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Abstract

This paper describes a stochastic analysis framework which computes the response time distribution

and the deadline miss probability of individual tasks, even for systems with a maximum utilization

greater than one. The framework is uniformly applied to fixed-priority and dynamic-priority systems

and can handle tasks with arbitrary relative deadlines and execution time distributions.
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I. INTRODUCTION

Schedulability analysis methods for hard real-time systems presented in the literature are

typically based on the periodic task model [1] and on worst-case assumptions on execution times

[1], [2], [3] to provide a deterministic guarantee that all the jobs of every task in the system meet

their deadlines. Such a deterministic timing guarantee, mandatory for hard real-time systems, is

not required by soft real-time applications, which can be satisfied with a probabilistic guarantee

that the deadline miss ratio of a task is below a given threshold. As a result, for soft real-time

applications, the assumption that every job of a task requires the worst-case execution time can

be relaxed in order to improve the system utilization. This is also the case for probabilistic hard

real-time systems [4] where a probabilistic guarantee close to 0% suffices.
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In this paper we propose and discuss a stochastic analysis framework which does not in-

troduce any worst-case or restrictive assumptions into the analysis and is applicable to general

priority-driven real-time systems. The framework builds upon Stochastic Time Demand Analysis

(STDA) [5] as far as the techniques used to compute the response time distributions of tasks are

concerned, but differs from STDA in several respects. First, our framework considers all possible

execution scenarios in order to obtain the exact response time distributions of the tasks, while

STDA focuses on particular execution scenarios starting at a critical instant. Second, while STDA

addresses only fixed-priority systems such as Rate Monotonic [1] and Deadline Monotonic [6],

our framework extends to dynamic-priority systems such as Earliest Deadline First [1]. Third,

STDA only provides valid results if the maximum system utilization is less than or equal to 1,

while our analysis is applicable to systems with a maximum utilization greater than 1.

In our framework, in order to consider all the possible execution scenarios in the system, we

analyze a whole hyperperiod of the given task set, that is, a period having the same duration

as the least common multiple of the periods of all the tasks. Moreover, to handle cases in

which the maximum system utilization is greater than 1, and so one hyperperiod may affect the

next one, we model the system as a Markov process over an infinite sequence of hyperperiods.

This modeling leads us to solve an infinite number of linear equations. Here we present three

different methods to solve the problem. One method gives the exact solution, while the others

give approximated solutions. We compare these methods, in terms of accuracy and complexity,

and discuss experimental results.

The rest of the paper is organized as follows. In Section II related work is outlined to

establish the context of and motivation for our work. In Section III, the system model is

explained. Sections IV and V describe the stochastic analysis framework including the exact and

approximation methods. Section VI gives the experimental results obtained. Finally, Section VII

concludes the paper with directions for future research.

II. RELATED WORK

Several studies have addressed the variability of task execution times in analyzing the schedu-

lability of a given task set. Probabilistic Time Demand Analysis (PTDA) is a stochastic extension

of Time Demand Analysis (TDA) [2] and can only deal with tasks with relative deadlines smaller

than or equal to the periods. Stochastic Time Demand Analysis (STDA), on the other hand, is

a stochastic extension of General Time Demand Analysis [3] and can handle tasks with relative

deadlines greater than the periods. Like the original TDA, both methods assume the critical

instant at which the task being analyzed and all the higher-priority tasks are released or arrive

at the same time. Although this worst-case assumption simplifies the analysis, it only results in
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an upper bound on the deadline miss probability, the conservativeness of which depends on the

number of tasks and the average utilization of the system. Moreover, both analyses are valid

only when the maximum utilization of the system does not exceed 1.

Other analysis methods based on simplifying worst-case assumptions are the one proposed by

Manolache et al. [7], which addresses only uniprocessor systems, and the one by Leulseged and

Nissanke [8], which extends to multiprocessor systems. These methods, like the one presented

in this paper, cover general priority-driven systems including both fixed-priority and dynamic-

priority systems. However, to limit the scope of the analysis to a single hyperperiod, both

methods assume that the relative deadlines of tasks are shorter than or equal to their periods

and that all the jobs that miss their deadlines are dropped. Moreover, in [7], all the tasks are

assumed to be non-preemptible to simplify the analysis.

The Real-Time Queueing Theory (RTQT) [9] extends the classical queueing theory to real-

time systems. RTQT is not limited to a particular scheduling algorithm and can be extended

to real-time queueing networks. However, it is based on a restrictive assumption, i.e. the heavy

traffic assumption (which means that the average system utilization is close to 1), so it is only

applicable to systems where such an assumption holds. Moreover, it only considers one class

of tasks such that the interarrival times and execution times are identically distributed.

Other stochastic analysis methods in the literature include the one proposed by Abeni and

Buttazzo [10], and the method with Statistical Rate Monotonic Scheduling (SRMS) [11]. Both

assume reservation-based scheduling algorithms so that the analysis can be performed as if

each task had a dedicated (virtual) processor. Each task is provided with a guaranteed budget

of processor time in every period [10] or super-period (the period of the next low-priority task,

which is assumed to be an integer multiple of the period of the task in SRMS) [11]. So, the

deadline miss probability of a task can be analyzed independently of the other tasks, assuming

the guaranteed budget. However, these stochastic analysis methods are not applicable to general

priority-driven systems due to the modification of the original priority-driven scheduling rules

or the use of reservation-based scheduling algorithms.

III. SYSTEM MODEL

We assume a uniprocessor system that consists of a set of n independent periodic tasks

S = {τ1, . . . ,τn}, each task τi (1 ≤ i ≤ n) being modeled by the tuple (Ti,Φi,Ci,Di), where Ti

is the task period, Φi the initial phase, Ci the execution time, and Di the relative deadline. The

execution time is a discrete random variable1 with a given probability mass function (PMF),

denoted by fCi(·), where fCi(c) = P{Ci =c}. Without loss of generality, the phase Φi of each

1Throughout this paper, we use a calligraphic typeface to denote random variables, e.g., C, W, and R.
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task τi is assumed to be smaller than Ti. The relative deadline Di can be smaller than, equal to,

or greater than Ti.

The system utilization is defined as the sum of the utilizations of all the tasks. Due to the

variability of task execution times, here three system utilizations are defined, i.e. the minimum

Umin, the maximum Umax and the average system utilization Ū , which are calculated using the

minimum, maximum and average task execution times, respectively. In addition, a hyperperiod

of the task set is defined as a period of length TH = lcm1≤i≤n{Ti}.

Each task consists of an infinite sequence of jobs, whose release times are deterministic. If we

denote the j-th job of task τi by Ji, j, its release time λi, j is equal to Φi +( j−1)Ti. Each job Ji, j

requires an execution time, which is described by a random variable following the given PMF

fCi(·) of the task τi, and is assumed to be independent of other jobs of the same task and those

of other tasks. However, throughout the paper we use a single index j for the job subscript,

since the task that the job belongs to is not important in describing our analysis framework.

The scheduling model we assume is a general, preemptive, priority-driven one that covers

both fixed-priority systems such as Rate Monotonic (RM) and Deadline Monotonic (DM), and

dynamic-priority systems such as Earliest Deadline First (EDF). The only limitation is that

once a priority is assigned to a job, it never changes, which is called a job-level fixed-priority

model [12]. We denote the priority of job J j by a priority value p j. A higher priority value

means a lower priority. At any time, the job with the highest priority is always served first. If

two or more jobs with the same priority are ready at the same time, they are scheduled according

to the FCFS (First Come First Served) rule.

The response time of a job J j is a random variable, R j, the PMF of which has to be obtained

by analysis. Di is the task relative deadline, and Mi the maximum allowable probability of

missing it. Task τi is said to be schedulable if P{Ri >Di} ≤ Mi.

IV. STOCHASTIC ANALYSIS FRAMEWORK

A. Overview

What follows is a brief summary of the proposed analysis method, based on an example. For

details and mathematical proofs, the reader is referred to [13] and [14].

The response time of a job J j is given by R j = Wp j(λ j)+ C j + I j, where Wp j(λ j) is the

backlog of priority p j at time λ j, which represents the workload of jobs with priority p j and

higher that have not yet been processed just before the release time λ j of J j. C j is the execution

time of job J j. I j is the interference on J j of all the jobs with a higher priority than job J j,

released after job J j. Note that all the terms in the equation are random variables. This is the
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Fig. 1. Example of calculation of response time distribution for a job

stochastic counterpart of a well-known deterministic equation that provides the response time

of a job under a preemptive priority-driven scheduling policy (see eq. (16) in [15]).

None of the jobs with a priority less than p j released before λ j has any influence on the

response time of job J j. In addition, none of the jobs with a priority p j or less released after λ j

has any influence on the response time of job J j. To simplify the notation, we assume that all

these jobs are removed in the calculation process of R j, and the task indices updated accordingly.

In addition, we can remove the subindex p j from Wp j , since all jobs considered have a priority

p j or higher.

Figure 1 illustrates an example in which the response time of job J3 is computed, following

the algorithm described in [13]. The calculation starts with null backlog at the release time of

the first job, J1, i.e., W(λ1) = 0. Note that, in general W(λ1) is a random variable, but in this

case its value is zero, since we assume that the system begins with J1.

The backlog distribution at λ2, denoted by W(λ2), is calculated by convolving fW(λ1) with
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fC1 , shifting the result by (λ2−λ1) time units to the left and accumulating the probability values

in the negative range onto the origin (see fig.1). In the same way, the backlog distribution at λ3,

W(λ3), can be calculated by convolving fW(λ2) with fC2 , shifting the result by (λ3 −λ2) time

units to the left and accumulating the probability values in the negative range onto the origin.

Let us define the function SHRINK(W,∆), which produces a new random variable whose

PMF is equal to the PMF of W, left-shifted by the amount ∆ and with all values for negative

abscissae accumulated at the origin. That is:

fSHRINK(W,∆)(x) =



























0 if x < 0
0

∑
w=−∞

fW(w+∆) if x = 0

fW(x+∆) if x > 0

(1)

Using this function, the calculation of W(λ j) can be expressed as

W(λ1) = 0

W(λ j) = SHRINK(W(λ j−1)+C j−1,λ j −λ j−1) for j > 1
(2)

Note that the distribution of a sum of random variables is obtained by convolving their

distributions. Once W(λ j) has been calculated, in order to calculate R j it is necessary to add

the execution time C j and the interference of jobs released later than λ j. Figure 1 depicts the

process.

The distribution fW(λ3) is convolved with fC3 . The resulting distribution, denoted R[0,λ4−λ3]
3 ,

is a random variable that describes the response time distribution of job J3 assuming that all the

interfering jobs J4, J5, and J6 do not exist. The actual distribution of R3 in the range [0,λ4−λ3]

coincides with that of R[0,λ4−λ3]
3 in the same range. The complete actual distribution of R3 is

computed below by considering each interfering job.

The distribution fR[0,λ4−λ3 ]
3

is convolved from2 r = (λ4−λ3) with fC4 . The resulting distribution,

whose random variable is denoted by R[0,λ5−λ3]
3 , is the response time distribution of job J3

assuming that the interfering jobs J5 and J6 do not exist. The actual response time distribution

of R3 in the range [0,λ5−λ3] coincides with that of R[0,λ5−λ3]
3 in the same range.

The iteration process continues until the relative deadline of J j is included in the interval of

one of the random variables. In the example of Figure 1, the iteration ends with the calculation

of R[0,λ6−λ3]
3 for the relative deadline of value 7 for J3. At that moment, the probability of J3

meeting its deadline can be computed (of value 35/36), and therefore the probability of missing

its deadline (of value 1/36).

2The “convolve from” operation is formally defined in eq. (3)
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Let us define the function CF(R,∆,C), which convolves the tail distribution of R defined in

the range [∆,∞) (i.e., R[∆,∞)) and C. The result is a new random variable, whose distribution is

obtained as follows:

fCF(R,∆,C)(x) =















fR(x) for x ≤ ∆
∞

∑
i=∆+1

fR(i) · fC(x− i) for x > ∆
(3)

Using this operator, the calculation of R j with interfering jobs can be expressed as

R
[0,λ j+1−λ j]
j = W(λ j)+C j

R
[0,λk+1−λ j]
j = CF(R

[0,λk−λ j]
j ,λk −λ j,Ck) for k > j

(4)

The iteration can stop when λk+1 −λ j ≥ D j.

In theory, the probability of a task missing its deadline is calculated by averaging the proba-

bilities of all its jobs missing that deadline, but in practice the number of these jobs is infinite.

It can be proved that, when Ū < 1 the system becomes stable and in the steady state, the

probability of a job missing its deadline becomes constant for the same job released one, two or

any number of hyperperiods later. Thus, it would suffice to compute the steady-state response

time distribution for all the jobs released in a single hyperperiod to obtain the exact response

time distribution for any task. However, in order to compute the steady-state response time of

any job J j, it is necessary to compute the steady-state backlog of priority p j at its release instant

λ j. This computation can be optimized based on the observation that there exists a dependency

among the backlogs of the different jobs. Once the steady-state backlog distribution has been

computed for a job, this result can be reused to compute the steady-state backlog for all the

other jobs in the steady-state hyperperiod.

B. Dependency among the backlogs

To show that there exist dependencies between the backlogs, we first classify all the jobs in

a hyperperiod into ground jobs and non-ground jobs. A ground job is defined as a job that has

a lower priority than those of all the jobs previously released. That is, J j is a ground job if

and only if pk ≤ p j for all jobs Jk such that λk < λ j. A non-ground job is a job that is not a

ground job. One important implication from the ground job definition is that the p j-backlog of

a ground job is always equal to the total backlog in the system observed at its release time.

We call the total backlog system backlog and denote it by W(t), i.e., without the subscript p j

denoting the priority level. So, for a ground job J j, Wp j(λ j) = W(λ j).

We can capture backlog dependencies between the ground and non-ground jobs. For each

non-ground job J j, we search for the last ground job that is released before J j and has a priority

higher than or equal to that of J j. Such a ground job is called the base job for the non-ground
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job. From this relation, we can observe that the p j-backlog of the non-ground job J j directly

depends on that of the base job. Note that such backlog dependencies exist even between ground

jobs, and can still be captured under the concept of the base job. As a result, all the backlog

dependencies among the jobs can be depicted with a tree (which can degenerate to a list, in

some cases). Let us particularize this scheme for the case of RM and EDF scheduling.

For RM scheduling, the ground jobs are those belonging to the task with the lowest priority.

The backlog of each ground job can be computed from the backlog of the preceding ground job.

The dependency “tree” is in this case a simple list (or chain) which connects all ground jobs (i.e.,

all lowest-priority jobs). However, the non-ground jobs are not connected to this list, because

they do not have a base job (all jobs released before any non-ground job have a priority lower

than that of the non-ground job). This means that the backlog of the non-ground job cannot be

derived from the backlog of the ground jobs. This problem can be addressed in the following

way; once the ground jobs have been solved, the lowest-priority task is removed from the system

model, and the resulting system is analyzed again. In this new system there will be the new

lowest-priority task (i.e., the second lowest-priority task in the original system model), which

will generate a new set of ground jobs, to which the same methodology is applied. Therefore,

under RM we have n separated dependency lists, n being the number of priority levels. The

steady-state backlog has to be computed for the job at the head of each list, which is the first

lowest-priority job in the hyperperiod, using the methods described in the next section. Then,

the backlog of the remaining jobs in the list is computed using eq. (1), using as the initial

backlog the steady-state backlog computed for the head of the list.

For EDF scheduling, it can be shown [14] that a ground job exists in each hyperperiod, and

that all non-ground jobs have a base job within a finite time window (the size of this window is

max{Di}+TH , max{Di} being the maximum among the deadlines for all the tasks). Therefore,

all the jobs are linked in a single dependency tree, whose root is the first ground job in the

hyperperiod. Once the steady-state backlog has been found using one of the methods in the next

section for this ground job, the steady-state backlog of all the other jobs can be computed by

traversing this dependency tree while applying eq. (1).

Therefore, the only difference between dynamic-priority systems and fixed-priority systems is

that for the former the backlog distributions of all the jobs are computed at once with the single

backlog dependency tree, while for the latter they are computed by iterative analysis over the

n priority levels, which results in n backlog dependency lists. In any case, we need a method

to determine the steady-state backlog of the root job in the tree (or the head job in each list).

This method is presented in the next section.
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V. STEADY-STATE BACKLOG ANALYSIS

Let us assume an infinite sequence of hyperperiods, the first of which starts at the release

time λ j of the ground job being considered, J j. Let fBk be the distribution of the system backlog

Bk observed at the release time of the ground job in the hyperperiod k, that is, at the instant

λ j + kTH . It can be proved that, if the average system utilization Ū is less than 1, there exists

a stationary (or limiting) distribution fB∞ of the system backlog Bk such that

lim
k→∞

fBk = fB∞

For the special case where U max is also less than 1, the system backlog distributions fBk of all

the hyperperiods are identical. That is, fB1 = · · · = fBk = · · · = fB∞ . In this case, the stationary

backlog distribution fB∞ can easily be computed by considering only the finite sequence of jobs

released before the instant λ j. That is, we simply have to apply eq. (1) along the finite sequence

of jobs released in [0,λ j), while assuming that the system backlog at time 0 is 0.

For the case where Umax > 1 (while Ū < 1), the system backlog distributions are different in

each hyperperiod, but they converge towards a limiting distribution fB∞ . This distribution can

be approximated by simple iteration of eq. (1) along several hyperperiods, until two successive

distributions are close enough, or it can be computed exactly by the Markovian analysis presented

in the next subsection.

A. Exact solution

For a general case where U max > 1, in order to compute the exact solution for the stationary

backlog distribution fB∞ , we show that the stochastic process defined with the sequence of

random variables {B0,B1, . . . ,Bk, . . .} is a Markov chain. To do this, let us express the PMF

of Bk in terms of the PMF of Bk−1 using the concept of conditional probabilities.

P{Bk =x} = ∑
y

P{Bk−1 =y}P{Bk =x | Bk−1 =y} (5)

We can see that the conditional probabilities P{Bk =x | Bk−1 =y} do not depend on k, since

all hyperperiods receive the same sequence of jobs with the same execution time distributions.

That is, P{Bk =x | Bk−1 =y} = P{B1 =x | B0 =y}. This leads us to the fact that the PMF of Bk

depends only on that of Bk−1, and not on those of {Bk−2,Bk−3, . . .}. The stochastic process is

thus a Markov chain. We can rewrite Equation (5) in matrix form as follows

bk = Pbk−1 (6)

where bk is a column vector
[

P{Bk =0},P{Bk =1}, . . .
]

ᵀ, i.e., the PMF of Bk, and P is the

Markov matrix which consists of the transition probabilities P(x,y) defined as

P(x,y) = P{Bk =x | Bk−1 =y} = P{B1 =x | B0 =y}.
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Thus, the problem of computing the exact solution πππ for the stationary backlog distribution,

i.e.,
[

P{B∞ =0},P{B∞=1}, . . .
]

ᵀ, is equivalent to solving the equilibrium equation πππ = Pπππ . It

can be shown that, whenever Ū < 1, the solution to this equation is unique.

Theoretically, when k → ∞, the system backlog can be arbitrarily long, since U max > 1. This

means that the Markov matrix has an infinite size, and therefore, trying to find πππ leads to an

infinite set of linear equations, which cannot be solved. However, matrix P has a regular structure

which simplifies the problem. For any system, it can be shown that there exists an integer r,

such that, for any j > r, the coefficients of column j in P are the same as the coefficients of

column j− 1, but shifted one position down. This regular structure means that the infinite set

of linear equations can be reduced to a finite set of linear equations plus a recurrence relation.

From these equations, the exact solution πππ can be found. The solution is of infinite length, but

an expression which gives each of its coefficients in closed form can be obtained for any system.

The reader can find more details in [13].

B. Approximations

The exact solution is interesting from a theoretical point of view. However, the practical

implementation of the exact method is not exempt from problems. First, the computational cost

of the method is very high. Second, the nature of the real numbers involved in the calculations

leads to numerical problems when implemented in a computer. The exact method requires the

matrix P to be computed up to column r in which the repetitive structure appears. Each column

of P requires eq. (1) to be applied through all the jobs in one hyperperiod. The coefficients in

column r give a recurrence relation, whose solution involves the diagonalization of a matrix. The

size of this matrix depends on the number of non-null coefficients in column r of P. In practice,

the matrix to diagonalize will be huge. Moreover, this matrix has a large number of coefficients

very close to zero, while other coefficients have very large values, so it is ill-conditioned for

diagonalization.

Due to these problems, computation of the exact solution is only possible for systems with

a small number of tasks, and other approximated methods should be investigated. One possible

approximation is to truncate the original Markov matrix P, creating a new finite matrix P′. In

this way, the equation πππ ′ = P′πππ ′ leads to a finite set of linear equations which can easily be

solved on a computer. The solution πππ ′ will be an approximation of the exact solution πππ . The

accuracy of the approximation depends on the truncation point for P, an issue that requires

further investigation.

Another approximation is the iterative method already mentioned. This method has the ad-

vantage that computation of the Markov matrix P is not necessary, and thus it is computationally

10



task set Ti
execution times utilizations

Cmin
i C̄i Cmax

i Umin Ū Umax

A
τ1 20 4 6 10

.58 .82 1.27τ2 60 12 16 22
τ3 90 16 23 36

B
τ1 20 4 6 10

.58 .87 1.27τ2 60 12 17 22
τ3 90 16 26 36

C
τ1 20 4 7 10

.58 .92 1.27τ2 60 12 17 22
τ3 90 16 26 36

C1
τ1 20 3 7 11

.46 .92 1.38τ2 60 10 17 24
τ3 90 13 26 39

C2
τ1 20 2 7 12

.34 .92 1.50τ2 60 8 17 26
τ3 90 10 26 42

RM EDF
simulation STDA exact trunc iterat. simulation exact trunc iterat.

.0000 ± .0000 .0000 .0000 .0001 ± .0000 .0001 .0001 .0001

.0000 ± .0000 .0000 .0000 .0000 ± .0000 .0000 .0000 .0000

.0940 ± .0025 .3931 .0940 .0940 .0940 .0000 ± .0000 .0000 .0000 .0000

.0000 ± .0000 .0000 .0000 .0013 ± .0002 .0013 .0013 .0013

.0000 ± .0000 .0000 .0000 .0005 ± .0002 .0005 .0005 .0005

.2173 ± .0033 .6913 .2170 .2170 .2170 .0000 ± .0001 .0000 .0000 .0000

.0000 ± .0000 .0000 .0000 .0223 ± .0013 .0224 .0224 .0224

.0000 ± .0000 .0000 .0000 .0168 ± .0014 .0169 .0169 .0169

.3849 ± .0052 .9075 .3852 .3852 .3852 .0081 ± .0011 .0081 .0081 .0081

.0000 ± .0000 .0000 .0000 .0626 ± .0031 .0630 .0627 .0627

.0000 ± .0000 .0000 .0000 .0604 ± .0038 .0610 .0607 .0607

.4332 ± .0065 .9209 .4334 .4334 .4334 .0461 ± .0032 .0466 .0463 .0463

.0000 ± .0000 .0000 .0000 .1248 ± .0058
N.A.

.1250 .1250
.0002 ± .0001 .0018 .0002 .0002 .0002 .1293 ± .0064 .1296 .1296
.4859 ± .0081 .9339 N.A. .4860 .4860 .1136 ± .0063 .1138 .1138

TABLE I

TASK SETS USED IN THE EXPERIMENTS AND RESULTS OF THE DIFFERENT ANALYSIS METHODS

more efficient. The accuracy of this approximation can be controlled by comparing the solution

πππ ′ obtained in each iteration with the one obtained in the previous iteration. The number of

iterations required for a given accuracy level is unknown in advance.

VI. EXPERIMENTAL RESULTS

This section presents experimental results obtained using our analysis framework. We assess

the complexity and accuracy of all the methods proposed here, also comparing their results

with those obtained by STDA [5]. Secondly, we evaluate the complexity of the backlog and

interference analysis by experiments. We investigate the effect on the backlog and interference

analysis of various n (the number of jobs), m (the maximum length of the execution time

distributions), T̄ (the average interarrival time), and k (the degree of interference).

A. Comparison between the solution methods

We use the task sets shown in Table I, which consist of three tasks with the same periods,

deadlines (equal to the periods), and null phases, which result in the same backlog dependency

tree for a given scheduling algorithm. The task sets only differ in their execution time distribu-

tions. For task sets A, B, and C, the minimum and maximum execution times for each task do

not change, while the average execution time is varied. This allows us to evaluate the effect of

the average system utilization Ū on the stationary backlog distribution. For task sets C, C1, and

C2, the average execution time of each task is fixed, while the whole execution time distribution

is gradually stretched. This allows us to evaluate the effect of the maximum system utilization

Umax on the stationary backlog distribution, while fixing the average system utilization Ū .

Table I also summarizes the results of our stochastic analysis and, for the RM case, the

results obtained by STDA. The deadline miss probability (DMP) for each task obtained from
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task
SSBD computation time (seconds)

set exact
trunc iterative

δ=10−3 δ=10−6 δ=10−9 δ=10−3 δ=10−6 δ=10−9

A .13
.00 .00 .00 .00 .00 .00

p=2 p=15 p=25 I=2 I=2 I=3

B .13
.00 .00 .01 .00 .00 .01

p=8 p=23 p=37 I=2 I=3 I=6

C .15
.01 .03 .07 .00 .01 .03

p=29 p=63 p=96 I=4 I=12 I=20

C1 .31
.02 .10 .25 .01 .05 .21

p=54 p=115 p=173 I=7 I=20 I=35

C2 N.A.
.07 .31 .82 .02 .23 .88

p=86 p=181 p=272 I=10 I=30 I=52

TABLE II

ANALYSIS TIME COMPARISON BETWEEN THE SOLUTION METHODS

the stationary system backlog distribution computed by each method (i.e., exact, Markov matrix

truncation, iterative) and the average deadline miss ratio (DMR) and standard deviation obtained

from simulations are shown. For the truncation and iterative methods, the values of the control

parameters p (the size of the truncated matrix P′) and I (the number of hyperperiod iterations)

are shown in Table II. The average DMR is obtained by averaging the deadline miss ratios

measured from 100 simulation runs of each task set, performed during 5000 hyperperiods. To

implement the exact method and the Markov matrix truncation method, we used the Intel linear

algebra package called Math Kernel Library 5.2.

Table I shows that our analysis results are almost identical to the simulation results, regardless

of the solution method used. For the RM case, we can observe significant differences between

the DMPs given by STDA and those obtained by our analysis. For example, for task τ3 in task

set A, the DMP given by STDA (39.3%) is more than four times that given by our analysis

(9.4%). As Ū or Umax increases, the DMP computed by STDA gets even worse. This results

from the critical instant assumption made in STDA. Our implementation of the exact method

could not provide a numerically valid result for task set C2 (in the RM case, only for task τ3)

due to the limited precision of the numerical package we used. For the same reason, a small

difference is observed between the DMP computed by the exact method and those computed by

the approximation methods for task set C1, scheduled by EDF. However, this precision problem

can be overcome simply by using a numerical package with greater precision.

Table II shows the analysis time required in the EDF case 3 by each solution method to

compute the stationary system backlog distributions. This time does not include the time taken by

the backlog dependency tree generation, which is almost 0, and the time required by the backlog

and interference analysis, which is less than 10 ms. The table also shows the values of the control

parameters p and I for the truncation and iterative methods. For fair comparison between the

3The analysis time was measured with a Unix system call called times() on a personal computer equipped with a Pentium

Processor IV 2.0 GHz and 256 MB main memory.
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two approximation methods, we define an accuracy level δ = ||SSBDexact −SSBDapprox||, where

SSBDexact is the exact solution of the stationary system backlog distribution and SSBDapprox is

the approximated solution computed by either of the methods.

Table II shows that both the SSBD computation time and the associated control parameters

used to obtain solutions with the required accuracy levels δ = 10−3,10−6,10−9 (The DMPs

shown in Table I for the truncation and iterative methods were obtained at an accuracy level

of δ = 10−6). For task sets A to C, as Ū increases, the analysis time rapidly increases for the

truncation and iterative methods, while it remains almost constant for the exact one. The reason

for this is that as Ū increases, the probability values of the stationary backlog distribution spread

more widely, so both approximation methods have to compute the solution for a wider backlog

range. Both methods should therefore use a larger value for the p and I parameters in order to

achieve the required accuracy level. This spread of the stationary probability values does not

affect the analysis time for the exact method, as most of this time is spent in solving the linear

system, the size of which only depends on U max and not on Ū . The above observation also

holds for the case of task sets C to C2 where, due to the increasing U max, the SSBD spreads

even more widely. The analysis time taken by the exact method also increases, as the size of the

resulting regular structure inherent to the Markov matrix becomes large due to the increasing

length of the execution time distributions.

To summarize, if Ū and/or Umax is significantly high, the approximation methods require a

long computation time for high accuracy, possibly longer than that of the exact method. However,

if Ū is not close to 1, e.g., less than 0.8, the methods can provide highly accurate solutions at

a considerably lower complexity.

B. Complexity evaluation of the backlog and interference analysis

We generated synthetic systems, varying the system parameters n, m, and T̄ , while fixing Ū .

Each system comprises n jobs with the same execution time distribution of length m and mean

interarrival time T̄ . The shapes of the distributions of the job execution time and the interarrival

time are determined in such a way that the fixed average system utilization is maintained, even

if they have no influence on the complexity of the backlog and interference analysis4. For each

system generated, we perform backlog and interference analysis, assuming a null backlog at

the beginning of the analysis. For each of the n jobs, we measure the time taken by backlog

analysis and interference analysis separately. In this measurement, the backlog analysis time for

the j-th job is defined as the time taken to apply the convolve-shrink procedure from the first

job J1 (with the null backlog) to job J j.

4The backlog and interference analysis time is not affected by the actual values of the probabilities composing the distributions.
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Fig. 2. Analysis time

Figure 2(a) shows the backlog analysis time (in seconds) measured for each job J j, while

varying m and T̄ . (Note that both the x-axis and the y-axis are in logarithmic scale.) The figure

shows that the backlog analysis time for each job increases in polynomial order O( j2m2) [14].

However, due to the backlog dependencies, the backlog analysis for the j-th job may be

efficiently performed in a real system by reusing the result of the backlog analysis for some

close preceding job Ji (i < j). So, the backlog analysis time for real jobs may be significantly

lower than that expected from the figure. Moreover, in the case where T̄ = m, the backlog

analysis time slowly increases as the value of j increases, since the backlog distribution length

rarely grows due to the long interarrival times for the jobs.

Figure 2(b) shows the interference analysis times (in seconds) measured for the 100th,

250th, 500th, and 1000th job, while only varying the interference degree k (i.e., the number of

interfering jobs within the deadlines). The figure shows that the interference analysis time for a

single job also increases in polynomial order O(k2m2) as the interference degree increases [14].

However, the interference degree considered before the deadline is usually very small in practice.

Figure 2(c) shows the interference analysis times measured for each job J j while fixing all the

other system parameters. This figure indirectly reveals the effect of the length of the p j-backlog

distribution for the j-th job to which the interference analysis is applied. As the p j-backlog

distribution length increases, the interference analysis time also increases, but slowly.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a framework for the stochastic analysis of periodic real-time systems

which relaxes the assumption that all tasks need their worst-case execution times, assuming

instead that the execution time is a random variable with a known distribution function. For

the case in which all the arrival instants are deterministic, we developed a method for deriving

the exact response time distribution of each task, even for systems with a maximum utilization

greater than 1. Experimental results confirmed the accuracy of the proposed analysis, even for the
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approximated methods. The computational complexity of the proposed analysis, polynomial with

respect to the number of jobs per hyperperiod and the size of the execution time distributions, is

still affordable, while allowing accurate deadline miss ratios to be derived in a much shorter time

than using simulation and with greater accuracy. The stochastic analysis is directly applicable

to multiprocessor systems using a partitioning scheme and common allocation algorithms such

as First Fit, Best Fit, etc. In fact, a multiprocessor made up of m processors would behave like

m independent uniprocessors.

When the arrival instants are not deterministic (e.g., sporadic tasks) the analysis proposed

here is no longer directly applicable. This only apparently reduces the practical applicability

of our framework, as in [16] we successfully investigated the possibility of obtaining “safe”

approximations of the response time distributions instead of the exact distributions. Safe means

that the probability of deadline miss derived from the approximated distribution is greater than

the exact probability. It can be shown that, if each sporadic task in the system is replaced by

a periodic task, with a period equal to the minimum interrelease times, our analysis can be

applied to this new system, obtaining a safe approximation of the exact solution.

Future work will focus on further extensions of the framework, in order to address jitter and

dependencies between the execution times.
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