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In this work, a variational Bayesian framework for efficient train-
ing of echo state networks (ESNs) with automatic regularization and
delay&sum (D&S) readout adaptation is proposed. The algorithm uses a
classical batch learning of ESNs. By treating the network echo states as
fixed basis functions parameterized with delay parameters, we propose
a variational Bayesian ESN training scheme. The variational approach
allows for a seamless combination of sparse Bayesian learning ideas
and a variational Bayesian space-alternating generalized expectation-
maximization (VB-SAGE) algorithm for estimating parameters of su-
perimposed signals. While the former method realizes automatic reg-
ularization of ESNs, which also determines which echo states and input
signals are relevant for “explaining” the desired signal, the latter method
provides a basis for joint estimation of D&S readout parameters. The
proposed training algorithm can naturally be extended to ESNs with
fixed filter neurons. It also generalizes the recently proposed expectation-
maximization-based D&S readout adaptation method. The proposed
algorithm was tested on synthetic data prediction tasks as well as on
dynamic handwritten character recognition.
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1 Introduction

Echo state networks (ESNs) and reservoir computing in general represent
a powerful class of recurrent neural networks (Jaeger, Maass, & Principe,
2007; Verstraeten, Schrauwen, & Stroobandt, 2007); they are particularly
useful for nonparametric modeling of nonlinear dynamical systems. Due
to a very simple training procedure, ESNs have found applications in many
areas of signal processing, including speech recognition and audio pro-
cessing, system modeling and prediction, and filtering (Han & Wang, 2009;
Verstraeten, Schrauwen, & Stroobandt, 2006; Xia, Mandic, Hulle, & Principe,
2008; Holzmann & Hauser, 2010), to name just a few.

A typical ESN allows for learning a nonlinear dependence between an
M-dimensional input signal u[n] and a P-dimensional output signal y[n]
of a nonlinear dynamical system characterized by a nonlinear difference
equation y[n] = g(y[n − 1], . . . , y[n − k], . . . , u[n], . . . , u[n − l], . . .), where
the mapping g(·) is typically unknown. The goal of ESN-based modeling
is to approximate this mapping by creating a random network of inter-
connected neurons, called a reservoir, and linearly combining the reservoir
outputs and network input signals to form the desired network response.
The operation of an ESN with L neurons can be formally described by a
system of two equations:

x[n + 1] = f (CT
u u[n + 1] + CT

x x[n] + CT
y y[n]), (1.1)

y[n] =W [x[n]T , u[n]T ]T . (1.2)

Equation 1.1 is the state equation of the ESN; it specifies how the responses
of L neurons x[n] = [x1[n], . . . , xL[n]]T are evolving over time. In equation
1.1, the function f : R

L �→ R
L is a vector-valued neuron activation function,

such as a hyperbolic tangent, applied to each element of its argument.
The matrices Cx ∈ R

L×L, Cu ∈ R
M×L, and Cy ∈ R

P×L are, respectively, the
neuron interconnection weights, input signal weights, and output feedback
weights. Typically the entries of these matrices are generated and fixed
during the network design stage (Jaeger, 2001; Lukoševičius & Jaeger, 2009).

Equation 1.2 is the output equation of the network. It states that the
output of the network is formed as a linear combination of network states
x[n] and network inputs u[n].1 Under certain conditions (Jaeger, 2001), a
sequence of neuron states x[n] forms echoes—a temporal basis used for
reconstructing the output signal y[n]. The dynamics of the training data are
thus encoded in the echoes generated by the reservoir. The ESN training

1In general, one can also reconstruct the desired output y[n] as y[n] = s(ỹ[n]), where
s : R

P �→ R
P is a bijective mapping and ỹ[n] = W [x[n]T , u[n]T ]T (Lukoševičius & Jaeger,

2009).
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then reduces to finding an optimal estimate of W so as to minimize the
squared distance between the network output and the desired network
response. Notice that since W enters equation 1.2 linearly, the ESN training
requires solving a system of linear equations.

Despite the simple learning procedure, a straightforward application of
ESNs has two practical shortcomings: an estimation of W , especially for
large ESNs with many neurons, requires regularization (Jaeger, 2001), and
simple ESNs have been shown to fail for certain learning problems, for
example, they cannot learn multiple attractors at the same time (Jaeger,
2007). Regularization has been extensively studied in the literature within
the context of ill-posed problems; the Moore-Penrose inverse (Golub & Van
Loan, 1996) and ridge regression (Bishop, 2006), also known as Tikhonov
regularization, are standard approaches to finding a regularized solution to
the linear least-squares (LS) estimation problem. The universality of ESNs
can be significantly boosted by introducing filter neurons and delay&sum
(D&S) readouts in the ESN structure (Holzmann & Hauser, 2010; Wustlich &
Siewert, 2007; Zechner & Shutin, 2010). Equipping neurons with additional
filters will result in neurons that are specialized to more relevant frequency
bands. This is achieved by applying a linear time-invariant filter to the out-
put of the neuron activation function in equation 1.1. Introducing delays
makes it possible to shift the reservoir signals in time and provides a com-
putationally inexpensive method to vastly improve the memory capacity of
the network. The parameters of such filter neurons and the corresponding
readout delays can be chosen randomly during the network initialization or
heuristically through trial and error (Wustlich & Siewert, 2007; Holzmann
& Hauser, 2010).

The regularization of ESN LS-based training, on the one hand, and opti-
mization of D&S readout parameters and filter neurons, on the other hand,
are typically two unconnected optimization steps. Motivated by the lack
of a formal optimization framework that combines both regularization and
ESN parameter adaptation, and inspired by the recent developments of the
variational Bayesian methods (Bishop, 2006; Beal, 2003) for sparse Bayesian
learning (SBL) (Shutin, Buchgraber, Kulkarni, & Poor, 2011b; Seeger &
Wipf, 2010; Tzikas, Likas, & Galatsanos, 2008; Tipping, 2001; Bishop &
Tipping, 2000) and variational nonlinear parameter estimation (Shutin &
Fleury, 2011), we propose a variational Bayesian ESN training framework.
In the new framework, the ESN training is formulated as a variational
Bayesian inference problem on a directed acyclic graph (DAG) (Bishop,
2006). Specifically, the unknown network parameters are jointly estimated
by minimizing the Kullback-Leibler divergence between the true posterior
probability density function (pdf) of the network parameters and a varia-
tional approximation to this posterior. The estimation of the output coeffi-
cients W and regularization parameters is realized using ideas inspired by
a variational SBL approach (Bishop & Tipping, 2000). This not only allows
an automatic regularization of the network but also provides quantitative
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information about the relative relevance or importance of individual neu-
rons and network input signals. The estimation of D&S readout parameters
is implemented using the variational Bayesian space-alternating general-
ized expectation-maximization (VB-SAGE) algorithm, which was originally
proposed for the variational estimation of superimposed signal parameters
(Shutin & Fleury, 2011). The VB-SAGE framework allows a monotonic de-
crease of the Kullback-Leibler divergence between the two pdfs with re-
spect to only a subset of the parameters of interest using latent variables,
also called admissible hidden data—an analog of the complete data in the
expectation-maximization (EM) framework (Bishop, 2006). We demonstrate
that latent variables reduce the complexity of the objective function for esti-
mating delay parameters of a single neuron, which leads to a more efficient
numerical optimization.

Previously we have considered the application of the VB-SAGE algo-
rithm within the ESN training framework (Zechner & Shutin, 2010). How-
ever, in Zechner and Shutin (2010), the automatic regularization was not
part of the estimation scheme. Also, the variational approximation used
in Zechner and Shutin (2010) assumes a statistical independence between
the elements of W . Although this assumption significantly simplifies the
variational inference of the ESN weight coefficients, it leads to poorer
performance by the trained models and does not generalize the classical
pseudoinverse-based ESN training. Here we do not impose any indepen-
dence assumptions on the elements of W . We demonstrate that the pro-
posed variational ESN training framework generalizes the existing tech-
niques for ESN training. In particular, the Tikhonov-like regularization of
ESNs (Jaeger, 2001) and EM-based estimation of D&S readout parameters
(Holzmann & Hauser, 2010) are obtained as special cases of the proposed
variational Bayesian ESN training. Moreover, the proposed algorithm au-
tomatically regularizes the obtained solution by taking into account the
training data and the amount of additive noise.

The rest of the letter is organized as follows. In section 2, we discuss the
extended ESN model and explain the variables involved; in section 3, we
formulate the probabilistic model and discuss the variational inference of
model parameters; in section 4, we discuss the implementation and initial-
ization of the learning algorithm. Finally, in section 5, we consider several
learning examples to demonstrate the performance of the proposed scheme.

Throughout the letter, vectors are represented as boldface lowercase let-
ters (e.g., x) and matrices as boldface uppercase letters (e.g., X ). For vectors
and matrices, (·)T denotes the transpose. Notation A = [X ,Y ] is used to
denote a matrix A obtained by concatenating matrices X and Y ; it is as-
sumed that X and Y have the same number of rows. Sets are represented
as calligraphic uppercase letters (e.g., S). We use I = {1, . . . , L} to denote
an index set of L neurons. With a slight abuse of notation, we write xI to
denote a set of random variables {xk : s.t. k ∈ I}; also, for l ∈ I, xl denotes a
set {xk : s.t. k ∈ I \ {l}}. Two types of proportionality are used: x ∝ y denotes
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x = αy, and x ∝e y denotes ex = eβey, and thus x = β + y, for arbitrary con-
stants α and β. We use Eq(x)

{
f (x)

}
to denote the expectation of a function

f (x) with respect to a probability density q(x). Finally, N(x|a, B) denotes
a multivariate gaussian pdf with a mean a and a covariance matrix B;
Ga(x|a, b) = baxa−1 exp(−bx)/�(a) denotes a gamma pdf with parameters a
and b.

2 Extended ESN Model

Consider a standard batch ESN learning problem with N training samples

{y[n], u[n]}n0+N−1
n=n0

and N echo state samples {x[n]}n0+N−1
n=n0

generated with an
untrained network. The time index n0 ≥ 0 is chosen so as to make sure that
the ESN transients due to the initialization of the network fade out. For
simplicity, we restrict ourselves to a scalar output signal y[n]. Considering
a general P-dimensional output signal merely leads to a more complicated
probabilistic signal model without adding any new aspects relevant to the
understanding of the new proposed concepts and methods.2

Let xl (τl ) = [
xl[n0 − τl], . . . , xl[n0 + N − 1 − τl]

]T
denote a vector of echo

state samples xl[n] of the lth neuron delayed by τl . We will collect these vec-
tors in an N × L matrix X (τ) = [x1(τ1), . . . , xL(τL)], where τ = [τ1, . . . , τL]T .
In order to ensure the causality of the ESN with D&S readouts, we
assume that xl[n0 + i − τl] = 0 when n0 + i − τl < 0, for any τl ≥ 0 and
i = 0, . . . , N − 1. Similarly, we collect N samples of the mth input signal
um[n] in a vector um = [um[n0], . . . , um[n0 + N − 1]]T and define an N × M
matrix U = [u1, . . . , uM]. Now, the output equation of an ESN with D&S
readout can be rewritten in the following form:

y = �(τ)w + ξ, (2.1)

where y = [y[n0], . . . , y[n0 + N − 1]]T is a desired output of the network
that is represented as a linear combination of column vectors in �(τ) =
[X (τ),U] perturbed by a random vector ξ = [ξ [n0], . . . , ξ [n0 + N − 1]]T .
This perturbation models a random error between the predicted network
response �(τ)w and the desired response y. We will assume that each ele-
ment of ξ is drawn independently from a zero mean gaussian distribution
with variance σ 2. We also point out that for the scalar output y[n], the output
weight matrix W in equation 2.2 reduces to a vector w.

2Note that in general, each element signal in a P-dimensional network output signal
might have a different variance. This case can be accounted for by an appropriate, al-
beit more elaborate, noise model in a relatively straightforward fashion. Specifically, it
will lead to the introduction of non-isotropic noise covariance matrices. This case is left
outside the scope of the letter.
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Observe that delays τ do not influence the generation of echo states
xl[n]; they simply shift the signals xl[n] before they are linearly combined to
form the network output, leading to the D&S readout terminology. When
filter neurons are employed in the reservoir, the generation of echo states
becomes dependent on the parameters of the neuron filters. In this case,
the output of the lth neuron activation function is computed as x̃l[n + 1] =
f (cT

ulu[n + 1] + cT
xlx[n] + cT

yly[n]), where cul , cxl , and cyl are the lth column
vectors from the matricesCu, Cx, and Cy, respectively. The filtered echo state,
that is, the filter neuron output signal, is then computed as

xl[n + 1] =
∞∑

k=0

hl[k]x̃l[n + 1 − k],

where hl[n] is an impulse response of a stable linear time-invariant filter, for
example, a bandpass filter.3 Typically it is assumed that transfer functions
of all neuron filters hl[n], l = 1, . . . , L, are fixed at the network design stage
(Holzmann & Hauser, 2010; Wustlich & Siewert, 2007). This is essentially
a simplifying assumption; adapting filter parameters is complicated due
to a recurrent interdependency of the neurons in the network. Although
it is possible to construct an algorithm to estimate neuron filters hl[n]
(Zechner & Shutin, 2010), there are no theoretical convergence or mono-
tonicity guarantees for this learning scheme. Henceforth, we assume that
the parameters of neuron filters are fixed at the design stage and the adapta-
tion of the filter neuron parameters is left outside the scope of this letter. For
all our experiments in section 5, we assume ESNs without filter neurons,
which are obtained by choosing hl[n] = δ[n], where δ[n] is a discrete-time
unit impulse.4

In a batch learning regime, the columns of the matrix �(τ) corresponding
to the generated echo states can be interpreted as parametric basis functions,
parameterized by parameters τ. In what follows, we explain how this can be
exploited to formulate a variational Bayesian framework to jointly estimate
the D&S readout parameters and train the network.

3 Bayesian ESN Learning

We first note that ESN training is equivalent to the maximization of the
log-likelihood function:

log p(y|τ,w) ∝e − 1
2σ 2

∥∥y − �(τ)w
∥∥2

. (3.1)

3Note that practically, the filter hl[n] can represent a linear time-invariant system with
an infinite impulse response, as well as with a finite impulse response.

4The ESN training algorithm proposed in this work can easily be extended to ESN
with arbitrary, although fixed, filter neurons. This extension leads to a more complicated
signal model without adding any new aspect relevant to the understanding of the new
proposed concepts and methods.
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Notice that even when parameters τ are assumed to be fixed, the estimation
of w from equation 3.1 typically requires a regularization (Lukoševičius &
Jaeger, 2009; Jaeger, 2001). Bayesian methods introduce regularization by
imposing constraints on the model parameters using priors. Consider a
prior pdf p(τ,w|α), where α is a vector of prior parameters. This prior leads
to a posterior pdf that in the log domain can be expressed as

log p(τ,w|y,α) ∝e − 1
2σ 2

∥∥y − �(τ)w
∥∥2 + log p(τ,w|α), (3.2)

where log p(τ,w|α) performs the role of a regularizing function. Depending
on the choice of p(τ,w|α), different forms of the regularizing function can
be constructed. Henceforth, we will assume that the prior p(τ,w|α) factors
as

p(τ,w|α) = p(τ)p(w|α). (3.3)

The motivation behind this assumption is the following. Through the prior
p(w|α), we can control the contribution of individual basis functions in
�(τ) irrespective of their form, which is specified by the parameters τ. The
prior p(w|α) is assumed to fully factor as p(w|α) = ∏K

k=1 p(wk|αk), where
α = [α1, . . . , αK]T , K = L + M, and p(wk|αk) is selected as a zero mean sym-
metric pdf with the prior parameter αl inversely proportional to the width
of p(wk|αk). Such factorization of the prior enables more flexible control
over the importance of each column in �(τ) through the coefficients α: a
large value of αk drives the posterior mean of the corresponding weight
wk toward zero, thus effectively suppressing the corresponding basis func-
tion in �(τ) and leading to a regularized solution. Such a formulation of
the prior is related to sparse Bayesian learning (SBL) (Shutin et al., 2011b;
Tzikas et al., 2008; Tipping, 2001; Bishop & Tipping, 2000). In our work, we
will, select p(wk|αk) as a gaussian pdf with zero mean and variance α−1

k .
This choice corresponds to a penalty function

∑
k αk|wk|2 in equation 3.2,

which is a weighted 	2 norm of the weight vector w (Bishop, 2006).5 This
form of the penalty leads to a Tikhonov-like regularization of the original
estimation problem, equation 3.1 with parameters α acting as regularization
parameters.6 Additionally, the gaussian prior p(w|α) and the gaussian like-
lihood of w in equation 3.1 form a conjugate family (Bishop, 2006), which
allows computation of the posterior distribution of w in closed form.

Within the SBL framework, the parameters α are then determined from

p(y|α) =
∫

p(y|τ,w)p(τ,w|α)dτdw, (3.4)

5It is also possible to extend the inference procedure discussed in the letter to Laplacian
priors p(wk|αk). This selection leads to an 	1-type of log-likelihood penalty

∑
k αk|wk| and

least-absolute shrinkage and selection operator (LASSO) regression. This development is
outside the scope of this work.

6Strictly speaking, this is so when p(τ) ∝ 1.
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which is also known as the marginal likelihood function, or evidence
(Tipping, 2001; Tipping & Faul, 2003). Unfortunately, the nonlinear de-
pendence of the integrand in equation 3.4 on the parameters τ precludes
the exact evaluation of the marginal p(y|α). Additionally, this nonlinear
dependency significantly complicates the optimization of the posterior,
equation 3.2. This motivates the use of approximation techniques to es-
timate the parameters w, τ, and α of the extended ESN model.

3.1 Variational Bayesian Inference. Note that the joint estimation of
ESN parameters w, τ and regularization parameters α is equivalent to the
maximization of the posterior pdf,

p(τ,w,α|y) ∝ p(τ,w|y,α)p(y|α)p(α), (3.5)

which involves equations 3.2 and 3.4 and the prior p(α). Instead of com-
puting equation 3.5 directly, we approximate it with a proxy pdf q(τ,w,α)

using variational Bayesian inference methods (Beal, 2003; Bishop, 2006).
Variational inference is realized by maximizing the lower bound on the

marginal log-likelihood log p(y),

log p(y) ≥
∫

q(τ,w,α) log
p(τ,w,α, y)

q(τ,w,α)
dτdwdα, (3.6)

with respect to q(τ,w,α). It is known (Beal, 2003; Bishop, 2006) that the
density q(τ,w,α) that maximizes the lower bound in equation 3.6 also
minimizes the Kullback-Leibler divergence between q(τ,w,α) and often
intractable true posterioir pdf p(τ,w,α|y).

Observe that optimizing the lower bound in equation 3.6 requires speci-
fying both the approximating pdf and the joint pdf. Using equations 3.1 and
3.3, it is easy to conclude that the joint pdf p(τ,w,α, y) can be represented as

p(τ,w,α, y) = p(y|τ,w)p(w|α)p(τ)p(α). (3.7)

A DAG in Figure 1a captures this factorization using a graphical model.
Based on the Bayesian ESN model discussed earlier in this section, it is easy
to conclude that p(y|τ,w) = N(y|�(τ)w, σ 2I) and p(w|α) = N(w|0, A−1),
where A = diag{α}. The choice of priors p(τ) and p(α) is arbitrary in gen-
eral. We will, however, assume that both priors factor as p(τ) = ∏L

l=1 p(τl )

and p(α) = ∏K
k=1 p(αk). The choice of p(τl ) is arbitrary in the context of

our work. As we will show later, any desired form of p(τl ) can be used
in the algorithm. The prior p(αk), also called a hyperprior, is selected as
a gamma pdf, that is, p(αk) = Ga(αk|ak, bk), with the prior parameters ak
and bk chosen so as to ensure the desired form of the prior. Practically, we
will select ak = bk = 0 to render this prior noninformative (Tipping, 2001).
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τ

y

w α τl hl

y

w

τ l

α

(b)(a)

Figure 1: (a) A graphical model for estimating τ, w, and α. (b) A graphical
model with the admissible hidden data hl for estimating the delay parameter τl
of the lth neuron.

Such formulation of the hyperprior is related to automatic relevance
determination (ARD) (Neal, 1996; MacKay, 1994). We stress that the ARD
formulation of the hyperprior distribution also leads to a number of very
efficient inference algorithms (Shutin et al., 2011b; Tipping & Faul, 2003).

The approximating pdf q(τ,w,α) is typically a free parameter. However,
to make the optimization of the bound in equation 3.6 tractable, one typi-
cally assumes a suitable factorization of q(τ,w,α) and constrains individual
approximating factors to some classes of parametric pdfs. Henceforth, we
will assume that

q(τ,w,α) = q(w)

K∏
k=1

q(αk)

L∏
j=1

q(τ j). (3.8)

The motivation behind such factorization is the following. Selection q(α) =∏K
k=1 q(αk) follows from the assumption that p(w,α) = ∏K

k=1 p(wk|αk)p(αk).
The assumption q(τ) = ∏L

j=1 q(τ j) is mainly done for computational rea-
sons. Essentially, such factorization allows one to reduce a nonlinear L-
dimensional optimization with respect to q(τ) to a series of L simpler one-
dimensional nonlinear optimizations with respect to q(τl ), which makes the
numerical estimation problem much simpler.

Consider a random variable a ∈ {τ1, . . . , τL,w, α1, . . . , αK}, and assume
we are interested in finding q(a) that maximizes the lower bound,
equation 3.6. Define now

p̃(a) ∝ exp
(
Eq(MB(a))

{
log p(a|MB(a))

})
, (3.9)

where MB(a) is a Markov blanket of the variable a.7 It is then easy
to show that an unconstrained (form-free) variational solution for q(a),

7The Markov blanket of a variable node in a DAG is a set of nodes that includes parent
nodes, children nodes, and coparents of the children nodes (Bishop, 2006).
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a ∈ {τ1, . . . , τL,w, α1, . . . , αK}, which maximizes the bound, equation 3.6, is
found as q(a) = p̃(a). If q(a) is constrained to some suitable class of density
functions Q(a), then a constrained solution is obtained by solving

q(a) = arg min
q∗(a)∈Q(a)

DKL(q∗(a)‖ p̃(a)). (3.10)

Note that an unconstrained solution naturally gives a tighter bound on
log p(y) in equation 3.6.

Now let us return to the approximating pdf q(τ,w,α). In the case of q(w),
it is easy to verify that log p̃(w) computed from equation 3.9 is quadratic
in w, which implies that p̃(w) must be a gaussian pdf. This can be easily
verified by noting that the posterior p(w|MB(w)) = p(w|y,α, τ)) is propor-
tional to a product of two gaussian pdfs: p(w|y,α, τ)) ∝ p(y|w, τ)p(w|α).
Therefore, selecting q(w) = N(w|ŵ, Ŝw) is equivalent to a form-free vari-
ational solution for this factor. Following the same line of argument, it
can be shown that p̃(αk), k = 1, . . . , K, is a gamma pdf. Therefore, select-
ing q(αk) = Ga(αk |̂ak, b̂k) corresponds to a form-free variational solution for
q(αk). As a single exception to the above cases, we restrict q(τl ) to a set of
Dirac measures Q(τl ) = {δ(τl − τ̂l )|τ̂l ∈ {0, . . . , N − 1}}, l = 1, . . . , L. By do-
ing so, we restrict ourselves to the integer point estimate of the lth neuron
delay τl . While other forms of the pdfs can be assumed here, their study is
outside the scope of this letter.

Now, the variational inference reduces to the estimation of the variational
parameters ŵ, Ŝw, âk, b̂k, k = 1, . . . , K, using equation 3.9 and τ̂l , l = 1, . . . , L,
using equation 3.10.

Should our estimation problem be independent of τ, the solution
to the variational inference of q(w) and q(α) can be easily computed
(Bishop & Tipping, 2000; Shutin, Buchgraber, Kulkarni, & Poor, 2011a;
Tipping & Faul, 2003). Unfortunately, the nonlinear dependence of X (τ)

on τ significantly complicates the evaluation of equations 3.9 and 3.10.
In fact, when y is observed, the variables w and τ become condition-
ally dependent (Bishop, 2006); the variational estimation of a single fac-
tor q(τl ) would thus require computing the expectation with respect to
MB(τl ) = {w, τ1, . . . , τl−1, τl+1, . . . , τL} in equation 3.9. As a consequence,
the straightforward variational estimation of q(τl ) might become compu-
tationally quite costly due to the correlations between the elements of w,
especially when the number of columns in �(τ) is high. Although this ap-
proach is practically realizable, these numerical difficulties can be efficiently
circumvented by appealing to the EM type of inference schemes used for
estimating parameters of superimposed signals (Feder & Weinstein, 1988;
Fleury, Tschudin, Heddergott, Dahlhaus, & Pedersen, 1999; Shutin & Fleury,
2011). Here we propose to use one such algorithm known as the VB-SAGE
algorithm (Shutin & Fleury, 2011).

The VB-SAGE algorithm—a variational extension of the original SAGE
algorithm (Fessler & Hero, 1994)—allows one to simplify the optimization of
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the bound in equation 3.6 by introducing latent variables termed admissible
hidden data. Within the VB-SAGE algorithm, the admissible hidden data is
introduced for only a subset of parameters of interest; this distinguishes the
VB-SAGE framework from a closely related EM framework and its varia-
tional extensions (Sung, Ghahramani, & Bang, 2008a, 2008b; Palmer, Wipf,
Kreutz-Delgado, & Rao, 2006; Beal, 2003; Attias, 1999), where complete data
are introduced for all the unknown parameters. In our case, we would like
to simplify the inference of a single delay parameter τl . The VB-SAGE al-
gorithm is then used to maximize the bound in equation 3.6 with respect
to q(τl ) by performing a variational inference on a new graph that has been
appropriately extended with latent variables. The monotonicity property of
the VB-SAGE algorithm guarantees that this optimization strategy necessar-
ily improves the variational bound in equation 3.6 (Shutin & Fleury, 2011).

3.2 Variational Bayesian Space-Alternating Inference. We begin by
formally defining the notion of admissible hidden data. Let P = {Ps,Ps} be
a set of all the unknown parameters, and let Ps be a subset of parameters
we wish to update.8

Definition 1. Given a measurement y, hs is said to be admissible hidden data
with respect to Ps if the factorization

p(hs, y,P ) = p(y|hs,Ps)p(hs,P ) (3.11)

is satisfied (Shutin & Fleury, 2011; Fessler & Hero, 1994).

The purpose of the hidden data is to make the update procedure for the
subset Ps a tractable optimization problem. Now let us reinspect equation
3.10. We observe that the network output is represented as a superposi-
tion of L neuron responses X (τ) = [x1(τ1), . . . , xL(τL)] and M input sig-
nals U = [u1, . . . , uM]. Obviously the weight vector w can be partitioned
as w = [wT

x ,wT
u ]T , where wx and wu are, respectively, the weighting coef-

ficients for the echo states X (τ) and the input signals U . In what follows,
we formulate the learning problem so as to estimate the delay τl of a single
neuron.

Lemma 1. Let wxl denote the lth element from the vector wx. Decompose
the total perturbation ξ in equation 2.1 into two statistically independent parts
such that ξ = ξl + ηl , where E{ξlξ

T
l } = βlσ

2I and E{ηlη
T
l } = (1 − βl )σ

2I for some
0 ≤ βl ≤ 1.

Then, a variable,

hl = xl(τl )wxl + ξl, (3.12)

is admissible hidden data with respect to τl .

8We will assume that Ps
⋂

Ps = ∅.
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Proof. With the new variable hl the ESN output expression, equation
2.1, can be rewritten as

y = hl + X l (τ l )wxl + Uwu + ηl, (3.13)

where X l(τ l ) = [x1(τ1), . . . , xl−1(τl−1), xl+1(τl+1), . . . , xL(τL)] is an N × L − 1
matrix of delayed echo states with the response of the lth neuron removed
and wxl is a vector with L − 1 elements obtained by removing the lth weight
wxl from wx. Then, the modified graphical model that accounts for the
introduced variable hl can be represented as shown in Figure 1b, from
which it immediately follows that the new joint pdf factors as

p(y, hl, τ,w,α) = p(y|hl, τ l,w)

×p(hl |w, τl )p(τ)p(w|α)p(α). (3.14)

By comparing equations 3.14 and 3.11, we conclude that hl defined in
equation 3.12 is admissible hidden data with respect to Ps ≡ {τl} .

The key quantities in equation 3.14 that distinguish it from equa-
tion 3.7 are the likelihood of the admissible hidden data p(y|hl, τ l,w) =
N(y| (hl + X l (τ l )wxl + Uwu

)
, (1 − βl )σ

2I) and the new likelihood of τl ,
which is now a function of w and hl . From equation 3.12, it follows that
p(hl |w, τl ) = p(hl |wxl, τl ), where p(hl |wxl, τl ) = N(hl |xl (τl )wxl, βlσ

2
l I). The

VB-SAGE-based inference of q(τl ) now incorporates two steps: (1) a vari-
ational inference of the admissible hidden data hl using the augmented
graph in Figure 1b, which forms the VB-SAGE-E-step of the scheme, fol-
lowed by (2) the variational inference of q(τl ), which is the VB-SAGE-M-step
of the algorithm. Notice that the E-step of the VB-SAGE algorithm requires
extending the approximating pdf, equation 3.8, so as to account for the
admissible hidden data hl . We assume that

q(τ,w,α, hl ) = q(τ,w,α)q(hl ). (3.15)

The same factorization of the approximating pdf also underpins the vari-
ational extension of the EM algorithm (Attias, 1999). Once the joint pdf,
equation 3.14, and the approximating pdf, equation 3.15, are specified, the
variational inference of q(hl ) and q(τl ) is realized following the standard
variational inference on a DAG, that is, the expressions 3.9 and 3.10 are eval-
uated to estimate the corresponding approximating factors, albeit using the
new graph in Figure 1b to determine the Markov blanket of the updated
variables.

It has been shown (Shutin & Fleury, 2011) that in order to guarantee
the monotonic increase of the variational lower bound with respect to q(τl )

using the VB-SAGE algorithm, it suffices to estimate the approximating pdf
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q(hl ) of the admissible hidden data as a form-free solution, equation 3.9,
and select βl = 1. In our case, these constraints are easily satisfied. Note that
βl is in general a free parameter. However, setting βl = 1 is convenient since
it has been proven that for models linear in their parameters, this choice
leads to a fast convergence of the algorithm in the early iteration steps
(Fessler & Hero, 1994); the same choice has been also adopted in Fleury
et al. (1999) and Shutin and Fleury (2011). In case of q(hl ), it follows that
due to equations 3.12 and 3.13, it is easy to demonstrate that log p̃(hl ) is
quadratic in hl since p(hl |MB(hl )) ∝ p(y|hl, τ l,w)p(hl |wxl, τl ) is gaussian.

Thus, selecting q(hl ) = N(hl |̂hl, Ŝh
l ) guarantees the monotonicity property

of the VB-SAGE scheme.

3.3 Variational Estimation Expressions. Here we provide the estima-
tion expressions for the variational parameters of the approximating factors
of q(τ,w,α, hl ). The updated value of a variational parameter is denoted
by (·)′.

We begin with the variational estimation of q(w). By evaluating log p̃(w)

from equation 3.9, which is quadratic in w, and minding that q(w) =
N(w|ŵ, Ŝw), we find the updated variational parameters ŵ and Ŝw as

(Ŝw)′ = (
σ−2

Eq(τ)

{
�(τ)T�(τ)

} + Eq(α){A})−1 = (
σ−2

̂�T
̂� + ̂A

)−1
,

ŵ′ = σ−2(Ŝw)′Eq(τ){�(τ)T}y = σ−2(Ŝw)′̂�Ty. (3.16)

Here we defined ̂� = [X (τ̂),U] and ̂A = diag{α̂}, where α̂ = [α̂1, . . . , α̂K]T

and α̂k = Eq(αk )
(αk) = âk/̂bk, k = 1, . . . , K. Let us stress that equation 3.16 is

essentially a Tikhonov-like regularized solution for the coefficients w, with
α̂ acting as the regularization parameters.

Following the same inference steps, we compute the variational param-
eters of the pdfs q(αk) = Ga(αk |̂ak, b̂k), k = 1, . . . , K, as

â′
k = ak + 1/2,

b̂′
k = bk + 1

2
Eq(w)

{|wk|2
} = bk + 1

2

(|ŵk|2 + Ŝw
k

)
, k = 1, . . . , K. (3.17)

In equation 3.17, ŵk is a kth element of the vector ŵ, and Ŝw
k is the kth element

on the main diagonal of posterior covariance matrix Ŝw.
Now we consider the VB-SAGE-based estimation of delay parameters

τ. For each neuron, the inference includes a VB-SAGE-E-step to estimate
q(hl ) and a VB-SAGE-M-step to update the corresponding pdf q(τl ). The VB-
SAGE-E-step involves a computation of the expectation of log p(hl |MB(hl ))

with respect toMB(hl ) = {τ,w, y}. As we mentioned earlier, q(hl ) should be
selected as q(hl ) = p̃(hl ) to ensure the monotonicity of the algorithm. Since
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log p̃(hl ) is quadratic in hl , the variational parameters of q(hl ) = N(hl |̂hl,
̂Sh

l )

can be easily computed as

h′
l = xl (̂τl )ŵxl + βl (y − ̂�ŵ),

(Ŝh
l )

′ =βl (1 − βl )σ
2I. (3.18)

Observe that with β1 = 1, Ŝh
l → 0, that is, q(hl ) collapses to a Dirac distri-

bution. Now the VB-SAGE-M-step involves a computation of the expec-
tation of log p(τl |MB(τl )) with respect to MB(τl ) = {w, hl}. Since q(τl ) =
δ(τl − τ̂l ), the solution to equation 3.10 is obtained by finding τ̂l as a solu-
tion to the following optimization problem:

τ̂ ′
l = arg max

τl∈{0,...,N−1}

{
log p(τl )−

1
2βlσ

2 ‖̂hl − ŵxlxl (τl )‖2 − Ŝw
xl

2βlσ
2 ‖xl (τl )‖2

}
,

(3.19)

that is, τ̂l is found such that q(τl ) is centered at the maximum of the p̃(τl );
naturally, τ̂l is the maximum a posteriori estimate of the delay parameter
τl . In equation 3.19, Ŝw

xl is the element on the main diagonal of Ŝw that
corresponds to the posterior variance of the lth echo state weight wxl. Notice
that the estimation of the delay τl requires numerical optimization, which,
however, can be implemented as a simple one-dimensional line search on
the domain of q(τl ). The VB-SAGE-E-step, equation 3.18, and VB-SAGE-M-
step, equation 3.19, are then iteratively repeated for all L neurons. Let us
also mention that due to q(τ) being fully factorizable, the neurons can be
processed in any desired order.

Holzmann and Hauser (2010) propose a similar iterative EM-based
scheme for D&S readout optimization. Their algorithm is in many respects
inspired by the ideas of the original SAGE algorithm (Fessler & Hero, 1994).
They propose to estimate the delay τl of the lth neuron by first subtracting
the influence of the other echo states and network input signals from the
desired network response y to compute the residual signal. This realizes the
E-step of the scheme. The delay τl is then found as a value that maximizes
the absolute value of the correlation between the computed residual and the
echo state xl[n]; this constitutes the M-step of the algorithm. Although the
scheme is very effective, several heuristics are employed that distinguish it
from the algorithm proposed in this work. Specifically, the weights of the
echo states are estimated in two steps: during the D&S readout parameter
updates, the weight wxl of the lth echo state is computed as a projection of
xl (τl ) on the residual signal; then, once the delay parameters of the D&S
readout have converged, the Moore-Penrose pseudoinverse is used to es-
timate the weights w one more time. Also, the objective function used to
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compute the delay parameters of the D&S readout differs from that ob-
tained with the standard SAGE algorithm. Let us now show that equations
3.18 and 3.19 are the generalizations of this approach.

First, we note that with βl = 1 expression 3.18 naturally realizes the
interference cancellation scheme of Holzmann and Hauser (2010). Indeed,
in this case, equation 3.18 reads

h′
l = y − (X l(τ̂ l )ŵxl + Uŵu), (3.20)

where τ̂ l , ŵxl , and ŵu are the expectations of τ l , wxl , and wu, respectively. In
other words, in equation 3.20, all input signals and responses of the other
neurons but the response of the lth neuron are subtracted from the target
signal y. The similarity between the VB-SAGE-E-step and the E-step of the
scheme proposed in Holzmann and Hauser (2010) comes quite naturally,
since both schemes use the SAGE algorithm as a starting point. The actual
distinction lies in the way the D&S readout parameters are estimated. In
their work, Holzmann and Hauser (2010) depart from the SAGE algorithm
and use a heuristic to estimate the delay τl . Specifically, τ̂l is found as a
maximizer of the absolute value of the correlation |̂hT

l xl(τl )|. Under certain
assumptions, the objective function, equation 3.19, can be shown to be very
similar to that used in Holzmann and Hauser (2010).

Observe that since τl is a delay parameter for the echo state xl[n], we can
assume that the term ‖xl (τl )‖2 is independent of the delay τl . This allows
us to neglect the last regularization term 1

2βlσ
2 Ŝw

xl‖xl (τl )‖2 in equation 3.19.
Furthermore, when the prior p(τl ) is assumed to be flat, that is, p(τ ) ∝ 1, it
follows that the optimization problem, equation 3.19, becomes equivalent
to

τ̂ ′
l = arg max

τl∈{0,...,N−1}
{ŵxl

̂hT
l xl (τl )}, (3.21)

which estimates τl on a grid so as to maximize the correlation between ̂hl
and xl (τl ).

9 The objective function used in Holzmann and Hauser (2010)
is thus an “incoherent” version of equation 3.21, where the weight ŵxl is
ignored and only the magnitude of the correlation ̂hT

l xl (τl ) is maximized
with respect to τl .

9It can be shown that in this case, the minimum of ‖̂hl − ŵxlxl (τl )‖2 is achieved when

the correlation between̂hl and ŵxlxl (τl ) is maximized.
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4 Implementation Issues and Algorithm Initialization

In order to initialize the algorithm, a simple strategy can be used that
allows for an inference of the initial variational approximation from the

training data {y[n], u[n]}n0+N−1
n=n0

. For that, we start with an empty model,
that is, assuming all variational parameters to be 0. The iterations of the
algorithm then sequentially update all variational factors. In algorithm 1,
we summarize the main steps of the proposed algorithm. Note that in step 3
of the algorithm, we initialize αl = ε. The choice of ε is in general application
dependent; we discuss it in more detail in section 5:

Algorithm 1: Variational Bayesian ESN training

1: Construct an ESN with L neurons, D&S readout, and neuron filters.

2: Use training data {y[n],u[n]} to generate echo states xl[n], l = 1, . . . , L.

3: Initialize σ2, τ , α, and w.

4: while not converged do

5: for l = 1 . . . L do

6: Estimate hl from equation 3.18 and update τl from equation 3.19

7: end for

8: Update Sw and w from equation 3.16.

9: Update ak, bk, ∀k from equation 3.17 and recompute α,

10: end while

An important part of the initialization procedure is a selection of the
additive perturbation variance σ 2. When signal y[n] is known to be noisy,
the variance σ 2 should be selected to reflect this. In general, a large value
of σ 2 leads to a more aggressive regularization and makes the network less
sensitive to variations in y[n].

The iterative nature of the algorithm requires a stopping criterion for
parameter updates. In our experiments, it has been empirically determined
that after five or six update iterations the improvment of the algorithm
performance is insignificant; thus, six update iterations are used.

4.1 Computational Complexity of the Algorithm. Incorporation of au-
tomatic regularization in the ESN training scheme as well as estimation of
D&S readout parameters increases the computational complexity of the net-
work training. Quite naturally, when D&S readout parameters and regular-
ization parameters are fixed, the variational Bayesian ESN training reduces
to an instance of the classical ridge regression-based estimate of w. This
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requires inverting a K × K posterior covariance matrix Ŝw, an operation
that has a computational complexity O(K3).

The estimation of regularization parameters α̂ using equation 3.17 has
complexity O(K). Compared to the computation of the weights w, the esti-
mation of regularization parameters poses an insignificant increase of the
total computational complexity. Recently, a new, fast variational SBL (FV-
SBL) scheme has been proposed (Shutin et al., 2011a, 2011b) to accelerate
the convergence of sparsity parameter update expressions 3.17 in the case
when hyperpriors p(αk), k = 1, . . . , K, are chosen to be noninformative. The
scheme exploits the fact that the lower bound in equation 3.6 is convex with
respect to the factorization, equation 3.8, in other words, the factors in equa-
tion 3.8 can be updated in any order without compromising the monotonic
increase of the variational lower bound (Bishop, 2006). Then, for a fixed k,
the stationary point of variational updates equations 3.17 and 3.16 repeated
ad infinitum can be computed in closed form, assuming that the other vari-
ational parameters are fixed. All K variational factors q(αk), k = 1, . . . , K,
are then updated sequentially, with the complexity of a single update being
on the order of O(K2). Although in general the total complexity remains
O(K3), the update of a single component can be performed more efficiently.
Furthermore, fewer iterations are typically needed to estimate the regular-
ization parameters.

The estimation of D&S readout parameters also increases the total com-
putational complexity. Specifically, the estimation of the delay parameter for
each neuron from equation 3.19 requires evaluating the admissible hidden
data from equation 3.18, an O(NK) operation, and solving the optimization
problem, equation 3.19, which is an O(N2) operation. For L neurons, this
results in a total computational complexity on the order of O(LNK + LN2);
that is, it is quadratic10 in both the number of learning samples N and the
number of neurons L, yet this increase is still dominated by the O(K3) com-
plexity of estimating the network weights. Note that an ESN with D&S
readout typically requires fewer neurons compared to the standard ESN
to achieve the same memory capacity; in other words, training a smaller
ESN with tunable D&S readouts is typically more efficient than training a
standard ESN with many neurons.

5 Simulation Results

In this section, we compare the performance of the proposed variational
Bayesian learning of ESNs with other state-of-the-art ESN training algo-
rithms using synthetic as well as real-world data. In the first experiment,
described in section 5.1 we train an ESN predictor to forecast a chaotic
time series generated with a Mackey-Glass system, which is often used to

10Recall that K = M + L.
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benchmark ESN learning schemes (Jaeger, 2001; Holzmann, 2008). In the
second experiment, described in section 5.2, we apply the ESN training
schemes to a recognition of handwritten symbols based on measured dy-
namic pen trajectory data.

In both experiments, we compare an extended ESN trained with the
proposed VB-SAGE algorithm (which we will further term VB-ESN) to the
performance of a standard ESN (STD-ESN), an ESN trained using Moore-
Penrose pseudoinverse and reservoir extended with fixed D&S readout
(EXT-ESN), and an ESN with a D&S readout that is trained using the al-
gorithm proposed in Holzmann and Hauser (2010); further in the text, we
refer to this algorithm as HH-ESN.

5.1 Time-Series Prediction. In this experiment, we apply ESNs to pre-
dict a chaotic time series generated with a Mackey-Glass system. Similar ex-
periments have also been performed in Jaeger (2001) and Holzmann (2008)
to benchmark the performance of different ESN training schemes. We as-
sume that an input signal to an ESN is a constant signal u[n] = 0.02 and an
output signal is generated using the Mackey-Glass differential equation,

dy(t)
dt

= β
y(t − τmg)

1 + y(t − τmg)
n

− γ y(t), (5.1)

where γ , β, n, and τmg are the parameters of the system. Following Jaeger
(2001) and Holzmann (2008), we select these parameters as follows: γ = 0.1,
β = 0.2, n = 10, and τmg = 30. This choice guarantees that the Mackey-Glass
system converges to a chaotic attractor.

The reservoir coefficients Cx, Cy, and Cu are randomly generated by uni-
formly drawing samples from the interval [−1, 1]. For all tested networks
the connectivity of the reservoir is set to 5% and the connectivity matrix
Cx is normalized so as to have a spectral radius of 0.8. To avoid instabili-
ties due to the nonlinear feedback mechanism (Jaeger, 2001), a small zero
mean white additive disturbance with variance 1 × 10−6 was added to the
feedback signal CT

y y[n] in the state transition equation 1.1. We set the size of
the reservoir for all tested ESNs to L = 200 neurons unless explicitly stated
otherwise. The variance of the additive noise ξ was set in this experiment
to σ 2 = 10−10.

For the EXT-ESN algorithm, the time delays are generated randomly
by independently drawing samples from the interval [0, 100]; 50% of the
generated delay values are then set to zero, which ensures that a particular
number of echo state functions enters the ESN output without a time delay.
Similarly, the VB-ESN and HH-ESN algorithms use this initialization to
generate the initial values of neuron delays.

In the case of the VB-SAGE algorithm, it is important to mention that due
to the iterative structure of the algorithm, the proper initialization of the
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network parameters plays an important role. To obtain a consistent starting
point, the initial values of the weights w are drawn from the gaussian dis-
tribution with zero mean and covariance matrix A−1, where A = diag{α}.
Obviously the initial choice of α controls the algorithm’s emphasis on the
estimation of the time delays τ. Small initial values of α lead to weak reg-
ularization of the weights during the early iterations. We have observed
that this often drives the algorithm to a local optimum, with the values of τ

frozen at the initial values. Setting initial values of α to large numbers cor-
responds to the initial weights w being close to zero; as a result, the training
algorithm essentially “deregularizes” the solution, which, as our extensive
simulations show, leads to better estimation results. In our experiments, we
set αk = ε = 1010, k = 1, . . . , K. The same strategy is also used to initialize
the weights of the HH-ESN algorithm.

The training and testing of the ESNs are then realized as follows. First,
3300 samples of the Mackey-Glass time series are generated. The first 3000
samples are used to train the network, and the remaining 300 are used
to validate the network performance. The network is then run from a zero
initial state in teacher-forced mode (Jaeger, 2001) using the first 3000 samples
of the time series; further, the initial 1000 samples of the resulting network
trajectory are discarded to ensure that the system settles at the chaotic
attractor. The remaining N = 2000 samples are used to train the network
and estimate its parameters.

Once the coefficients of the network are estimated, the trained network
is run for 300 time steps to generate the predicted trajectory by feeding the
output of the trained network back into the reservoir. The performance of
the trained network is evaluated by measuring the normalized root-mean-
squared error between the 300 samples of the true trajectory ytrue[n] and the
trajectory ytrained[n] generated by the trained network; the corresponding
results are then averaged over NMC = 300 independent Monte Carlo simu-
lations, where for each simulation run a new ESN is generated and trained
using a new realization of the Mackey-Glass time series. The normalized
root-mean-squared error between ytrue[n] and ytrained[n] is computed as

NRMSE[n] =

√√√√√ 1
NMC

NMC∑
i=1

∣∣∣y[i]
true[n] − y[i]

trained[n]
∣∣∣2

σ 2
ytrue

, (5.2)

where the superscript [i] denotes the signal computed during the ith Monte
Carlo simulation run and σ 2

ytrue
is the variance of the true time series ytrue[n].

Naturally the longer both systems remain synchronized (i.e., the more
slowly NRMSE[n] grows as a function of n), the better the performance
of the trained model is.

In Figure 2 we plot the estimated performance of the compared al-
gorithms. Observe that the predicted output signal obtained with the
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Figure 2: An error between the true Mackey-Glass time series and the predicted
response for (a) 300 time steps and (b) a zoom-in into the error evolution for
time steps between n = 1 and n = 16.

p(
τ
)

(a)

p(
τ
)

(b)

Figure 3: Histogram of the estimated D&S readout parameters. (a) HH-ESN.
(b) VB-ESN.

STD-ESN scheme diverges much faster from the true signal as compared to
the other algorithms; even doubling the size of the network from 200 to 400
neurons does not improve the performance. Introducing the random D&S
readout, however, does help. However, although the EXT-ESN scheme with
L = 200 neurons outperforms both STD-ESN schemes, its performance is
below that of the VB-ESN and HH-ESN algorithms. The latter two schemes
deliver the lowest prediction error. These algorithms still have a 30 dB
performance gain over the STD-ESN and EXT-ESN after 300 time steps.
Solely boosting the size of the EXT-ESN to 400 neurons makes this scheme
perform on par with VB-ESN and HH-ESN with 200 neurons each. Thus,
learning the optimal parameters of the D&S readout allows for a significant
reduction of the required size of the network. It should be mentioned that
in this example, the performance of both VB-ESN and HH-ESN schemes is
nearly identical. Let us look into the performance of these two schemes a bit
closer.

For that, we analyze the estimation results for the delays τ. In
Figures 3a and 3b, we plot the histograms of the estimated D&S readout



Regularized Variational Bayesian Learning of ESNs with D&S Readout 987

parameters with nonzero delay values computed with the HH-ESN and VB-
ESN methods. Interestingly, the histogram for the D&S readout parameters
computed with the VB-ESN algorithm shows strong peaks in the range be-
tween τ = 20 and τ = 60, which covers the original delay parameter τmg of
the Mackey-Glass system. In fact, this is not a mere coincidence; experiments
with different values of the delay parameter τmg indicate that the VB-SAGE
algorithm indeed sets many of the D&S readout delays to the value closest
to the true delay τmg. In contrast, the delay estimation with the HH-ESN
algorithm seems to result in more uniform values of the estimated delays
and thus shows only weak peaks around the true delay parameter. Based on
the obtained simulation results, we can claim that the exact estimates of the
D&S readout parameters are not pivotal for the successful prediction of the
Mackey-Glass time series, and deviations in the delay parameter estimates
can be compensated to a certain extent by the estimation of output weights.
Also, due to a very low noise level, the distinction between the Bayesian reg-
ularization used in the VB-ESN and Moore-Pensore pseudoinverse-based
regularization is also minimal. This explains the similarity of the prediction
results obtained with the two schemes.

It is also important to stress a statistical dependency between the es-
timated delay parameters τ and estimated regularization parameters α.
Recall that α reflect the importance of the particular echo states or input
signals: the higher the value of αk, the more regularization is applied to the
kth column in the matrix �(τ ) in equation 2.1, and thus the less relevant this
column is in predicting the output signal. Thus, parameters α can be used
to measure the relative quality of individual neuron echo states. In Figure 4
we plot the values of regularization parameters α versus the corresponding
D&S readout delays parameters for the Mackey-Glass time series prediction
example. Notice that the histogram has a strong peak at τ ≈ 25 and τ ≈ 35
with relatively small values of α, which indicates an importance of the echo
states with these delays for representing the desired output signal.

5.2 Handwritten Character Recognition. Here we assess the perfor-
mance of the proposed algorithm using measured multidimensional pen
trajectory data for handwritten character recognition. It has already been
demonstrated (Zechner, 2010) that ESNs can successfully handle dynamic
handwriting data. Here we adopt the same experimental setup as used in
Zechner (2010) to test the performance of the VB-SAGE algorithm.

The following simulations are carried out using samples from the
WILLIAMS database (Williams, 2010), available at the UCI Machine Learn-
ing Repository (Frank & Asuncion, 2010). The database contains 2858 char-
acter trajectories from an English alphabet, where only letters that can be
written as a single stroke were recorded (20 character classes). Furthermore,
each trajectory is represented as a three-dimensional time series, featuring
X− and Y− velocities as well as the pen pressure. The measured data in
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Figure 4: An empirical distribution of the D&S readout parameters τ and reg-
ularization parameters α for L = 200 neurons.

the repository have been smoothed using a gaussian filter with a variance
set to 4 (see Williams, 2010, for further details). For our purposes we will
consider recognition of only a subset of characters from the repository:
a, b, c, d, e, g, and h.11 The corresponding 2D patterns for these characters
are shown in Figure 5. Lukoševičius and Jaeger (2009) noted that there are
two ESN configurations for a classification task. First, one can design and
train a single ESN with as many outputs as class labels; the classes are then
predicted by the output with the largest amplitude. Alternatively, one can
train several ESN predictors, one for each class; then, given a test signal,
the class label is selected by choosing the ESN predictor that achieves the
smallest prediction error. In this work, we use the first approach.

Let us now describe the settings for the ESN network parameters and
the design of the input signals. To this end, we introduce an index set
C = 1, . . . , 7 with each element corresponding to one of the seven letters. As
an input signal u[n] ≡ uc[n], we use the trajectory corresponding to the class
c ∈ C; the corresponding output signal of the ESN y[n] = [y1[n], . . . , y7[n]]T

is then set to zero except for the element yc[n], c ∈ C, which is selected as a

11The letter f was not recorded for the Williams database because it cannot be repre-
sented as a single stroke.
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A B C D E G H

Figure 5: Sample X-Y-trajectories for letters a, b, c, d, e, g, and h from the
WILLIAMS database.

gaussian pulse with variance 1 centered at the time instance corresponding
to 70% of the input trajectory length. During the testing, a class estimate is
obtained by selecting the output element of y[n] that shows the maximum
value within the input trajectory’s time window. The reservoir parameters
for this classification task are selected as in the signal prediction example
except for the reservoir connectivity, which is set to 10%. Also, no output
feedback is used (i.e., Cy = 0I). For each of the EXT-ESN algorithms, 30%
of the D&S readout delays are set to zero, and the remaining 70% are
uniformly drawn from the interval [0, 100]. The algorithms VB-ESN and
HH-ESN use this initialization to generate the initial values of the D&S
readout parameters.

The classification tasks were performed using five as well as seven char-
acter classes: {a, b, c, d, e} and {a, b, c, d, e, g, h}. In both cases, 60% of the
character instances are used for training and the remaining 40% for testing.
As the performance measure, we compute a per class classification error
rate Ecl as the number of incorrect classifications per class over the number
of tested examples in this class and the total classification error rate Etotal,
which is the number of incorrect classifications for all letters over the total
number of tested examples. To better assess the classification performance
of the compared algorithms, we estimate Ecl and Etotal over 50 independent
runs. For each run, a new ESN reservoir is generated and trained, and the
corresponding classification errors are estimated.

In Figure 6 we summarize the distributions of the per class classification
errors Ecl using box-and-whiskers plots for the five-letter case; in Figure 7
the classification errors for the seven-letter case are presented. The edges
of the boxes are the 25th and 75th percentiles of the estimated classification
errors, and the central mark denotes the median. Whiskers illustrate the
degree of error dispersion; they extend from the box to the most extreme
data value within 1.5 × IQR, where IQR is the interquantile range of the
sample. The data with values beyond the ends of the whiskers, marked
with crosses, are treated as outliers.

In the five-letter case, the compared algorithms successfully classify the
symbols with a single exception of the letter c. Note that in contrast to
the previous example, the VB-ESN by far outperforms the other schemes;
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Figure 6: Classification results for five-letter case.
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Figure 7: Classification results for seven-letter case.

moreover, the distinction between the VB-ESN and HH-ESN schemes is
now much more apparent. The HH-ESN and EXT-ESN schemes also pro-
duce more outliers as compared to the VB-ESN algorithm. The failure of all
three schemes to achieve a low classification error rate for the letter c can
be explained by its similarity to the letter e. The analysis of the confusion
matrix, shown in Table 1, reveals that the letter c is indeed often predicted
as e. This leads to a higher dispersion of the classification errors, as can be
seen in Figure 6c. Interestingly, the reverse is not true: the letter e is less
often confused with c. Notice that the VB-ESN scheme is more successful
in properly classifying c, having the smallest dispersion of Ecl. The same
tendency is observed when when total classification error is analyzed.

In the five-letter case (see Figure 8a), the VB-ESN has much lower disper-
sion of the classification error as compared to HH-ESN and EXT-ESN cases.
These results clearly demonstrate that the proposed joint optimization of
the D&S readout parameters and regularization parameters significantly
improves the performance of the trained models as compared to the other
training schemes.
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Table 1: Confusion Matrices for the Five-Letter Case Computed Jointly by EXT-
ESN, HH-ESN, and VB-ESN Schemes.

A B C D E

A 1859 0 1 0 2
B 0 1424 0 1 0
C 8 0 761 0 327
D 0 0 0 1623 1
E 0 0 6 0 2219

Notes: Rows correspond to actual letters and columns to predictions. The entries in bold
indicate particularly high class prediction errors.
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Figure 8: Total classification error Etotal for the (a) five-letter case and (b) seven-
letter case.

In the seven-letter classification scenario, we see that increasing the num-
ber of classes makes the classification clearly more difficult. Specifically, all
schemes now make more errors. Similar to the five-letter case, the letter c is
often confused with the letter e, as can be seen from the confusion matrix
in Table 2. Also, the letter g is often confused with a by all compared algo-
rithms. Interestingly, the HH-ESN is able to classify the letter e without error,
while VB-SAGE is not (see Figure 7e). This can be explained as follows. In-
creasing the complexity of the classification problem with a fixed reservoir
size not only increases classification errors but, in a multiclass classifier that
we employ here, also redistributes the errors between the classes. If we con-
sider the distribution of the total classification error, shown in Figure 8b,
we will see that in contrast to the five-letter case, the performance of all
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Table 2: Confusion Matrices for the Seven-Letter Case Computed Jointly by
EXT-ESN, HH-ESN, and VB-ESN Schemes.

A B C D E G H

A 5655 0 1 0 23 0 0
B 0 4307 0 20 0 0 3
C 20 0 2288 1 919 0 0
D 0 0 0 4819 8 0 0
E 0 0 30 0 6577 0 0
G 681 0 1 7 16 3223 0
H 4 42 9 106 0 0 3286

Notes: Rows correspond to actual letters and columns to predictions. The entries in bold
indicate particularly high class prediction errors.

schemes degrades, yet the performance of the VB-ESN algorithm is still
slightly better than that of the other compared schemes.

6 Conclusion

In this work we have proposed a variational Bayesian approach to auto-
matic regularization and training of extended echo state networks with
delay&sum (D&S) readouts. The proposed training framework combines
sparse Bayesian learning methods with the variational Bayesian space-
alternating generalized expectation-maximization (VB-SAGE) algorithm.
We have demonstrated that the proposed scheme allows for an optimal reg-
ularization of the training algorithm, with regularization parameters being
determined automatically by the input-output signals, additive noise, and
the structure of the reservoir. The standard Tikhonov-like regularization of
ESN training is obtained as a special case of the proposed approach. The
estimated regularization parameters also provide an objective measure of
the weights’ importance: excessive regularization required for some of the
echo states or input signals indicates the irrelevance of these signals to the
approximation of the target signal. This importance information, together
with the estimated delay parameters of the D&S readout, can be potentially
used for relating the structure of the reservoir and neuron responses to dif-
ferent features of the training data. However, the detailed analysis required
to support this claim is beyond the scope of this letter.

In addition to automatic regularization, the standard ESN structure has
been extended with tunable D&S readouts and filter neurons and, when
filter neurons are fixed, the D&S readout parameters can be efficiently es-
timated using the VB-SAGE algorithm. Although in general the optimiza-
tion of neuron parameters leads to an intractable nonlinear optimization,
the variational approach allows a reduction of the optimization problem to
a sequence of simpler one-dimensional searches with respect to the delay
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parameter of each neuron. The VB-SAGE-based estimation of the D&S read-
out parameters generalizes the ad hoc EM-based D&S readout parameter
estimation proposed by Holzmann and Hauser (2010). Thus, the varia-
tional Bayesian framework for ESN training presented in this work gener-
alizes some of the existing approaches to regularization and D&S readout
parameter estimation, while at the same time providing a formal opti-
mization framework for joint ESN training, regularization, and parameter
estimation.

The proposed estimation scheme has been applied to forecasting a
chaotic time series generated with a Mackey-Glass system and dynamic
handwritten symbol recognition problem. Our results demonstrate that for
time series prediction, the proposed variational approach outperforms a
simple extended ESN with random D&S readout parameters and performs
on par only with the algorithm proposed in Holzmann and Hauser (2010).
However, in a handwritten character recognition problem, the advantages
of the proposed training algorithm become more apparent. Specifically, the
proposed training scheme consistently outperforms the other algorithms,
while only marginally increasing the computational complexity as com-
pared to the training scheme discussed in Holzmann and Hauser (2010).
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Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3), 127–149.

MacKay, D.J.C. (1994). Bayesian methods for backpropagation networks. In E.
Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of neural networks III
(pp. 211–254). New York: Springer-Verlag.

Neal, R. (1996). Bayesian learning for neural networks. New York: Springer-Verlag.
Palmer, J., Wipf, D., Kreutz-Delgado, K., & Rao, B. (2006). Variational EM algorithms

for non-Gaussian latent variable models. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.),
Advances in neural information processing systems, 18 (pp. 1059–1066). Cambridge,
MA: MIT Press.

Seeger, M., & Wipf, D. (2010). Variational Bayesian inference techniques. IEEE Signal
Processing Magazine, 27(6), 81–91.

Shutin, D., Buchgraber, T., Kulkarni, S. R., & Poor, H. V. (2011a). Fast adaptive
variational sparse Bayesian learning with automatic relevance determination.
In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP’10 (pp. 2180–2183). Piscataway, NJ: IEEE.

Shutin, D., Buchgraber, T., Kulkarni, S. R., & Poor, H. V. (2011b). Fast variational
sparse Bayesian learning with automatic relevance determination for superim-
posed signals. IEEE Transactions on Signal Processing, 59(12), 6257–6261.

Shutin, D., & Fleury, B. H. (2011). Sparse variational Bayesian SAGE algorithm with
application to the estimation of multipath wireless channels. IEEE Transactions on
Signal Processing, 59(8), 3609–3623.

http://archive.ics.uci.edu/ml/


Regularized Variational Bayesian Learning of ESNs with D&S Readout 995

Sung, J., Ghahramani, Z., & Bang, S. -Y. (2008a). Latent-space variational Bayes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(12), 2236–2242.

Sung, J., Ghahramani, Z., & Bang, S.-Y. (2008b). Second-order latent-space variational
Bayes for approximate Bayesian inference. IEEE Signal Processing Letters, 15, 918–
921.

Tipping, M. (2001). Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1, 211–244.

Tipping, M. E., & Faul, A. C. (2003). Fast marginal likelihood maximisation for sparse
Bayesian models. In Proc. 9th International Workshop on Artificial Intelligence and
Statistics. N.P.: Society for Artificial Intelligence and Statistics.

Tzikas, D. G. , Likas, A. C., & Galatsanos, N. P. (2008). The variational approximation
for Bayesian inference. IEEE Signal Processing Magazine, 25(6), 131–146.

Verstraeten, D., Schrauwen, B., & Stroobandt, D. (2006). Reservoir-based techniques
for speech recognition. In Proc. International Joint Conference on Neural Networks
IJCNN ’06 (pp. 1050–1053). Piscataway, NJ: IEEE.

Verstraeten, D., Schrauwen, B., & Stroobandt, D. (2007). An experimental unification
of reservoir computing methods. Neural Networks, 20(3), 391–403.

Williams, B. H. (2010). UCI character trajectories. http://archive.ics.uci.edu/
ml/datasets/.

Wustlich, W. & Siewert, U. (2007). Echo-state networks with band-pass neurons: Towards
generic time-scale-independent reservoir structures (Tech. Rep.). Raben Steinfeld,
Germany: PLANET Intelligent Systems GmbH.

Xia, Y., Mandic, D. P., Hulle, M., & Principe, J. C. (2008). A complex echo state network
for nonlinear adaptive filtering. In Proc. IEEE Workshop on Machine Learning for
Signal Processing MLSP’08 (pp. 404–408). Piscataway, NJ: IEEE.

Zechner, C. (2010). Variational Bayesian reservoir computing and its applications to hand-
writing recognition. Master’s thesis, Graz University of Technology.

Zechner, C., & Shutin, D. (2010). Bayesian learning of echo state networks with
tunable filters and delay&sum readouts. In Proc. of International Conference on
Acoustics Speech and Signal Processing. Piscataway, NJ: IEEE.

Received March 18, 2011; accepted October 11, 2011.

http://archive.ics.uci.edu/ml/datasets/


This article has been cited by:


