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Design Under Uncertainty:
Balancing Expected Performance
and Risk
The problem of quantifying uncertainty in the design process is approached indirectly.
Nonquantifiable variability resulting from lack of knowledge is treated as epistemic un-
certainty and quantifiable variability caused by random influences is treated as aleatory
uncertainty. The emphasis in this approach is on the effects of epistemic uncertainty, left
unquantified, on design performance. Performance is treated as a random function of the
epistemic uncertainties that are considered as independent variables, and a design deci-
sion is based on the mean and variance of design performance. Since the mean and
variance are functions of the uncertainties, multicriteria decision methods are employed
to determine the preferred design. The methodology is illustrated on a three-spring model
with stochastic forcing and two uncertain damping coefficients. Based on the example,
the concept of balancing expected performance and risk is explored in an engineering
context. Risk is quantified using aleatory uncertainty for fixed values of epistemic uncer-
tainty. The study shows the unique features of this approach in which risk-based design
decisions are made under both aleatory and epistemic uncertainties without assuming a
distribution for epistemic uncertainty. �DOI: 10.1115/1.4002836�
Introduction
While uncertainty is understood as the inability to determine

he true state of affairs of a system, there are several theories from
ifferent fields, which are in support of or in conflict with each
ther, on how to define and model it. The engineering community
istinguishes between aleatory and epistemic uncertainty �1�.
leatory uncertainty results from inherent variations associated
ith the system or its environment. Epistemic uncertainty results

rom lack of knowledge about the system or the environment due
o scarce data, limited understanding, or fault events. The former
s commonly modeled with probability theory while for the latter,
he use of probability theory is limited and mathematical theories
uch as Bayesian estimation, evidence theory, possibility theory,
nd interval analysis are applied.

To account for uncertainty, the conventional �deterministic�
ptimization-based framework for engineering design has been
xtended. Type I and type II robust design approaches have been
roposed to model variations in design evaluation due to varia-
ions in random parameters and variables �2,3�. Variations in de-
ign feasibility have been captured by reliability-based design in
hich design variables are random and the design feasibility is
odeled by the probability of constraint satisfaction �4–9�. In Ref.

10�, the reliability-based approach has been extended with inter-
al variables that cannot be represented by any distribution. The
uthors also convincingly motivate the use of interval variables.

In engineering optimization, many authors use also fuzzy sets
nd possibility distributions to handle uncertainty �11�. A com-
ined probability/possibility approach using random and fuzzy
ariables to account for both aleatory and epistemic uncertainties
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is proposed in Ref. �12�. Effects of epistemic and aleatory uncer-
tainty are quantified in Ref. �13� using concepts of the evidence
theory.

Another approach is based on Monte Carlo simulations, which
generate random sample behaviors that imitate uncertainties inher-
ent in any process �14–16�. For multicriteria design problems, the
multiattribute utility theory has been used in the presence of un-
certainty and risk �3,17–19�. Multidisciplinary optimization ap-
proaches have been extended to account for uncertainty but with
limited modeling capabilities for interactions between disciplines
or components �20–22�.

In the operations research community, uncertainty has been
modeled with stochastic programming �23,24�, which uses proba-
bilistic information about the problem data, and robust optimiza-
tion �25,26�, which integrates goal programming formulations
with a scenario-based description of the data. A recent detailed
study of different perspectives of uncertainty and risk is presented
in Ref. �27� while a review of approaches to risk in optimization
under uncertainty is given in Ref. �28�.

Knight �29�, a pioneer in studies on uncertainty and risk in
economics, clearly distinguished between the epistemic and alea-
tory uncertainties long before they were called so. According to
Knight, uncertainty is system nonquantifiable randomness arising
when a system cannot be completely described because of a lack
of understanding or limitation of knowledge. On the other hand,
risk is known as system quantifiable randomness caused by sto-
chastic variability resulting from inherent fluctuations that the sys-
tem experiences with respect to time, space, or individual charac-
teristics. We are guided by Knight and declare a variable
epistemic only if not enough statistical data and engineering judg-
ments are available about it. While other authors �e.g., Du �13��
try to quantify epistemic uncertainty, we define epistemic vari-
ables as such that cannot be quantified due to lack of information

of any kind.
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We propose using random functions to model decision prob-
ems associated with design under uncertainty. In stochastic analy-
is, a random function is an indexed collection of vector random
ariables Y�b� , b�B defined on the probability space and taking
alues in Rm, where B�Rn is an indexed parameter set. When n
1 and m=1, the concept of random function reduces to the ran-
om process that, in engineering, is often referred to as the times
eries. When n=2 and m=1, the concept of random function re-
uces to the random field �referred to as Y�s ,r� later� that has been
sed to model static images, random topographies �landscapes�,
omposition variations of an inhomogeneous material �concrete
trength, soil permeability�, etc. If m�2, we talk about vector
elds.

In our approach, nonquantifiable variability resulting from lack
f knowledge is treated as epistemic uncertainty and quantifiable
ariability caused by random influences is treated as aleatory un-
ertainty. Our approach is new in the sense that what is unknown
i.e., epistemic uncertainty� is left necessarily unmodeled but is
elated to the observed behavior of the system. The domain B
epresents the space of epistemic uncertainties determined by ex-
genous unknown parameters that do not follow any stochastic
rinciples. The exogenous parameters might be completion time,
vailability of resources, physical parameters �temperature, hu-
idity�, interest rates, degree of hazard, demands/requirements,
anufacturing environment, operating conditions, etc. On the

ther hand, the random field Y�b� models the criterion evaluating
ystem performance that is variable due to inherent fluctuations
hat follow stochastic principles. In the case presented in Sec. 4, a
andom field Y�b1 ,b2� is introduced to model a criterion for de-
igning a three-spring system with friction coefficients b1 and b2
eing the epistemic uncertainties.

A benefit of our modeling epistemic uncertainties as indepen-
ent variables is that system responses become random functions
f these epistemic uncertainties. That is, the system response Y�b�
or fixed values of discretized epistemic uncertainties �b1 ,b2� be-
omes an aleatory uncertainty. However, it is challenging to esti-
ate the joint probability density function of the overall system

esponse. Generally, the system response Y�b� is not normally
istributed. In Sec. 4.3, we present an approach to converting a
on-normal random field into a normal random field. This ap-
roach enables our methodology to quantify aleatory uncertainties
sing just the mean and the standard deviation of the field inde-
endently of the type of its original distribution.

This methodology has already been applied to design problems
n automotive vehicle design: a preliminary version �30,31� and an
dvanced version �32�. In the current paper, we present a simple
esign problem under uncertainty and risk with a finite number of
easible designs. The example, despite being simple, illustrates
ost of the features of our methodology and points to theoretical

nd methodological gaps to be filled in. Under different modeling
ssumptions but using the same design criterion, we develop sev-
ral decision models of this design problem. In each case, the
esign criterion is converted to a decision criterion that guides the
hoice of a preferred design. In particular, in a stochastic case, risk
s quantified using aleatory uncertainty for fixed values of
pistemic uncertainty and the concept of balancing expected per-
ormance and risk is used as a decision criterion. Methods of
ulticriteria decision-making �MCDM� are used to identify a de-

ign that is preferred in the entire range of uncertainties. Concep-
ually, our epistemic uncertainties correspond to the interval vari-
bles in Ref. �10� but our modeling and methodological
pproaches are different. Our model makes use of random fields
ather than the reliability-based optimization and our methodology
dentifies a design that performs best over the entire space of
ncertainties rather than only for the worst case combination.

In Sec. 2, we present a physics-based model of the design prob-

em and introduce a design criterion. Design in a deterministic
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case under uncertainty is discussed in Sec. 3 while Sec. 4 presents
a stochastic case. This paper is concluded in Sec. 5.

2 Design Problem
We believe that design problems always arise in a context dic-

tated by a higher-level decision maker �DM� who passes the de-
sign context down to the designer. The design context is given by
objectives and constraints that often come from previous design
decisions. Even within a tight design context, the designer may be
faced with external disturbances and uncertainties that are un-
known to the higher-level DM. Allowing for both uncertainty and
quantifiable randomness, and also for communication across deci-
sion levels implied by “engineering context” requires a new ap-
proach.

We start with a physics-based model of a three-spring system to
quantify its stochastic performance under uncertainty and use this
model solely for illustration to mathematically quantify this per-
formance. We then develop decision models of the three-spring
system, which is at the heart of our methodology and is used in
the subsequent decision phase to identify a preferred design alter-
native.

Note that in actual applications in industry, physics-based mod-
els may not be available or may be available only for the simplest
components in which case the performance to build a decision
model could be obtained from archived data, simulations of vir-
tual systems, or from informed guesses for preliminary designs.

2.1 A Physics-Based Deterministic Model. Consider the
process level model of a three-spring system as our “real” system,
i.e., the source of observations used to estimate second order sta-
tistics of the system performance. As depicted in Fig. 1, masses
m1 and m2 with friction coefficients b1 and b2, respectively, are
connected with three springs with coefficients k1 ,k2 ,k3. When ex-
ternal time-dependent forces F1�t� and F2�t� are applied to the
masses, the latter move and their displacements, y1�t� and y2�t�,
are observed.

The objective of the higher-level DM is to achieve a “balanced”
system, which is not precisely defined by this DM. This general
design criterion along with the external forces, viewed as impor-
tant at the higher level, is passed down to the designer. The de-
signer must find masses m1 and m2, so that a feasibility condition
specified by an earlier design decision holds, for example m1
+m2=3, and the system is balanced when the forces are applied.

The designer, working at the level of process design, makes use
of the following mathematical model:

m1y1� = − k1y1 − b1y1� + k2�y2 − y1� + F1

m2y2� = − k3y2 − b2y2� − k2�y2 − y1� + F2

The first and second derivatives of the displacements are denoted
by yi� and yi�, respectively, for i=1,2. Renaming the variables as
x1=y1 , x2=y1� , x3=y2 , x4=y2�, and assuming for simplicity that

Fig. 1 Three-spring system
F2=0, the model can be written as
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dX = �AX + F̂1�dt �1�

here XT= �x1 ,x2 ,x3 ,x4�, F̂1
T= �0, �1 /m1�F1 ,0 ,0�, and A is the fol-

owing matrix:

A = �
0 1 0 0

− �k1 + k2�/m1 − b1/m1 k2/m1 0

0 0 0 1

k2/m2 0 − �k2 + k3�/m2 − b2/m2

�
his deterministic model is now extended to account for uncer-

ainty and randomness.

2.2 A Physics-Based Stochastic Model With Uncertainty.
e recognize that the deterministic model is not realistic because

he performance of the three-spring system depends on the values
f the friction coefficients, the external forces applied to the
asses, and other environmental factors. At this modeling stage,

ncertainty and quantifiable randomness are introduced to the
odel. Uncertainty enters the model through the friction coeffi-

ients b1 and b2 that are assumed to be uncorrelated. It is assumed
hat these coefficients are unknown and have no known probabil-
ty distribution and can be modeled only with intervals of uncer-
ainty. Quantifiable randomness is modeled with Wiener processes
f time.

The standard Wiener process W�s� �also known as the Brown-
an motion process� has five basic properties: �i� W�0�=0; �ii�
ample paths are almost surely continuous; �iii� for 0�s�r, the
ncrements W�r�−W�s� are random variables and are normally
istributed with the zero mean and variance r−s; �iv� disjoint
ncrements are independent; and �v� the process is normal.

The external force F1�t� is random and modeled with a Wiener
rocess W1�t�, i.e., dF1=−F1dt+wdW1 where w�0 is a scaling
actor and dW1 is the differential of W1. Additionally, the system
xperiences external disturbances exerted on the masses m1 and
2, which are also modeled with Wiener processes, W2�t� and

4�t�. The ordinary differential equation �A� becomes the stochas-
ic differential equation

dX = �AX + F̂1�dt + B�X�dW �2�

here B�X�dW= �0,uX2dW2 ,0 ,vX4dW4�T with u ,v�0 being
caling factors, and dW2 and dW4 being the differentials of W2

Fig. 2 Simulation for the same designs „m1=
„b1 ,b2…= „1.5,1.5…; right „b1 ,b2…= „4.0,0.25…. Init
y1„0…=−1, y2„0…=1, and y1�„0…=y2�„0…=0, respecti
nd W4, respectively. For illustrative purposes assume that k1=3,
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k2=1, k3=2, X�0�= �−1,0 ,1 ,1�T, and �w ,u ,v�= �1 /10,1 /2,1 /3�.

2.3 A Design Criterion. The final task in the modeling pro-
cess is to define a criterion that will effectively measure the design
performance and according to which feasible designs could be
compared.

To obtain a better understanding of how to measure the system
performance, we simulate the external disturbances and record the
displacement and velocity of the masses. We use the Milstein
algorithm �33� to simulate the stochastic differential Eq. �2�. Us-
ing this algorithm, the convergence is known to be second order
for the computed statistics of the system output.

For each choice of sample disturbances, the velocity of each
mass is a random process and we cannot predict the velocity at a
later time given the velocities up to and including the velocity at
time t1. Based on the simulations, we only know the distribution
of displacements and velocities at a later time. Figure 2 depicts the
displacement and velocity of both masses �m1=m2=1.5� for two
different pairs of friction coefficients, �b1 ,b2�= �1.5,1.5� and
�b1 ,b2�= �4.0,0.25�. This example illustrates different perfor-
mances of the same design at two different uncertainty pairs and
points to the difficulty of comparing designs that exhibit stochas-
tic behavior.

Since the general objective is to achieve a balanced system, one
may think of the energy dissipated by the masses m1 and m2.
Figure 3 depicts the energy dissipated by the masses whose ve-

=1.5… with two different uncertainty pairs: left
conditions for displacement and velocity are
.
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ocity and displacement are shown in Fig. 2. To calculate the
nergy, we rewrite spring equations �A� that balance forces on the
wo masses

m1y1� = − �k1 + k2�y1 − b1y1� + k2y2 + F1�t�

m2y2� = k2y1 − �k2 + k3�y2 − b2y2� + F2�t�
The two forces acting in the direction opposite the motion,

issipating the system’s initial energy, are b1y1� and b2y2�. The
ncrements of energy lost, equivalent to the work done by these
wo forces, are b1y1�dy1 and b2y2�dy2. Calculate the energy dissi-
ated by the mass m1 and m2, respectively, as follows:

H1�b1,b2� =�
0

�

b1y1�dy1�t� =�
0

�

b1x2
2dt

nd

H2�b1,b2� =�
0

�

b2y2�dy2�t� =�
0

�

b2x4
2dt

he initial potential energy of the system is the total work done on
he masses m1 and m2 by the system, namely, H1�b1 ,b2�
H2�b1 ,b2�. Eventually, the system comes to rest with zero po-

ential energy. The initial energy is dissipated by the friction of the
asses. A reasonable notion of balance is that H1�b1 ,b2�
H2�b1 ,b2�, i.e., the masses dissipate equal amounts of the initial
otential energy. Assume that this criterion is a reasonable inter-
retation of the upper level objective of the system being bal-
nced. Introduction of this design criterion is a creative act on the
art of the designer.

The design criterion is a number Y�b1 ,b2� calculated from the
ollowing expression:

Y�b1,b2� = �H1�b1,b2� − H2�b1,b2�� �3�

here the integrals above are calculated on the finite interval
0,10�. The objective of the design problem is to find the best
erforming design among finitely many designs allowing different
ombinations of the masses m1 and m2. For demonstration, as-
ume five feasible designs satisfying the constraint m1+m2=3 and
iven by the pairs �m1 ,m2� as follows:

d1 = �0.5,2.5�, d2 = �1.0,2.0�, d3 = �1.5,1.5�

d4 = �2.0,1.0�, d5 = �2.5,0.5�

n effect, criterion Y is a function of �m1 ,m2 ,b1 ,b2�. Referencing
ne of the five designs, particular choices of m1 and m2, we use Yi,
=1 ,2 , . . . ,5. For particular values of the uncertainties �b1 ,b2�,
e use Y�b1 ,b2� or for a particular design Yi�b1 ,b2�.
The design problem can now be formulated as the following
ultiobjective optimization problem �MOP�:

min	Y�m1,m2,b1,b2���b1,b2� � B


s . t . �m1,m2� � 	set of feasible designs
 �4�

here B denotes the uncertainty space. The multiple objectives of
his MOP are related to the design criterion calculated at multiple
oints b= �b1 ,b2� of the uncertainty space.

In the following sections, we solve the three-spring design
roblem by solving this MOP under different assumptions. We
xamine a deterministic case with epistemic uncertainty and two
tochastic cases, one without and the other with epistemic uncer-
ainty. In each case, we use either the proposed design criterion or
decision criterion being a deterministic counterpart of the design

riterion. We solve the MOP following the standard methodology
f first finding the feasible designs that are efficient in the Pareto
ense, and then identifying a preferred design from among the
fficient ones by employing MCDM methods. Note that we do not

olve an optimization problem but rather a selection problem to

11009-4 / Vol. 132, NOVEMBER 2010
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identify efficient designs. In effect, our approach does not depend
upon the solvability of any optimization problem, which is a typi-
cal limitation of many decision methods.

3 Design in a Deterministic Case Under Epistemic Un-
certainty

The three-spring system is assumed to be deterministic, i.e., the
scaling factors w=u=v=0. Let the intervals �b1

l ,b1
u� and �b2

l ,b2
u�,

where b1
l �b1

u model the intervals of uncertainty for the friction
coefficients b1 and b2, respectively. Since these coefficients are
assumed to be uncertain, it is absolutely impossible to state that
one value is more likely than another or that they are equally
likely. Thus, each combination of values attained by b1 and b2 are
considered independent. Naturally, it is impossible to compute the
design criterion for all these combinations since an interval of the
real line contains uncountably many numbers. The design crite-
rion, however, is a continuous function of b1 and b2, so each
interval of uncertainty can be discretized into sufficiently small
intervals and the design criterion can be computed at the grid
points of the discretization. Henceforth, each interval of uncer-
tainty is represented by its grid points.

Assume the uncertain friction coefficients b1 and b2 take values
in the intervals �b1

l ,b1
u�= �1.5,4.0� and �b2

l ,b2
u�= �0.25,1.5�, re-

spectively. The MOP given by Eq. �4� becomes

min	Y�m1,m2,b1,b2��b1 � �1.5,4.0�,b2 � �0.25,1.5�


s . t . �m1,m2� � 	set of feasible designs
 �5�
Due to the discretization, the number of grid points in each

interval of uncertainty is finite and so is the number of objectives
in this MOP. For each feasible design, we calculate design crite-
rion �3� at all grid points using deterministic Eq. �1� and construct
a performance surface made up of the computed values of the
design criterion. Figure 4 depicts the performance surfaces for all
five feasible designs.

Solving the MOP involves identifying the feasible designs that
are efficient �in the Pareto sense�.

DEFINITION 3.1. Design iis said to dominate design j provided
for all b�B :Yi�b��Y j�b� with at least one strict inequality. De-

Fig. 4 Performance surfaces for the feasible designs. The two
lowest surfaces represent the performances of design 4 „very
dark gray… and design 5 „black….
sign i is said to be efficient if it is not dominated by any other
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easible design. The performance surface associated with efficient
esign is called nondominated.

Figure 4 shows that designs 4 and 5 dominate all other feasible
esigns and are efficient while their surfaces are nondominated.

3.1.1 Preference Rule. If there exists a single efficient design,
hen this design is the preferred design. Otherwise, in order to find
preferred design, we apply two MCDM methods. First, we apply

he max-ordering approach �34� and the efficient design that
olves the min-max problem

min
i=4,5

max
b�B

Yi�b� �6�

ecomes preferred.
Second, we apply the minimum-norm approach �34�. We deter-
ine the lower envelope of all nondominated surfaces, which we

efer to as the ideal surface Y ideal�b�:

Y ideal�b� = min
i=1,. . .,5

Yi�b�

ote that the ideal surface may not be associated with any indi-
idual efficient design but some or even all designs may contrib-
te to it. We then find the preferred design whose nondominated
urface is the closest to the ideal surface by solving

min
i=4,5

	�Yi�b� − Y ideal�b��,b � B
 �7�

here � · � denotes the norm. Additionally, as another preference
ule, we calculate the volume between each nondominated surface
nd the ideal surface. Table 1 reports the optimal objective values
distances� for the designs 4 and 5 for problem �6�, problem �7�
ith �1 ,�2 and ��-norm, and also the volume. Based on the first

our measures, design 5 is preferred while design 4 is preferred
ith respect to the volume measure.
In this paper, the efficient set is presented solely for demonstra-

ion purposes because the MCDM methods for finding a preferred
esign could be applied directly to the feasible rather than effi-
ient set of designs.

Design in a Stochastic Case
Designs based on stochastic Eq. �2� recognize quantifiable vari-

bility affecting the three-spring system coming from the stochas-
ic external force F1�t� and the external disturbances exerted on
he masses m1 and m2. The system performance is stochastic and
s examined without and with epistemic uncertainty originating
rom the design parameters b1 and b2. The methods of MCDM
sed in the deterministic case above are extended to the corre-
ponding classes of decision problems. Notice that there is overlap
etween the approaches to the three classes of problems.

4.1 Design With No Epistemic Uncertainty. Unlike the de-
erministic case, there is no epistemic uncertainty but quantifiable
andom variability. For fixed values of the friction coefficients b
�b1 ,b2� and a design �m1 ,m2�, performance Y�b�= �H1�b�
H2�b�� is a random variable. Simulating the stochastic differen-

ial Eq. �2� 20,000 times, we calculate the sample mean �k of the
erformance Yk�b� ,k=1, . . . ,5 and estimate the probability P�Y j

able 1 Distances and volumes between the nondominated
urface of designs 4 and 5 and the ideal surface

d4 d5

ax-ordering 2.9514 1.4812

1 14.5550 10.1747

2 5.5897 2.3435

� 2.5385 0.9796
olume 0.5618 0.9376
�k� for j=1, . . . ,5.
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DEFINITION 4.1. Risk associated with design j relative to design k
is the probability that the performance of design j exceeds the
expected performance of design k, riskkj = P�Y j ��k�.

Also, introduce a decision surrogate

fkj = riskkj�k

which is a measure of how badly design j performs relative to
design k or the “exposure” of design j relative to design k. Taking
the decision problem as a multicriteria decision problem, each fkj,
k=1,2 , . . . ,n, can be thought of as the performance of design j
with respect to the kth criterion.

DEFINITION 4.2. Design j is said to dominate design i if fkj
� fki for all k, and fkj � fki for at least one k, k=1,2 ,3 ,4 ,5.
Design j is said to be efficient if there does not exist another
design that dominates design j.

If there exists a single efficient design, then this design is the
preferred design.

Given the five feasible designs and fixing b1=1.5 and b2=1.5,
we have a 5�5 matrix of fkj values:

�
f11 f12 f13 f14 f15

f21 f22 f23 f24 f25

f31 f32 f33 f34 f35

f41 f42 f43 f44 f45

f51 f52 f53 f54 f55

�
= �

0.4549 0.4087 0.2660 0.1231 0.0883

0.4605 0.4113 0.2678 0.1240 0.0890

0.7275 0.5925 0.3835 0.1848 0.1276

0.9372 0.8288 0.5897 0.3311 0.2475

0.9535 0.8631 0.6351 0.3714 0.2980
�

Column j represents the decision surrogate fkj for design j asso-
ciated with designs k=1, . . . ,5. For example, design j is efficient,
if fkj � fki for k=1,2 , . . . ,5 and i=1, . . . ,5 and fkj � fki for at least
one k=1, . . . ,5 and i=1, . . . ,5. Design 5 is the only efficient de-
sign and hence it is the least-risk design based on 20,000 simula-
tion runs. Design 5 is then the preferred design.

4.1.1 Preference Rule. If there is no single least-risk or effi-
cient design, then a preference rule can be introduced by extend-
ing the preference rule used in the deterministic case. Define an
ideal vector f ideal with components

fk
ideal = min

j=1,. . .,5
fkj, k = 1, . . . ,5

The preferred design is the efficient design that solves

min
j=1,. . .,5

�f ·j − f ideal� �8�

that is the design whose decision surrogate is the closest to f ideal,
measured in terms of a norm �e.g., the �2-norm�. In the absence of
a least-risk design, this preference rule, one of many possibilities,
offers a way for the designer to shape the risk profile of the ulti-
mate choice.

4.1.2 Reduction to the Deterministic Case. Note that when
“dominance” is reduced to the deterministic case, Yi=�i�0 for
each design i=1,2 , . . . ,5. The distribution of Yi treated as a trivial
random variable is given by P�Yi��i�=0 and P�Yi=�i�=1. To
check for dominance between two designs, the comparison of the
decision surrogate between them reduces to the comparison be-
tween their performances �or means�.

Consider two designs, j and i, and assume that � j =Y j �Yi
=�i. Then, by Definition 4.1, 0�i= f ij � f ii=1�i. Consider also all

other combinations of the magnitude of the means �i, � j, and �k.
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f �k�� j ��i and since Y j =� j, we obtain P�Y j ��k�=1= P��i

�k� and, again by Definition 4.1, fkj = fki=�k. Based on Defini-
ion 4.1, we examine the other cases:

If � j ��k��i then P�Yi��k�=1 and fkj = P�Y j ��k��k��k

= fki.
If � j ��k��i then P�Y j ��k�=0� P��i��k�=1 and fkj =0
��k= fki.
If � j ��i��k then P�Y j ��k�=0 and fkj =0� fki.
If � j ��i��k then P�Y j ��k�=0= P�Yi��k� and fkj = fki=0.

Based on all the cases, fkj � fki for all k and f ij � f ii, which
eans that if � j =Y j �Yi=�i, design j dominates design i.
Conversely, assume that design j dominates design i and out-

erforms design i with respect to criterion k, i.e., fkj � fki. Then,
y Definition 4.1, P�Y j ��k�� P�Yi��k�, which yields Y j �Yi.
Therefore, when the system is deterministic, design j dominates

esign i if and only if Y j �Yi. In effect, the new rule implied by
efinitions 4.1 and 4.2 is consistent with the usual idea of domi-
ance for the deterministic case.

Note that this case serves as a foundation for our approach in
he sense that the approach stems from the stochastic case with no
pistemic uncertainty, as presented in this subsection, but is meant
o be used for stochastic systems with epistemic uncertainty.

4.2 Design With Finitely Many Values of Epistemic
ncertainty. To build up the stochastic case, assume a finite num-
er of uncertainty values. For simplicity, assume that b can be
ither b1= �1.5,1.5� or b2= �1.5,0.5�. We are to choose a design
ithout knowing the value of b. Let fkj

1 and fkj
2 denote the surro-

ate for b1 and b2, respectively. The matrix of surrogates can be
ormed as follows:

�
f11

1 f12
1 f13

1 f14
1 f15

1

f21
1 f22

1 f23
1 f24

1 f25
1

f31
1 f32

1 f33
1 f34

1 f35
1

f41
1 f42

1 f43
1 f44

1 f45
1

f51
1 f52

1 f53
1 f54

1 f55
1

f11
2 f12

2 f13
2 f14

2 f15
2

f21
2 f22

2 f23
2 f24

2 f25
2

f31
2 f32

2 f33
2 f34

2 f35
2

f41
2 f42

2 f43
2 f44

2 f45
2

f51
2 f52

2 f53
2 f54

2 f55
2

�
= �

0.4549 0.4087 0.2660 0.1231 0.0883

0.4605 0.4113 0.2678 0.1240 0.0890

0.7275 0.5925 0.3835 0.1848 0.1276

0.9372 0.8288 0.5897 0.3311 0.2475

0.9535 0.8631 0.6351 0.3714 0.2980

0.4558 0.4482 0.2882 0.0811 0.0577

0.4042 0.4145 0.2698 0.0751 0.0537

0.6914 0.6098 0.3872 0.1165 0.0801

0.9712 0.9311 0.7275 0.3272 0.3341

0.9718 0.9334 0.7319 0.3313 0.3396

�
efinition 4.2 is extended to the case with finitely many uncer-

ainty values. For the example case, design j is said to dominate
esign i if fkj

1 � fki
1 and fkj

2 � fki
2 for all k with strict inequality for at

east one k, k=1, . . . ,10. Designs 4 and 5 are efficient.
4.2.1 Preference Rule. Since two designs are efficient, a pref-
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erence can be introduced by extending the rule applied in the case
of one uncertainty value. Define an ideal vector with the compo-
nents

fk
ideal = �min1�j�5 fkj

1 , 1 � k � 5

min1�j�5 f �k−5�j
2 , 6 � k � 10

and solve problem �8�. Using the �2-norm, design 4 has the dis-
tance of 0.1429 to f ideal and design 5 has the distance of 0.0108 to
f ideal. Hence, design 5 is preferred. Remember that this is only one
way for making the final decision.

The two uncertainty value case can be extended to any small
number of values. The computational burden becomes too heavy
for implementation when the number of uncertainty values be-
comes large.

4.3 Design With Intervals of Epistemic Uncertainty
Values. When epistemic uncertainty is modeled with an interval
of values, the design criterion Y�b1 ,b2� , b�B, representing the
performance of the three-spring system, becomes a random field
over the uncertainty space. The second order statistics for the
random performance as a function of the uncertainties requires the
expected performance, in the example, a function of two vari-
ables, and the covariance of the performance, a function of four
variables. Our computations involving system performance are
simplified if we shift our attention to Y =H1�b1 ,b2�−H2�b1 ,b2�
instead of �H1�b1 ,b2�−H2�b1 ,b2��. The design objective is that Y
should be close to zero, i.e., having a small mean and variance.
The second order statistics of Y�b1 ,b2� , b�B are the expected
performance

�̄�b1,b2� = E�Y�b1,b2��
the covariance kernel

R̄�b1
i ,b2

j ,b1
k,b2

�� = E��Y�b1
i ,b2

j � − �̄�b1
i ,b2

j ���Y�b1
k,b2

�� − �̄�b1
k,b2

����
and the variance

�̄2�b1,b2� = var�Y�b1,b2�� = R̄�b1,b2,b1,b2�

Let �̄i�b1 ,b2�, R̄i�b1
i ,b2

j ,b1
k ,b2

��, and �̄i
2�b1 ,b2� denote the ex-

pected performance, covariance kernel, and variance, respectively,
for design i , i=1, . . . ,5. Figure 5 depicts the surfaces of expected
performance and variance for all five feasible designs. Notice the
difference in scales for the means and variances.

We turn to the question of incorporating the variances of de-
signs 4 and 5 in the decision process. Since our design preference
is based on simulations of the three-spring system, we are limited
to estimates of the second order statistics for discrete values of the
uncertainties. We will not discuss convergence but the smoothness
of the functions used in the decision methodology strongly sug-
gests that the estimates converge and hence the preference is ro-
bust. Assume that 	b1

i 
i=1
m and 	b2

j 
 j=1
n are partitions of �b1

l ,b1
u�

= �1.5,4.0� and �b2
l ,b2

u�= �0.25,1.5�, respectively. A complete sec-
ond order description of the uncertain stochastic system requires
the covariance of the response field. Even a modest discretization
of the uncertainty space, say, b1

i ,b1
k � 	1.5,1.75, . . . ,4.0
 and

b2
j ,b2

�� 	0.25,0.375, . . . ,1.5
, would require simulating the sys-
tem with 1212=14,641 different pairs of friction coefficient val-
ues. This is a very heavy computational burden.

For our example the situation is much simpler, i.e., we assume

that R̄�b1
i ,b2

j ,b1
k ,b2

��=0 if �b1
i ,b2

j �� �b1
k ,b2

��, and so the estimation

of the discrete R̄ requires that we only consider the “diagonal” of

R̄, which is the variance �̄2. We will continue with a discussion of
the decision process and will later offer some computational evi-
dence that this simpler situation for the example does hold.

Since we have simulated the system for b= �b1
i ,b2

j �, where i , j
=1,2 , . . . ,11 and all five designs, we could apply the decision

methods of the last subsection. However, because of the size of
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he decision surrogates, the interpretation of risk and the justifica-
ion of the preferred choice become hazy. Further, we would have
rouble making a convergence argument, i.e., that the preferred
hoice does not change with finer partitions of �1.5,4.0� and
0.25,1.5�. We turn to an alternate approach that avoids these dif-
culties.

4.3.1 A Decision Surrogate. Our objective is to convert the
andom field Y into a normal field whose statistics will carry in-

ormation about �̄ and �̄2. Let Ȳ�b� , b�B be a random field with
ean zero defined as

Ȳ�b� = H1�b� − H2�b� − E�H1�b� − H2�b��

sing our assumption that

R̄�b1
i ,b2

j ,b1
k,b2

�� = E�Ȳ�b1
i ,b2

j �Ȳ�b1
k,b2

��� = 0

hen �b1
i ,b2

j �� �b1
k ,b2

��, we have the property of statistical inde-

endence for Ȳ. Define a random field Z�b� , b�B

Z�b1,b2� =�
1.5

b1�
0.25

b2

Ȳ�u,v��du�1/2�dv�1/2

hen, by the central limit theorem, Z is a normal field with mean
ero �27�. We now calculate the variance of Z

�2�b1,b2� = E�Z�b1,b2�Z�b1,b2�� =�
1.5

b1�
0.25

b2

E�Ȳ2�u,v��dudv

=�
1.5

b1�
0.25

b2

�̄2�u,v�dudv

ote that we do not need to simulate Z in order to compute its
ariance �2 because we can compute it from the variance of Y.
owever, field Z has zero mean and does not carry any informa-

ion about �̄. We therefore define � by applying to �̄ the trans-
ormation

��b1,b2� =�
1.5

b1�
0.25

b2

E�Ȳ�u,v��dudv =�
1.5

b1�
0.25

b2

�̄�u,v�dudv

nd construct field �+Z. This field is random and determined by
and �. Note also that the distribution of the random variable

�b1 ,b2�+Z�b1 ,b2� is determined by ��b1 ,b2� and ��b1 ,b2� but
he distribution of the random variable Y�b1 ,b2� is not determined
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Fig. 5 Expected performance surfaces �̄i„b1 ,
for design 4 „light gray… and design 5 „dark gr
y ��b1 ,b2� and ��b1 ,b2�. Typically, the surfaces given explicitly
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by � and � are smoother than those given by �̄ and �̄.
Since �+Z is normal, we use a decision surrogate

f�b1,b2� = ��b1,b2� + 	��b1,b2�

with a fixed value 	, 	�0. The expression � j +	� j for 	�0
calculated for design j has the probabilistic interpretation that, if,
say, 	=1, approximately 16% of the time the values of � j +Zj will
exceed � j +� j. Thus, we can use � j +	� j as the decision criterion
for identifying the designs balancing expected performance and
risk, i.e., the designs with “minimum” � j +� j. The fixed 	 reflects
the decision maker’s tolerance for risk. In effect, we make risk
dependent on the uncertainties �b1 ,b2��B and define it as
follows:

DEFINITION 4.3. Risk associated with design i is the probability
of an undesirable outcome when design i is used and is calculated
as

riski�b1,b2� = Prob��i�b1,b2� + Zi�b1,b2� � �i�b1,b2� + 	�i�b1,b2��
�9�

for a fixed value 	, 	�0.
The advantage of using this definition is that, since the risk

tolerance 	 is the same for all designs, the DM can concentrate on
the magnitude of the decision criterion, resulting from that level
of probability and choose the design that yields the smallest mag-
nitude. In this case, ��b1 ,b2�+	��b1 ,b2� is minimized. For 	
�0, similar statements can be made and ��b1 ,b2�+	��b1 ,b2� is
maximized.

We can now proceed in the same manner as for the other cases.
We define domination between designs according to Definition 3.1
and introduce a preference rule. Let f i�b1 ,b2� denotes the decision
surrogate for design i.

DEFINITION 4.4. Design i is said to dominate design j provided
for all �b1 ,b2��B : f i�b1 ,b2�� f j�b1 ,b2� with at least one strict
inequality.

Let an ideal surrogate surface be defined as

f ideal�b1
k,b2

�� = min
j=1,. . .,5

� j�b1
k,b2

�� + 	� j�b1
k,b2

��

for k=1,2 , . . . ,m and �=1,2 , . . . ,n. We find the preferred design
whose nondominated surface is the closest to the ideal surrogate
surface by solving

min	�f i�b� − f i
ideal�b��2,b � B
 �10�
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Designs 4 and 5 are efficient and their surrogate surfaces are
epicted in Fig. 6. Solving problem �8�, we obtain the optimal
alue of 1.8052 for design 4 and 0.5882 for design 5. Design 5 is
gain the preferred design.

The designer might now pass the preferred design �2.5,0.5� to
he higher-level DM. Recall, however, that the latter does not
now or possibly understand the three-spring model and so the
wo masses are meaningless. Furthermore, the uncertainties are
lso meaningless, so that the ordered pair of functions of the un-
ertainties, ��5�b1 ,b2� ,�5�b1 ,b2��, is meaningless too. However,
t seems very reasonable for the lower-level designer to pass up
he pair ��5�b1

� ,b2
�� ,�5�b1

� ,b2
���, where �b1

� ,b2
�� produces the maxi-

um value of the function �3�b1 ,b2�+	�3�b1 ,b2�, which is the
stimate of the worst case performance of the preferred design.
his estimate is a unique feature of our approach and may be used
y the upper-level DM as the measure of the balance of the sys-
em while treating its performance as a function of the passed
own input F1.

4.3.2 Experimental Evidence of Statistical Independence. We
rovide experimental evidence that the assumption

R̄�b1
i ,b2

j ,b1
k,b2

�� = 0

or �b1
i ,b2

j �� �b1
k ,b2

�� is reasonable. Because of the burden of a
omplete computation, we will rely on sampling and examine a

ample distribution of R̄�b1
i ,b2

j ,b1
k ,b2

��=E�Ȳ�b1
i ,b2

j �Ȳ�b1
k ,b2

��� for
b1

i ,b2
j �� �b1

k ,b2
��. For random choices of �b1

i ,b2
j � and �b1

k ,b2
��,

b1
i ,b2

j �� �b1
k ,b2

��, we observe that Ȳ�b1
i ,b2

j � and Ȳ�b1
k ,b2

�� are un-

orrelated. For instance, the correlation coefficient of Ȳ�b1
6 ,b2

10�
nd Ȳ�b1

11,b2
7� is 
0.0050. For a random sample S of four-tuples

b1
i ,b2

j ,b1
k ,b2

�� of size 121, chosen without replacement and

b1
i ,b2

j �� �b1
k ,b2

��, the sample mean of R̄�S� is 2.4220�10−4 and
he sample variance is 7.8929�10−6. Figure 7 depicts a histogram

ig. 6 Decision surrogate surfaces �i„b1
k ,b2

�
…+��i„b1

k ,b2
�
… ,k

1, . . . ,m and �=1, . . . ,n for designs 4 „gray… and 5 „black…

¯ i j k �
Fig. 7 Histogram of a sample distribution of R„b1 ,b2 ,b1 ,b2…
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of a sample distribution of R̄�b1
i ,b2

j ,b1
k ,b2

��.
We conclude that assuming R̄�b1

i ,b2
j ,b1

k ,b2
��=0 for �b1

i ,b2
j �

� �b1
k ,b2

�� is a reasonable modeling approximation.

5 Conclusion
The study shows unique features of this approach in which

risk-based design decisions are made under both aleatory and
epistemic uncertainties without assuming a distribution for
epistemic uncertainty. In engineering literature, our risk is associ-
ated with aleatory uncertainty. Uncertainty in our sense is associ-
ated with epistemic uncertainty. Our departure from more standard
engineering approaches is in modeling system performance with
uncertainties �epistemic uncertainties� as independent variables.

The three-spring example illustrates our approach to decision
making under uncertainty and risk. It consists of three phases:
modeling, computational, and decision phases. In the modeling
phase, a decision model of the design problem is developed based
on the associated engineering context. This phase requires an ex-
perienced and knowledgeable designer who is able to formulate
the design problem according to our modeling requirements. The
computational phase requires the development of computational
models of random fields. The resulting decision models for prob-
lems with two uncertainties use the decision criterion ��b1 ,b2�
+��b1 ,b2�, balancing expected payoff and risk. Finally, the deci-
sion phase requires the integration of designer’s preferences in
order to select a preferred design.

Our approach naturally addresses randomness and uncertainty
and enables designers to rapidly and easily assess a large number
of design alternatives under uncertainty and risk. The approach
identifies a preferred design alternative over all uncertain condi-
tions, balancing expected performance and risk, and is equipped
with a variety of preference rules to effectively support the
decision-making process. The epistemic uncertainties in the three-
spring problem are uncorrelated. However, this does not have to
be the case in general. In Ref. �35�, a set of operator algebra rules
is developed to handle cases with correlated uncertainties while an
illustrative example with correlated uncertainties is presented in
Ref. �36�.

Particular sets of uncertainty values can be thought of as sce-
narios. The methodology promotes strategic thinking, i.e., consid-
eration of multiple scenarios, even a continuum of scenarios. In
the context of multicriteria methodologies, single-criterion prob-
lems with multiple scenarios are the same as multicriteria prob-
lems with a single scenario �26�. The introduction of performance
as a random function of the uncertainties allows us to make use of
the many tools of abstract analysis.

The independence condition introduced in the interval case is a
property of the physics-based three-spring model. Other implica-
tions of this important property remain to be explored, including
simplified representations of the all important covariance kernel
R.

While not discussed in this paper, our methodologies based on
multicriteria methods satisfy Savage’s first four postulates guaran-
teeing rational decisions. This is important in light of Hazelrigg’s
powerful criticism of current design selection methods �37�. Fur-
ther, the use of multicriteria methods is an important consideration
for decisions in the presence of uncertainty as illustrated by a
discussion of Ellsberg’s famous urn paradox in Ref. �38�.
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