faults in or , it is still
possible to recover the unknown input as well as the input
disturbance introduced by the corresponding soft fault. In con-
trast, in the presence of soft faults in , it is not possible to
recover both and the input disturbance introduced by the
fault. We just discuss the case of capacitor soft faults as the case
of soft faults in is very similar.

1) Capacitor Soft Faults: Introducing the faults as in pre-
vious examples, it follows that

(37)

if

if
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and

(38)
where

if

if .

2) Mode Identification: Applying the structure algorithm to
each subsystem, we obtain

and
,

. Thus, the switching signal can be
recovered in exactly the same manner as in (22).

3) Unknown Input Recovery: In this case, there are two un-
known inputs to be recovered, the load voltage and the
input disturbance introduced by the capacitor soft fault. For each
mode, the corresponding inverse subsystems are

(39)
and

(40)

with .

V. COMPUTER IMPLEMENTATION AND SIMULATION RESULTS

In this section, we provide an algorithm amenable for com-
puter implementation that automates the necessary tasks of FDI
discussed in previous sections. The effectiveness of the algo-
rithm to detect and isolate both hard and soft faults was tested in
a computer simulation. In this regard, MATLAB/Simulink were
used as the platform to implement the algorithm. The boost con-
verter case-study presented in Section IV was simulated numer-
ically using Simulink and PLECS [30], and random soft faults
were injected in the simulation models to assess whether or not
the algorithm implementation could successfully detect and iso-
late the corresponding injected faults. Additionally, a network of
buck converters serving several loads was also simulated to test
the effectiveness of the algorithm for detecting hard faults. The
FDI algorithm was also successfully tested in boost-buck con-
verter, although the results are not included.

Algorithm for Automatic FDI

Based upon the concepts introduced in Section III, we give an
algorithm that takes the parameters , measured output
(defined over a finite interval) and returns the set , that contains
the switching signal , the unknown inputs , and
the decision variables H_fault and S_fault that represent hard
and soft faults respectively.

Since the occurrence of a hard fault is indicated by a
switching signal taking values over a finite set, it is natural to
associate a boolean decision variable for its detection. A soft
fault on the other hand is related to a real valued signal , and
it may be undesirable to take any action when the value of
is considerably smaller. Therefore, we declare a soft fault only
when has crossed certain threshold value, denoted by in the

Algorithm 1 Fault Detection and Isolation in Switched Linear
Systems

begin
Let .
Let

.
Let
if then

Let
foreach

if then
Let
if then

is a
switch-singular pair of for some .
if is a finite set

foreach do
let

else if and then
let
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Fig. 5. Time evolution of boost converter capacitor fault flag � and inductor fault flag, � . (a) Fault flags for a capacitor soft fault starting at � � � � �� s.
(b) Fault flags for an inductor soft fault starting at � � � � �� s.

Fig. 6. Time varying capacitance and degradation from nominal value. (a) Actual value of capacitance. (b) Recovered soft fault in capacitor.

else if and then

else

else

end

algorithm. Now, H_fault (respectively, S_fault) is a vector and
a value 1 in any of the entries indicates a hard (respectively,
soft) fault in the corresponding component. In case of multiple
faults or switch-singular pairs, these decision vectors can have
multiple 1’s. In the algorithm, denotes the index-
inversion map which returns the indices of the modes that can
produce the given output and thus it may be multi-valued. If the
returned set is empty, no subsystem is able to generate that
starting from . The symbol is used for concatenation and
by convention for any set . Further, indicates
the output of the inverse subsystem when initialized at .

If the return is a non-empty set, the set must be finite and
contains pairs of switching signals and inputs that generate the
measured starting from . If the return is an empty set, it
means that there is no switching signal and input that generate

. This may be the case if the system is operating in a config-
uration/faulty mode which has not been modeled or there is an
infinite number of possible switching times. Also by our con-
catenation notation: if at any instant of time, the return of the
procedure is an empty set, then that branch of the search will be
empty because .

A. Boost Converter

We show simulation results for the boost converter case-study
discussed in Section IV-A, the parameter values of which are
given in Table I. Note that although we are considering the
converter that is operating in open-loop with a fixed duty ratio

, the proposed FDI framework is independent of the
type of control. Fig. 5 shows the time evolution of the capacitor

TABLE I
BOOST CONVERTER PARAMETER VALUES

and inductor fault flags. For scaling purpose, we plot the capac-
itor fault flag , which is obtained by multiplying the
nominal capacitance value and the input disturbance introduced
by the capacitor soft fault (19). Similarly, the inductor fault flag

results from multiplying the nominal inductance
value and the disturbance introduced by the inductor soft fault
(27). Note that the fault flags and are indicators of soft
faults and the actual error profile can be obtained by solving
ODEs (19) and (27) for and , respectively. Fig. 6 shows
the actual value of time varying capacitance ,
and the (recovered) value of obtained as a solution of (19).
We choose to work with the fault flags instead of actual error
profile because in some cases the underlying ODE solved to ob-
tain or may be unstable and the small noise accumulated
in the recovery of or may lead to inaccurate profiling of
the error.

1) Capacitor Soft Fault: In the simulation, the capacitor is
described by a time-varying capacitance

if s
if s

(41)

Thus, this is equivalent to assuming that the capacitor remains
fault-free up to s and then it starts gracefully de-
grading, causing its capacitance to decrease. The FDI system
captured this fault occurrence as it can be seen in Fig. 5(a),
where the capacitor fault flag remains zero until

s and then it suddenly jumps indicating the presence of
the soft fault. It is important to note that inductor fault flag
remains at zero, which is consistent with the fact that no soft
fault has occurred in the inductor. In Fig. 5(a), both and
are curves oscillating at very high frequency, which is difficult
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Fig. 7. Boost converter real switching signal ���� and recovered version �����. (a) ���� and ����� around the capacitor soft fault occurrence. (b) ���� and �����
around the inductor soft fault occurrence.

Fig. 8. DC network implementation in PLECS.

to observe at a first glance due to the time scale used in the repre-
sentation. Also, the degradation time constant chosen in the ex-
ample is 0.01 s. In reality, degradation time constants are much
larger; however, we chose this value to make the fault occur-
rence apparent in Fig. 5(a). This is by no means a limitation of
the FDI system, which should be able to detect degrading faults
with slower constant, but a limitation of the way the results are
displayed.

2) Inductor Soft Fault: Similarly, to model inductor soft
faults, the inductance is described by

if s
if s.

(42)

As shown in Fig. 5(b), the FDI system captured this fault and
at time s, the inductor fault flag starts drifting

from its previous zero value, indicating the presence of a soft
fault in the inductor. As expected, the capacitor fault flag does
not change after s.

3) Mode Detection: For completion, we show in Fig. 7
the real converter switching signal , and the recovered
switching signal using the structure algorithm around the
time of fault occurrence of both the capacitor and inductor. It
is clear that the mode detection part, which is key for input
recovery, works fine (consistent with the soft fault recovery
results shown in Fig. 5).

B. DC Network

Consider the dc network of Fig. 8. The purpose of this system
is to reliably provide dc power to three dispersed loads (de-
scribed by resistors , , and ) in a reliable manner. In-
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TABLE II
DC NETWORK PARAMETER VALUES, WHERE � � �� �� �

Fig. 9. Time evolution of dc network hard fault flags in transmission lines and soft fault flags in buck converter capacitors for a hard fault in transmission line �
starting at � � � � �� . (a) Transmission line fault flags � � � � � � � � � � � . (b) Buck converter capacitor fault flags � � � � � .

stead of using a single power supply, three distributed dc power
supplies (buck converters) are used so as to ensure that a single
fault (on the supply side) does not cause all the loads to lose
power. The three power supplies and the three loads are con-
nected through a network, where each transmission line linking
two nodes is modeled as a resistor.

We will focus on the problem of detecting hard and soft faults
in this system. In particular, we will consider hard faults that
cause an open circuit in a transmission line between two nodes.
This also covers the case of short-circuits if the transmission el-
ements are fused or they have some sort of relay protection. Soft
faults considered include degradation of buck converter capaci-
tors. We assume that the currents through the buck
converter inductors are measured as well as the voltages ,

, at the load buses. We assume the converters always
work in a continuous conduction mode and therefore, there are
eight possible nominal modes. For the parameter values given in
Table II, the resulting state-space description matrices are shown
in (43) at the bottom of the page, where , with

, and , where is the dec-
imal representation of the binary number within the brackets.

1) Hard Faults in Transmission Lines: Consider a hard fault
occurrence causing the transmission line linking buses 1 and 4
to open, which will result in eight new modes .
For clarity of presentation, we just provide the elements of the
matrices in (43) that will get modified as a result of this fault.

;
;

; ;
; .

In the simulation environment, this fault was injected at
. The output of the FDI system is displayed in Fig. 9. As

it can be seen in Fig. 9(a), at the time of fault occurrence,
, the flag , which indicates a hard fault in transmission

line changes from zero to one, whereas the flags for the
remaining transmission elements remain at zero, as expected,
i.e., there is no false alarm. Fig. 9(b) shows the fault flags for
soft faults in the buck converter capacitors, and as expected, they

(43)
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Fig. 10. Time evolution of dc network hard fault flags in transmission lines and soft fault flags in buck converter capacitors for a soft fault in capacitor � starting
at � � ��� � �� and a soft fault in capacitor � starting at � � � � �� . (a) Transmission line fault flags � � � � � � � � � � � . (b) Buck converter
capacitor fault flags � � � � � .

remain at zero even after the hard fault occurrence, so there is
no false alarm in this case either.

2) Soft Faults in Buck Converter Capacitors: In the simu-
lation environment, these faults will be modeled in a similar
fashion as in (41) for the boost converter numerical example. To
illustrate the ability of the FDI system to detect and isolate two
faults, we assume capacitor starts degrading at
and capacitor starts degrading at . The degra-
dation is exponential as in (41), with a rate of 100 s . The
FDI system captured both fault occurrences as it can be seen in
Fig. 10(b), where the fault flag corresponding to capacitor

remains at zero until and then starts increasing.
The other two fault flags remain at zero until , when

starts increasing, which means capacitor starts grace-
fully degrading. Flag remains at zero at all times, which
indicates capacitor does not degrade in the simulation pe-
riod considered. It is important to note that the flags for hard
faults displayed in Fig. 10(a) remain at zero, indicating no hard
faults occurrences.

VI. CONCLUDING REMARKS

It is natural to study the problem of fault detection and isola-
tion for nonlinear switched systems as has been done in [31] for
actuator faults. The framework proposed in this paper can be
extended to nonlinear systems in conceptually similar manner
using the results on invertibility of nonlinear switched systems
that appear in [25]. In this regard, preliminary work based on
the utilization of the results in [25] to FDI in nonlinear systems
is illustrated in [32], with specific application to detecting faults
in transmission lines of electric power systems.

Several other issues need to be investigated to ensure the suc-
cess of the inversion-based FDI approach. As the method re-
lies on differentiation of the outputs, robustness against output
measurement noise is imperative. Also, the need for accurate
fault impact models could potentially hinder the effectiveness
of the method. The inversion-based FDI method is naturally
suited for a distributed implementation, which can be accom-
plished by appropriately breaking the system into smaller in-
terconnected systems. Unlike observer-based methods, where a
bank of filters is required (each sensitive to a particular fault),
with the inversion-based method, it is unnecessary to have each

faulty system model running concurrently. To illustrate, using
the system of Fig. 8, the system could be broken into three in-
terconnected subsystems, each roughly composed of a source,
a load and the lines linking these components. Each subsystem
will have additional inputs (possibly unknown) resulting from
the interconnection with other subsystems. In this scenario, it is
possible to undertake FDI locally using the inversion approach.
This would also allow the recovery of those possibly unknown
inputs introduced when partitioning the system. Additionally, if
the individual subsystems are invertible, these unknown inputs
can also be uniquely recovered. This would be of interest if such
unknown inputs cannot be measured for reconfiguration strate-
gies in the system operation. Also, the observer-based method
usually assumes that the switching signal is known whereas our
proposed framework does not make any such assumption. These
aspects lead to some interesting applications, some of which
have been highlighted in this paper.
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