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In statistical energy analysis (SEA) modeling, it is desirable that
the SEA coupling loss factors (CLFs) between two continuously
connected subsystems can be estimated in a convenient way. A
simple SEA modeling technique is recommended in that continu-
ous coupling interfaces may be replaced by sets of discrete points,
provided the points are spaced at an appropriate distance apart.
Consequently, the simple CLF formulae derived from discretely-
connected substructures can be applied for continuous coupling
cases. Based on the numerical investigations on SEA modeling of
two thin plates connected along a line, a point-spacing criterion
is recommended by fitting the point- and line-connection data of
the two plates. It shows that the point spacing depends on not only
the wavelengths but also the wavelength ratio of the two coupled
subsystems. [DOI: 10.1115/1.4025246]
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1 Introduction

Statistical energy analysis (SEA) is commonly used for higher
frequency modeling of complex systems [1–3]. A key assumption
of SEA is that the transmitted power between any two directly
connected SEA subsystems is proportional to the energy differ-
ence between them, and the proportionality is determined by the
coupling loss factors (CLFs) between the two subsystems. There-
fore, a successful application of the SEA theory largely relies on
the accurate and convenient estimations of CLFs [4–8]. However,
simple formulas for CLFs are only available for limited coupling
cases, e.g., structure to structure via discrete points, plate to plate
with a line connection, plate to room/cavity via area couplings,
room to room/cavity via volume couplings, which are mainly
derived from the wave transmission bases [1]. For subsystems
with generic couplings, modal analysis based methods are avail-
able, e.g., the widely used power injection method (PIM) [9–11].
Nevertheless, the mode-based techniques generally need certain
levels of extra knowledge of the modes of the uncoupled subsys-
tems except for the gross modal properties. It is therefore quite de-
sirable that the SEA CLFs of two generically connected
subsystems can be estimated by simple formulas as well.

In previous research [12], it was found that a line connection
may be replaced by point connections by separating the points as

a half (bending) wavelength apart from each other. Consequently,
the simple CLF formulae derived from discretely-connected sub-
structures can be used for continuous coupling interfaces. How-
ever, this criterion has implicitly assumed that the two subsystems
are of the same wavelengths. For coupling cases with wavelength
ratio not equal to 1, such a criterion may lose its accuracy.

The present research argues that the point-spacing should be
determined by both the wavelengths and wavelength ratio of the
two connected subsystems. As a good supplement to the previous
research, a new point-spacing criterion is recommended based on
the numerical investigations on two line-connected plates by fit-
ting the point- and line-connection data of the two plates.

2 Model Descriptions

A plate-plate numerical model connected via a line is setup, as
shown in Fig. 1. Plates a and b are both thin, rectangular with two
opposite edges (along the length directions) simply supported and
the other two (along the width directions) free. The nominal
length and width of a are 0.9 m and 0.8 m, respectively, while
those of b are 1.0 m and 0.8 m, respectively. The two plates are
fully connected along their widths. The materials of both plates
are chosen to be steel with Young’s modulus of 2.1� 1011 N/m2,
density of 7.85� 103 kg/m3, Poisson ratio of 0.3, and damping
loss factor 0.01. To simulate different wavelength ratios of the
two plates, the thicknesses of plates a and b are allowed to be
varying from 1 mm, 2 mm to 3 mm. For simplicity, only the bend-
ing motions of the two plates are considered during the CLF
calculations.

3 Three Techniques for CLF Estimating

Coupling loss factors between plates a and b can then be calcu-
lated by the following three techniques.

3.1 Conventional CLF Formula Derived for Line-Couplings.
A simple formula of CLFs for line-connected plates was derived
in [1] by using wave approach and transmission coefficient, as
(Eq. (10.2.1) of [1])
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where ka is the wavenumber of plate a, and Zline,1 represents the
characteristic line impedance of the plate.

Fig. 1 Two line-connected plates
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The coupling loss factor gba can be evaluated by using the reci-
procity relation of nagab¼ nbgba [1], where na,b are the modal den-
sities of plates a and b.

3.2 Conventional CLF Formula Derived From Point-Couplings.
For a single point connection between subsystems a and b, the
CLF expression was derived in [1] (by substituting Eq. (10.1.3)
into Eq. (10.1.6) in [1]), as
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where Zpoint,1 represent the characteristic point impedance of the
subsystem. When a and b are connected via N discrete points
(assuming each point acting independently from others [1]), gab

can be simply estimated as
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Note that, on deriving of Eq. (4), the coherences among the
coupling points have been ignored which implicitly requires the
coupling points to be spaced at least one-wavelength apart from
each other [1].

3.3 Power Injection Method. The principle of PIM methods
has been widely employed to estimate the CLFs between two
generically connected subsystems in situ [11]. It generally
requires the calculation (or measurement) of the power input into
every single subsystem and that of the energy level of every sub-
system. By inverting the corresponding energy matrix, the SEA
coupling loss factors can then be determined. Because the SEA
equations are set up in sense of frequency- and space-averages,
PIM typically requires more than three excitation and five
response locations to be taken [11] so that the space-averaged sub-
system energies and power input levels can be well captured.

In general, the CLF calculations based on the above three tech-
niques are only valid for the frequency range where both plates
are of high modal density.

4 Results and Discussions

Three plate-plate coupling models with different thickness-
ratios (and hence the wavelength ratios) are considered: (1)
ha¼ hb¼ 2 mm, (2) ha¼ 3 mm and hb¼ 1 mm, and (3) ha¼ 1 mm
and hb¼ 3 mm. Therefore, the subsystem wavelengths ka¼ kb¼ k
for case 1, while ka¼ kb¼ k and k¼ ka< kb for cases 2 and 3,
respectively.

The corresponding gab are then calculated by using Eq. (2), Eq.
(4), and the PIM technique, respectively. It should be noted that
on calculating gab by Eq. (4) different numbers of interface points
are employed by letting the points are separated by different dis-
tances along the coupling line. Here, the point-spacing D used are
k, k/2, (2/3)k, and (1/4)k, respectively. Clearly, the number of N
in Eq. (4) is a frequency-dependent variable. In the PIM calcula-
tions, five excitation locations and seven response locations on
each plate model are chosen. The space-averaged energy
responses of a and b as well as the power input levels of each
plate are then determined based on an exact subsystem modal
approach. Meanwhile, in order to minimize the spatial variation
and hence to obtain the CLFs between the two plates more accu-
rately, an ensemble of 64 plate-plate samples are generated, of
which the modal densities and total masses of a and b are fixed,
but the exact natural frequencies and mode shapes may differ
from plate to plate. This is achieved by varying the ratio of the
length and width of a (also for b) while keeping the surface area

fixed (65% of the nominal value). gab can finally be estimated
from the space- and ensemble-averaged energy responses and
power inputs of the two plates.

The results of gab calculated by the above three techniques are
compared in Figs. 2–4 for cases 1, 2, and 3, respectively. It is seen
that the results agree fairly well when the sets of points are sepa-
rated by a distance of D ¼ 2

3
k in Figs. 2 and 3, while D ¼ 2

5
k in

Fig. 4. The good agreements in Figs. 2–4 thus strongly suggest
that the coupling loss factors between two continuously connected
SEA subsystems can be estimated simply by the formulas derived
for multipoint couplings, provided the sets of discrete points are
separated at a certain distance apart.

In fact, such a new criterion can be deduced from more numeri-
cal investigations as [1] the point-spacing D is generally within a
range of (k/2, k) in case of ka� kb� k, of which D � 2

3
k may be a

more appropriate option than the previously suggested D � 1
2
k in

Refs. [12]; and Ref. [2] in case of ka> kb¼ k, D 2 k=2; kð Þ, and
D 2 k=4; k=2ð Þ are recommended for estimating gab and gba,
respectively, of which D � 2

3
k and D ¼ 2

5
k may be taken as widely

Fig. 2 Coupling loss factor gab between plates a and b when
ha 5 hb 5 2 mm, in which, line-coupling (Eq. (2), thick dashed
line); PIM result (thin dotted line); point couplings (Eq. (4))
when D 5 (2/3)k (thick real line), D 5 (1/2)k (thin dashed line) and
D 5 k (thin dashed-dotted line)

Fig. 3 Coupling loss factor gab between plates a and b when
ha 5 3 mm and hb 5 1 mm, in which, line-coupling (Eq. (2), thick
dashed line); PIM result (thin dotted line); point couplings (Eq.
(4)) when D 5 (2/3)k (thick real line), D 5 (1/2)k (thin dashed line)
and D 5 k (thin dashed-dotted line)
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applicable options. Although it is deduced based on the numerical
investigations of two line-connected plates, the criterion has a
great potential to be extended for more general continuous cou-
pling interfaces. More research that is relevant is underway.

5 Conclusions

With a clear aim to predict the SEA parameters of two
continuously-connected subsystems in a simple and convenient

way, numerical investigations are made on estimating the cou-
pling loss factors between two line-connected plates by replacing
the line interface with a number of discrete points. A new point-
spacing criterion is thus recommended as a good supplement to
the existing SEA modeling. It suggests that the appropriate point-
spacing D depends on not only the wavelengths, but also the
wavelength ratio of the two connected subsystems.
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