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People seem to compute the ensemble statistics of
objects and use this information to support the recall of
individual objects in visual working memory. However,
there are many different ways that hierarchical structure
might be encoded. We examined the format of
structured memories by asking subjects to recall the
locations of objects arranged in different spatial
clustering structures. Consistent with previous
investigations of structured visual memory, subjects
recalled objects biased toward the center of their
clusters. Subjects also recalled locations more accurately
when they were arranged in fewer clusters containing
more objects, suggesting that subjects used the
clustering structure of objects to aid recall. Furthermore,
subjects had more difficulty recalling larger relative
distances, consistent with subjects encoding the
positions of objects relative to clusters and recalling
them with magnitude-proportional (Weber) noise. Our
results suggest that clustering improved the fidelity of
recall by biasing the recall of locations toward cluster
centers to compensate for uncertainty and by reducing
the magnitude of encoded relative distances.

Introduction

Our visual working memory is limited in its ability to
remember objects. In addition to remembering the
individual elements of scenes, people may also extract
the higher-order structure of an image, such as the
elements’ average size (e.g., Ariely, 2001) or average
location (e.g., Alvarez & Oliva, 2009). People can then
use that statistical structure to help remember objects
(Brady & Alvarez, 2011; Brady, Konkle, & Alvarez,
2009; Sims, Jacobs, & Knill, 2012). Knowing that your
papers are scattered in a pile around your desk, for
example, constrains their possible locations (e.g., it is
unlikely they are in the bathroom) and can help you

remember where individual papers are. Given that
people appear to encode and utilize not only individual
objects but also the higher-order structure of objects,
what is the format of structured memories?

In contrast to the traditional assumption that objects
in visual working memory are encoded independently
(Anderson, Vogel, & Awh, 2011; Bays & Husain, 2008;
Zhang & Luck, 2008; for review, see Ma, Husain, &
Bays, 2014), recent studies have demonstrated that
memory exploits the statistical structure of scenes.
Specifically, people infer the ensemble statistics of
objects (such as the average location of objects; Alvarez
& Oliva, 2009; Ariely, 2001) and combine these
ensemble statistics with uncertain estimates of individ-
ual object properties (Brady & Alvarez, 2011; Brady &
Tenenbaum, 2013; Orhan & Jacobs, 2013). This
encoding strategy can be described as reliance on a
hierarchical generative model: People infer that object
features are drawn from a distribution of features and
make uncertain inferences accordingly. In our desk
example, this would imply that if you did not know
exactly where a paper was, you might recall it as closer
to the center of the pile to compensate for your
uncertainty; although this strategy yields some bias in
in your estimate of the location, it decreases variance
and thus improves overall memory fidelity.

The structure of multiple objects may also constrain
the individual constituent objects more rigidly into
multiobject ‘‘chunks’’ (Brady & Tenenbaum, 2013;
Cowan, 2001; Miller, 1956). Chunking accounts tacitly
assumes that an inferred chunk completely constrains
its subparts (e.g., encoding ‘‘FBI’’ fully determines its
constituent letters). Thus, chunking is classically
considered to be a fixed memory structure (what we
might call ‘‘hard chunking’’), such that people remem-
ber only the chunk and nothing about its constituent
elements. However, if this encoding strategy is softened
to allow some information to be preserved about the
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constituent elements of a chunk (‘‘soft chunking’’), such
an account is consistent with encoding a hierarchical
generative model that probabilistically constrains
individual elements.

Additionally, studies of spatial memory suggest that
people encode the relative positions of objects: Rather
than remember the absolute position of a paper, you
may remember its position relative to your desk (e.g.,
the paper is one foot northwest of your desk; Holling-
worth, 2007; Huttenlocher, Hedges, & Duncan, 1991).
This relative encoding may be adapted to accommodate
hierarchical structures via an assumption that people
encode the relative discrepancy between features of
individual objects and the average features of the
ensemble. This relative encoding view is consistent with
vector-summation models of multiobject motion pars-
ing (Gershman, Tenenbaum & Jäkel, in press; Johans-
son, 1973) and spatial positions (Mutluturk &
Boduroglu, 2014). Intuitively, instead of remembering
the locations of your papers relative to your desk, you
may remember the locations of individual papers
relative to the centroid of all the papers.

Thus, the space of possible structures that people
might use to encode objects can be considered along
several dimensions: (a) Do people encode individual
items with no information about their structure
(independent encoding)? Or do they only encode the
structure, losing all information about constituent
elements (hard chunking)? Or something in between,
such that the overarching structure informs individual
object features (hierarchical generative model or soft
chunking encoding)? (b) Insofar as people encode both
higher-order structure and individual element features,
are these both encoded in absolute terms and inform
one another probabilistically (absolute encoding), or
are objects in the hierarchy encoded relative to their
‘‘parent’’ (objects relative to their ensembles and
ensembles relative to cluster groups), such that object
properties are ascertained by accumulating relative
offsets in the hierarchy (relative encoding)?

Here we evaluate these dimensions of visual memory
structure by asking people to remember and report the
locations of objects arranged in different spatial
clustering structures. Subjects recalled objects more
accurately when they were arranged in fewer clusters
that each contained more objects separated by smaller
relative distances. To directly evaluate the format of
subjects’ structured memories, we compared human
behavior to that of three cognitive models: a hard
chunking model, a hierarchical generative model, and a
relative position model. The relative position model
best accounted for human performance, followed
closely by the hierarchical generative model, with the
hard chunking model missing key aspects of human
behavior. Our results demonstrate two compatible
ways in which hierarchical encoding improves the

fidelity of visual working memory. First, objects are
biased toward their ensemble statistics to compensate
for uncertainty about individual object properties.
Second, objects are encoded relative to their parents in
the hierarchy, and relative positions are corrupted by
Weber noise,1 such that larger relative distances yield
greater errors.

Experiment

To distinguish different hierarchical encoding strat-
egies that people may use, we asked subjects to report
the positions of objects arranged in different clustering
structures. Different encoding strategies yielded distinct
patterns of errors across scenes that varied in the
number of objects and the number of clusters in which
they were arranged. Thus, we then examined if subjects’
responses across different types of environments were
consistent with different forms of structured encoding.

Methods

Subjects

Thirty-five students from the University of Califor-
nia, San Diego, participated for course credit.

Stimuli

We generated 70 environments, each containing
objects arranged into different clustering structures. We
selected 440 images from Brady, Konkle, Alvarez, and
Oliva (2008) for the objects. Although we did not
control how much objects varied perceptually and
semantically, we made sure each object type was unique
(e.g., there was only one bicycle, clock, etc.). The
dimensions of the environments were 70031000 pixels.
Each subject saw the same environments but in a
random order.

Each environment had one of seven clustering
structures: four clusters each containing one object
(4C1), two clusters containing two objects (2C2), 1C4,
8C1, 4C2, 2C4, 1C8 (Figure 1). We generated the
locations of the clusters and objects by selecting cluster
centers from a uniform distribution across the entire
environment and then sampling object locations from
each center using a two-dimensional isotropic normal
distribution (SD¼ 45) with the restriction that objects
could not overlap. There were 10 unique environments
for each clustering structure for a total of 70
environments.
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Procedure

Subjects studied the four-object environments (4C1,
2C2, and 1C4) for 4 s and the eight-object environ-
ments (8C1, 4C2, 2C4, and 1C8) for 8 s. After a 1-s
pause, subjects saw an empty environment with the
objects located at the bottom of the screen and had
unlimited time to place the objects in their correct
locations by clicking and dragging with the mouse. Our
analyses focus on the reported spatial locations of all
the objects in a display.

Results

Did subjects encode objects according to their
clustering structure?

If subjects did encode and utilize the clustering
structure of objects instead of independently encoding
objects, the errors for objects in the same cluster should
be more similar (in the same direction) than expected
by chance. We defined the similarity of the errors (q) in
reporting the locations of two objects as

qij ¼
xix

T
j

jjxijjjjxjjj
where xi and xj are vectors containing the spatial
translational error of the two objects’ reported
locations. The numerator is the projection of the
translational error vectors with positive values indi-
cating vectors in the same direction and negative values
indicating vectors in the opposite direction. The

denominator normalizes the numerator, such that q
falls between�1 and 1. Thus, if the recalled locations of
two objects were both shifted in exactly the same
direction, q would be 1; if they were shifted in
orthogonal directions, q would be 0; and if they shifted
in opposite directions, q would be �1.

We calculated the translational error similarity (q) of
objects in the same cluster for each environment
(Figure 2). We excluded environments without clus-
tering (4C1 and 8C1) from this analysis. For all
clustering structures, subjects recalled objects in the
same cluster with more similar errors than expected by
independent encoding, smallest t value, t(34)¼ 16.05, p
, 0.001). Subjects did not appear to encode the objects
independently and instead used the clustering structure
of objects.

How did clustering structure affect recall
fidelity?

If subjects encoded objects independently, then
clustering structures should not have affected how
accurately subjects recalled locations. We assessed the
effect of clustering structure upon the fidelity of recall
by calculating the root mean square error (RMSE2) of
subjects’ responses (Figure 3). We used a mixed-effects
model that included the number of objects, the number
of clusters, and their interaction as fixed effects and
subjects as random effects to test whether object load
and clustering structure affected recall. RMSE was
lower in the four-object conditions compared to the
eight-object conditions, t(241) ¼ 12.47, p , 0.001 for
the linear effect of number of objects, and decreased as
the number of objects in each cluster increased for both

Figure 1. Examples of environments from each of the clustering structures. From left to right, each row is arranged in order of

increasing clustering (clusters contain more objects). For this figure, a label indicating each environment’s clustering structure is

superimposed. Labels are read 4C2 ¼ four clusters each containing two objects. Images of objects from Brady et al. (2008).
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the four-object and eight-object conditions, t(241)¼
16.95, p , 0.001 for the linear effect of number of
clusters. Post hoc Tukey’s honest significant difference
(HSD) pairwise comparisons confirmed that perfor-
mance improved with every increment of cluster size in
both the four-object conditions (smallest difference:
13.30, 95% confidence interval¼3.69–22.92, p¼0.0042)
and the eight-object conditions (smallest difference:
14.71, 95% confidence interval ¼ 3.55–25.88, p ¼
0.0046). The decrease in RMSE with increasing cluster
size seems constant across the four- and eight-object
conditions, t(241)¼ .31, p¼ 0.76 for the interaction of
the number of objects and the number of clusters, i.e.,
the difference in slope of RMSE as a function of

number of clusters. The effect of clustering structure on
performance suggests that subjects did not encode the
objects independently and that subjects used clustering
to help remember objects more accurately.

Error model

Thus far, we have demonstrated that subjects did not
encode objects independently. Given that subjects
appeared to use the clustering structure of objects, how
did that structure constrain the locations of objects?
Did subjects encode objects using hard chunking, a
hierarchical generative model, and/or a relative posi-
tion tree? These encoding models predict different
levels of reliance on (and bias toward) objects’
hierarchical structure and different patterns of noise.
To determine what type(s) of structured encoding
subjects’ errors were consistent with, we constructed an
error model that estimates the extent of errors due to
misassociations, bias, and noise.

First, subjects may have had difficulty remembering
which objects were in which locations. We estimated
the probability of correctly matching an object to its
location, pT, and the probability of making a misasso-
ciation between an object and another object’s location,
pM ¼ 1 –pT. The probability of misassociating to a
particular location then was pM

n�1, where n is the number
of locations. To determine exactly to which location
each object was misassociated, we assumed a bijective
mapping of objects to locations (f), such that only one
object could be paired with each location. f�1(i) denotes
the inverse mapping from locations to objects.

Figure 2. Error similarity heat maps with labels indicating the clustering structure superimposed. Warmer colors indicate more similar

errors. Each square represents the error similarity between two different objects. Objects in the same cluster are outlined in purple.

Objects in the same cluster were recalled with more similar errors.

Figure 3. Raw performance measured in root mean square error

(RMSE) for each of the clustering structures, arranged in order

of increasing clustering. The red line separates the four-object

conditions from the eight-object conditions. Error bars indicate

SEM. Performance improved as objects were arranged in fewer

clusters containing more objects.
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Second, subjects may have been uncertain about
objects’ locations but used their memories of cluster
locations to inform their responses. This would have
resulted in objects being drawn toward their clusters.
We accounted for two types of such ‘‘regularization’’
bias: the degree to which clusters are drawn toward the
global centroid of all objects (cluster-to-global bias, bc)
and the degree to which objects are drawn toward their
cluster centers (object-to-cluster bias, bo). Here, a bias
of zero indicates the object/cluster is unbiased, and a
bias of one indicates the element is drawn completely
toward its parent.

To parameterize how the locations of objects would
be shifted by these sources of bias, we decomposed the
true locations of objects, t, into their relative positions
and then weighted the relative positions by the bias
parameters. The decomposition of the true locations
yielded a relative position tree in which the locations of
objects were represented relative to their clusters (x),
the locations of clusters were relative to the global
centroid (c), and the global centroid (g) was the mean
of the true locations (t). Conditional on the mapping
f�1(i) of the true locations t to response locations s, the
position of an object i’s cluster relative to the global
center was defined by

ci ¼ C
M

�
fðiÞ
� � g

where M() maps objects to the clusters of which they
are members, and C is the absolute position of the
cluster center, calculated by averaging the locations of
all objects in that cluster. Similarly, the positions of
objects relative to their clusters were defined by

xi ¼ tf�1ðiÞ � ci � g:

We then weighted the relative positions of clusters
and objects by the cluster-to-global bias (bc) and the
object-to-cluster bias (bo), respectively. Thus, the
biased absolute positions of an object, bi, were

bi ¼ gþ ð1� bcÞ*ci þ ð1� boÞ*xi:
Finally, subjects may have remembered locations

with some imprecision. To account for this, the model
includes three levels of spatial noise that might induce
correlations in errors across objects: that which is
shared globally across all object locations (rg), for
locations within the same cluster (rc), and individual
object locations (ro). This decomposition of object
positions induces an expected correlation structure on
the errors in reporting individual objects, which can be
parameterized with a covariance matrix, R, of the form

Ri;j ¼
r2
g i 6¼ j MðfðiÞÞ 6¼MðfðjÞÞ

r2
c þ r2

g i 6¼ j MðfðiÞÞ ¼MðfðjÞÞ
r2
o þ r2

c þ r2
g i ¼ j

8><
>:

where the three conditions reflect (in order) error
covariance shared by all objects, error covariance for
objects in the same cluster, and error variance for
individual objects.

Let H be the set of parameters {pM, bc, bo, rg, rc, ro}.
Altogether, for each environment, the likelihood of a
set of responses given the targets and parameters was

LIKðsjt; f;HÞ ¼ ðpnTT Þ
pM
n� 1

� �nM
Nðsjb;RÞ

where s denotes the response locations, n is the number
of objects, nT is the number of objects correctly mapped
to their locations by f, and nM is the number of objects
incorrectly mapped to their locations by f. We
estimated these parameters (f, pM, bc, bo, rg, rc, ro) for
each environment across subjects using a Markov chain
Monte Carlo algorithm (see Appendix C for more
details concerning our Markov chain Monte Carlo
algorithm and Appendix D for all parameter fits).

Did subjects encode objects in addition to their
hierarchical structure?

Encoding objects as components of hard chunks or a
hierarchical generative model should result in distinct
patterns of object-to-cluster bias. If subjects encoded
objects as hard chunks, they should have retained
minimal information about the objects’ locations and
recalled the objects with a large bias toward their
respective cluster centers. If subjects encoded objects in
a hierarchical generative model, then they should have
recalled objects with more bias toward their cluster
centers when clusters contained more objects. Intui-
tively, subjects can more precisely estimate the centers
of clusters that contain more objects and consequently
should rely on those clusters more when they are
uncertain about the locations of the individual objects.

The bias of objects toward clusters was consistently
low (bo: M ¼ .19, SEM ¼ .02, max ¼ .62), suggesting
that subjects remembered the locations of individual
objects within their clustering structure rather than
storing chunks and discarding their internal compo-
nents. Additionally, contrary to the pattern of bias we
expected to find if subjects encoded objects in a
hierarchical generative model, as objects were arranged
in fewer clusters containing more objects, the objects
tended to be recalled with less bias toward their clusters
(Figure 4), t(47)¼7.14, p , 0.001 for the linear effect of
number of clusters on bo in a model including fixed
effects of number of objects and number of clusters).
Post hoc Tukey’s HSD pairwise comparison tests
confirmed that objects’ bias toward their clusters varied
with the number of clusters for the four-object
conditions (smallest difference: .099, 95% confidence
interval¼ .060–.14, p , 0.001). With the exception of
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the 2C4 and 1C8 conditions (difference: .11, 95%
confidence interval¼�.017–.24, p¼ 0.098), the bias of
objects toward their clusters also varied for the eight-
object conditions (smallest difference: .16, 95% confi-
dence interval¼ .031–.29, p¼ 0.01). However, even
though the bias of objects toward their clusters was
generally low, objects were consistently recalled with
some bias. Together, this pattern of bias suggests that
subjects encoded objects in a hierarchical generative
model but did not rely primarily on this form of
representation.

Did subjects encode objects in a relative
position tree?

Subjects may have encoded objects in a relative
position tree, wherein object positions are coded as
relative offsets from the cluster centers, and cluster
centers are coded as relative offsets from the global
center. At first glance, this is no different from encoding
the objects according to their absolute position.
However, if relative positions are recalled with Weber
noise (Sims et al., 2012; Tudusciuc & Nieder, 2010),
then larger relative distances will be more difficult to
recall. Because the relative distances between objects
decrease with more clustering, this could explain why
subjects remembered more densely clustered objects
more accurately.

Under such a relative encoding scheme, environ-
ments that happened to contain more dispersed
clusters3 require larger relative distances to represent
positions. Consequently, as the dispersion of clusters in
the environment increases, subjects should recall
clusters less precisely (that is, rc should increase). The
dispersion of clusters in an environment was signifi-
cantly correlated with the precision with which subjects
recalled cluster centers (r¼ 0.38 p , 0.01) (Figure 5),
consistent with subjects encoding objects according to
their relative positions and having difficulty recalling
larger relative distances.

Comparing chunking, hierarchical generative,
and relative position models

To directly test explicit formulations of different
encoding theories, we designed three cognitive models
that would encode a display and generate responses
according to its biases: a hard chunking model that only
remembers clusters, a hierarchical generative model that
encodes absolute positions (similar to Orhan & Jacobs,
2013), and a model that encodes objects in a relative
position tree and recalls relative positions with Weber
noise. Each model uses a nonparametric Dirichlet
process to determine the clustering of the objects
(Ferguson, 1983). We evaluated how well these models
could predict subject performance (measured in RMSE)
in each environment.

Nonparametric Dirichlet process

We used a nonparametric Dirichlet process to
determine the clustering structure of the objects

Figure 4. The extent to which objects were drawn toward their

cluster centers (bo) for each clustering structure. Larger object-

to-cluster bias indicates objects are drawn more toward their

clusters. Zero indicates the object is not biased toward the

cluster, and one indicates an object is drawn completely to the

cluster. The red line separates the four-object and eight-object

structures. Error bars indicate SEM. Object-to-cluster bias was

generally low, suggesting subjects did not solely encode chunks

(thus forgetting relative object position within a cluster), and

contrary to the predictions of a hierarchical generative model,

the bias of objects toward their clusters decreased as clusters

contained more objects. Nevertheless, in all conditions, objects

were drawn toward their clusters to some degree.

Figure 5. The noise of recalled cluster locations (rc) given the

dispersion of clusters. Each point represents an environment

estimated across subjects. Points are color-coded by clustering

structure. Error bars indicate SD of the posterior distribution.

As clusters were further apart, cluster locations were recalled

less accurately.
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(Ferguson, 1983). Although we used specific clustering
structures to generate the locations of objects, the
actual distribution of objects in a particular display
may have been consistent with a clustering structure we
did not design. Such impromptu clustering is especially
likely in environments without built-in clustering (4C1
and 8C1). Nonparametric Dirichlet clustering assumes
that each object’s location is drawn from an isotropic
Gaussian cluster with some position and standard
deviation. Crucially, this clustering model estimates the
number of clusters, the assignment of objects to
clusters, and the breadth and locations of clusters that
best explain the locations of the objects.

We used a Gibbs sampler (Geman & Geman, 1984)
to estimate the clustering structure of objects and a
concentration parameter. The concentration parameter
captures a prior on the number of clusters, and its
average median value was .11 (SD ¼ .033). The
chunking, hierarchical generative and relative position
models all use the maximum likelihood clustering
structures of the environments estimated by the
nonparametric Dirichlet process.

Chunking model

The hard chunking model uses solely information
about the clusters and which objects belong to which
clusters to recall the locations of objects. Importantly,
the chunking model knows nothing about the locations
of the individual objects. Instead, the model recalls the
location of an object by randomly sampling from the
object’s cluster based on the center and standard
deviation of the cluster estimated by the Dirichlet
process. The model has no free parameters.

Hierarchical generative model

The hierarchical generative model uses knowledge of
clusters’ locations to compensate for uncertainty in the
individual objects’ locations. This model is similar to
the Dirichlet process mixture model used by Orhan and
Jacobs (2013).

The hierarchical generative model noisily encodes
the absolute locations of all the objects as well as the

properties of their clusters. Because the model pools
memories of individual objects to determine the mean
and dispersion of their respective clusters, each
additional object in a cluster allows the model to
estimate the position of that cluster more precisely.
This model uses the same process to estimate the
precision of the global center from the locations of the
clusters. During recall, the model first recalls the
locations of the clusters by averaging the positions of
the clusters and global center, weighted by their
precisions. The model then recalls the locations of
individual objects by averaging the positions of the
objects and their clusters, weighted by the precision of
the encoded object locations and the posterior predic-
tive spread of objects within a cluster, respectively.

This model has one free parameter: the noise with
which objects are encoded. We set the noise parameter
to the average object location noise (ro) estimated by
our error model separately for the four-object and
eight-object conditions.

Relative position model

The relative position model remembers the relative
positions of objects and clusters with Weber noise and
uses clustering to reduce the magnitude of relative
positions. Using the clustering structure inferred by the
Dirichlet process, the relative position model remem-
bers the positions of objects relative to their clusters
and the clusters relative to the global center. The model
encodes relative positions via their distance and angle
and recalls them with circular Gaussian noise on angle
and proportional (Weber) noise on distance. The
angular and distance noise are captured by two free
parameters. We fit the model separately for the four-
object and eight-object conditions.

Can the models predict the difficulty of
environments?

We tested whether the models could predict the
difficulty, measured in RMSE, of each of the environ-
ments across and within clustering structures (Table 1).
All models were able to predict the difficulty of the

4C1 2C2 1C4 8C1 4C2 2C4 1C8 All

Ch .0095 .37 �.24 .38 .44 .70* �.21 .55**

HG .70* .63 .16 .43 .54 .58 �.43 .70**

RP .73* .85** .80* .63 .67* .61 .53* .89**

Table 1. r values of the correlation between subject RMSE and model RMSEs for the environments within each clustering structure
(4C1–1C8) and for all environments across clustering structures (All). Notes: Ch: chunking model, HG: hierarchical generative model,
RP: relative position model. *p , 0.05, **p , 0.01. The relative position model predicted the difficulty of environments within each
clustering structure most accurately.
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environments across clustering structures. However,
the chunking model was the worst predictor of subjects’
performance (r ¼ .55, 95% confidence interval ¼ .37–
.70). The relative position model fit environments
across clustering structures slightly better than the
hierarchical generative model (hierarchical generative: r
¼ 0.70, 95% confidence interval ¼ .56–.80; relative
position: r ¼ 0.89, 95% confidence interval¼ .82–.93).
Within clustering structures, the hierarchical generative
model and relative position models generally predicted
the difficulty of environments accurately. Notably,
however, the hierarchical generative model matched
subjects’ behavior particularly poorly for 1C4 and 1C8
environments. This is most likely because when all the
objects are in a single cluster, the hierarchical
generative model tends to recall objects excessively
biased toward the cluster centers. Instead, as our
analysis of the bias of objects toward their clusters
demonstrated, subjects retained a lot more information
about the individual objects in these one-cluster
environments. This pattern and the relative position
model’s better ability to predict behavior suggest that
relative position encoding dominated subjects’ errors.

General discussion

People can encode more information about multiple
objects if they exploit the objects’ shared statistical
structure rather than encoding them independently. We
considered several ways people might use this structure
when encoding objects and found that in addition to
using a hierarchical generative model to infer object
properties, people also use the hierarchy to encode
object properties as relative offsets from the central
tendency of their group. Because relative positions
seem to be recalled with Weber noise, hierarchical
clustering reduces the number of large distances that
subjects encoded and thus increases overall accuracy.

Implications for the structure of visual working
memory

We found that people encoded objects in a relative
position tree (Gershman et al., in press; Mutluturk &
Boduroglu, 2014), using clustering to reduce the Weber
noise of relative distances. Even though the relative
position model provided the best quantitative account
of our data, the qualitative pattern of results is not
entirely consistent with the ‘‘pure’’ chunking, hierar-
chical generative model, or relative position accounts.
In contrast to the predictions of a chunking account,
people retained more than just information about the
hierarchical structure; they also remembered rich

information about the individual object locations.
Despite subjects recalling positions biased toward
cluster centers in all conditions—consistent with
subjects encoding positions via a hierarchical genera-
tive model (Brady & Alvarez, 2011; Brady & Ten-
enbaum, 2013; Orhan & Jacobs, 2013)—this bias
decreased as clustering density increased, contrary to
the predictions of such hierarchical encoding. Fur-
thermore, although a relative position account could
explain errors scaling with increasing relative distances,
in isolation it does not predict the systematic biases
toward cluster centers. Thus, our results suggest that
human memory relies on some amalgamation of these
structured representations. Indeed, encoding the rela-
tive positions of objects requires first determining the
hierarchical clustering structure of the scene, and
insofar as this is done under uncertainty, biases should
be expected from such inference. Altogether, it seems
that both hierarchical inference and relative encoding
must play a role in human memory encoding.

The extent to which relative encoding or hierarchical
inference dominates the pattern of memory errors is
likely to vary across circumstances, either due to
strategy switching or even from a constant strategy that
incorporates both mechanisms. Insofar as clustering
structure or individual object properties may be
apprehended more easily with brief presentations or
other task constraints, different experimental protocols
may yield errors that reflect the clustering structure or
the relative encoding. Similarly, stimuli designed with
large variations in relative feature offsets will yield
more error variability captured by Weber properties of
distance encoding, and more homogeneous displays
will not show such patterns. In short, although human
behavior in our task was best described by the relative
position model, we suspect that this result may vary
with task parameters and that uncovering this task-
dependent variation in error structure may reveal more
fine-grained details of visual working memory mecha-
nisms.

Implications for visual working memory
capacity

Our findings that subjects remembered the locations
of many objects accurately, even in environments
containing eight objects, is at odds with models
predicated on a fixed number of slots in visual working
memory (Anderson et al., 2011; Zhang & Luck, 2008).
Additionally, neither such slot models nor flexible
resource models (Bays & Husain, 2008; for review, see
Ma et al., 2014) capture the effect of scene structure on
memory fidelity. Instead, our results are consistent with
recent work suggesting that visual working memory
performance is constrained by both memory capacity
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and the encoded statistical structure of objects (Brady
et al., 2009; Orhan, Sims, Jacobs, & Knill, 2014; Sims et
al., 2012). By decreasing the relative distances between
objects, clustering may have allowed a more efficient
encoding of the objects, ostensibly increasing observers’
capacity.

Limitations

Although we defined chunking as subjects retaining
memories of clusters but not individual objects, there
are other ways subjects could have encoded objects’
structure while discarding information about the
individual objects. Subjects may have encoded sets of
locations as familiar shapes, such as squares, triangles,
etc. (Yantis, 1992). They could have then used these
remembered shapes, rather than the cluster centers, to
constrain the locations of objects. Under this account,
no information about individual objects would be
preserved over and above the ‘‘chunk,’’ but our analysis
would still yield reliable information about the relative
(within cluster) positions of individual objects.

Another ambiguity of our analysis arises from the
assumption that subjects computed the centers of
clusters and encoded individual objects relative to those
centers (and reported objects with bias toward those
center). An alternative possibility is that subjects
encoded the positions of objects relative to each other
with greater bias exerted by nearby objects (e.g., such
as gravity with force dropping off with distance).
Unfortunately, our results cannot distinguish whether
objects were biased toward each other or toward
inferred cluster centers.

Although our report focuses on people’s memories
of object locations, our model analyses revealed that
subjects sometimes recalled locations correctly but
matched the wrong objects to the locations (Appendix
D). Neither the relative position model nor the
hierarchical generative model can account for this
behavior. It is likely that subjects’ real-world priors
caused them to expect the locations and identities of
objects to be related; subjects may have consequently
sought to connect the two. Because locations and
identities were independent, the conflict between
subjects’ priors and the lack of structure in the stimuli
may have even impaired performance (Orhan et al.,
2014). If the structure of locations and identities had
been correlated—such as if all the objects in the same
cluster were the same color or same type of animal—
subjects may have used the structure of one to inform
the other. Given that being able to perceptually group
objects based on proximity appears to improve the
ensemble encoding of other features (Im & Chong,
2014), it is possible that objects in the same spatial
cluster would have even been recalled with more similar

features/identities. Future studies may examine how the
hierarchical encoding of objects affects binding.

Other factors may have improved subjects’ apparent
memory capacity in our study. Unlike many prior
studies, we used distinct objects that never repeated,
which may have reduced interference between objects
(Endress & Potter, 2014). Furthermore, many subjects
reported using verbal strategies (e.g., ‘‘the pants are
above the shoes’’) to help remember displays. We
suspect that such strategies would have been only
minimally helpful, both because they seem to play a
minimal role in long-term memory using comparable
encoding times (e.g., Brady, Konkle, Gill, Oliva, &
Alvarez, 2013)4 and because they seem insufficient to
attain the precision exhibited by visual spatial memory.
Because verbally encoded spatial relations (such as
‘‘above’’ or ‘‘left’’) offer only imprecise location
information, we suspect that the main benefit of such
verbal encoding was to reduce misassociations between
objects (Lew, Pashler, & Vul, in press) rather than
encoding the locations themselves. Additionally, pat-
terns of oculomotor movements and attentional shifts
could have influenced performance by interfering with
encoding in visual memory (Lawrence, Myerson, &
Abrams, 2004). Although the uniform distribution of
cluster centers in our study still mandates many
changes of fixation, it is possible that clustering yields
fewer eye movements and attentional shifts between
objects in the same cluster, improving the fidelity of
memories. Our presentation times were also longer
than most visual working memory studies, which may
have given subjects more time to encode objects. Given
that performance appears to asymptote with display
times shorter than those used in the current study
(Bays, Gorgoraptis, Wee, Marshall, & Husain, 2011),
our results may reflect how people encode stimuli when
given enough time to thoroughly observe all objects.
Varying the encoding time, delay time, or the envi-
ronment statistics might reveal how people navigate the
space of possible encoding schemes.

Finally, a relative position-encoding scheme may
have been particularly well suited for exploiting the
structure of spatial positions. Computing relative
positions is straightforward for spatial locations and,
most likely, other features with Euclidean spaces, such
as size or aspect ratio. However, it is less clear how
relative encoding would work in more complex, higher-
dimensional spaces, such as color or texture. For well-
defined but non-Euclidean features, such as hue or
orientation, encoding relative positions will likely be
helpful if the stimuli are constrained to a narrow range
of the space (such that the space is effectively locally
Euclidian), but it is not obvious what relative encoding
would mean, or predict, if the features span the full
range of a circular feature dimension. It is possible that
for more complex object properties (such as face
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identity) people collapse those stimuli onto a small set
of salient or trained dimensions (such as organizing
faces according to race or gender; Hopper et al., 2014).
If so, relative memory encoding for such complex
objects would be possible in this low-dimensional
representation; however, finding evidence of such an
encoding strategy would require solving a considerably
harder problem: specifying the dimensions along which
such stimuli are encoded.

Conclusion

We examined how people encode and use the
hierarchical structure of objects under different object
loads and structures. In addition to recalling objects
biased toward their ensembles, people encoded objects
in a relative position tree, using clustering to reduce the
Weber noise of relative positions. Our findings are
consistent with previous work suggesting that people
select encoding schemes that allow them to efficiently
represent a given set of stimuli with high fidelity and
demonstrate a novel form of encoding.

Keywords: visual working memory, ensemble encod-
ing, chunking
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Footnotes

1 In this study, Weber noise refers to errors that are
normally distributed in log space.

2 We calculated RMSE using the formulaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
where (x1,y1) and (x2,y2) are

the true location of the object and the subject’s
reported location, respectively.

3 In our study, we held the standard deviation of
objects within clusters constant, preventing us from
analyzing the effect of relative distance on the accuracy

of objects. We predict that this relationship between
relative distance and accuracy should remain true for
objects within the same cluster.

4 Although Brady et al. (2013) assessed the influence
of verbal strategies in long-term visual memory, they
also found that both short- and long-term visual
memory rely on similar representations; thus, it seems
reasonable to apply their findings to short-term
memories in our experiments. Moreover, the greater
precision in short-term memory would seem to make
verbal encoding even less effective here than in long-
term memory.

5 The proportion of locations mismatched by object-
to-location mapping function f gives similar misasso-
ciation rates.
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Appendix A: Mechanical Turk
replication

To test whether our results generalized when screen
size was uncontrolled and in an online sample, we
replicated our in-lab experiment using Amazon Me-
chanical Turk for 10 new environments that contained
two clusters each composed of four objects (2C4).
Fifty-nine subjects participated, receiving a monetary
bonus based on their performance.

The stimuli were identical to our main experiment
except we decreased the size of the environments to 600
31100 pixels due to smaller space in Mechanical Turk’s
interface.

We again used our error similarity measure (q) to
measure whether subjects recalled clustered objects
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with more similar errors. The error similarity of objects
in the same cluster was consistently greater than 0, t(58)
¼ 23.83, p , 0.001 (Figure A1), indicating that memory
errors did not accumulate homogeneously for all
objects. Instead, subjects’ responses respected the
clustering structure of the objects.

Appendix B: Did subjects encode
objects based on their positions?

Subjects may have remembered objects using salient
positions or landmarks. For example, subjects may
have used the center or the axes of the environments or
visible landmarks, such as corners and edges (Holling-
worth, 2007; Huttenlocher, 1991) to help them recall

objects. We expected that if subjects used salient
positions or landmarks they would recall objects near
such locations more accurately (given Weber noise on
relative positions).

To evaluate these strategies, we examined the magni-
tude of errors in the X-dimension given the X-position
and the magnitude of errors in the Y-dimension given the
Y-position and binned the positions (Figure A2). There
was no significant effect of position on the magnitude of
errors in the X-dimension, t(438)¼ 1.56, p¼ 0.12 for the
linear effect of the X-position bin in a model including
the fixed effect of the X-position bin). However, the Y-
dimension of an object’s position did affect the
magnitude of errors, t(438)¼2.90, p¼0.003 for the linear
effect of the Y-position bin in a model including the fixed
effect of the Y-position bin), such that errors in the Y-
dimension increased toward the bottom of the environ-
ment. Given that the environments were symmetrical,
this most likely reflects subjects initially dragging objects
from below the environment to place them rather than
subjects using salient positions or landmarks.

Because objects were arranged in clusters, encoding
objects in a relative position tree may have been more
effective than landmark-based strategies. Objects were
typically very close to their cluster centers, making
positions relative to clusters easy to remember. If our
stimuli were reliably near salient position or landmarks,
we expect subjects would have used those alongside the
clustering structure of objects.

Appendix C: Markov chain Monte
Carlo error model fit

We used a Markov chain Monte Carlo algorithm to
fit the parameters of our error model. Let H(i) be the

Figure A1. Error similarity heat maps for the Mechanical Turk replication (single 2C4 heat map on the left) and the main experiment

(seven heat maps on the right). The format of the figure is identical to Figure 2. Subjects recalled objects in the same cluster with

similar errors.

Figure A2. Absolute error in the X- and Y-dimensions based on

X- and Y-positions. Lines indicate the binned results; (0,0)

indicates the center of the environment, (�500,�350) indicates
the bottom left corner of the environment. Error bars indicate

SEM. The locations of objects had little effect on subjects’ errors

except when the object was located toward the bottom.
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set of parameters {pM
(i), bc

(i), bo
(i), rg

(i), rc
(i), ro

(i)} at
iteration i and f(i) be the mapping of true locations to
response locations at iteration i. In each iteration, the
algorithm samples the values of the parameters that
compose H conditional on the current mappings of f
and then samples the mappings of f conditional on the
previously sampled value of H. The exact algorithm is

1. Choose random starting values for the parameters
f (0) and H(0).

2. At iteration i, draw a candidate H* from its
proposal distribution P(H*jH(i–1))

3. Compute an acceptance ratio (probability):

a ¼
LIK

�
sjt; f ði�1Þ;H*

�

LIK
�
sjt; f ði�1Þ;Hði�1Þ

�

4. Accept H* as H(i) with probability min(a,1). If H* is
not accepted, then H(i) ¼H(i–1).

5. Draw a candidate f* from its proposal distribution
Q(f *jf (i–1),H(i)).

6. Compute an acceptance ratio (probability):

a ¼
LIK

�
sjt; f *;HðiÞ

�

LIK
�
sjt; f ði�1Þ;HðiÞ

�

7. Accept f * as f (i) with probability min(a,1). If f * is
not accepted, then f (i) ¼ f (i � 1).

8. Repeat steps 2–7 N times to get N samples of f and
H.

For the proposal function P(H*jH(i–1)), we used
truncated normal distributions for each parameter’s
proposal distribution (the truncation enforced the
constraints that the noise parameters must be greater
than zero and the bias and misassociation probabilities
must be between zero and one). Noise proposal
distributions had a standard deviation of 2.5 and bias
and probability proposal distributions had a standard
deviation of .1.

For the proposal function Q(f *jf (i–1),H(i)), we
sampled two unique objects based on the inverse
likelihood that they came from their currently assigned
locations. Intuitively, this selects the two objects that
are currently least likely to be assigned to the correct
locations. We then swapped the assignments of the
sampled objects to create a new mapping proposal
assignment.

We set N to 3200 and treated the first 800 samples as
burn-in.

Appendix D: Error model parameter
estimates

To distinguish different forms of structured repre-
sentations in visual working memory, our primary
analyses focused on the extent to which subjects
remembered objects biased toward their clusters and
noisily remembered the centers of clusters. In addition,
our error model allowed us to examine how the
structure of objects influenced other types of errors in
visual memories (Table A1). We used fixed effects
models that included the fixed effects of the number of
objects and the number of clusters to examine how
different conditions affected the types of errors subjects
made (Table A2).

Subjects may have used the hierarchical structure of
objects to help remember associations between objects
and their locations. We found that although the rate of
misassociations (pM)5 increased with the number of
objects, it was unaffected by the clustering structure of
objects. This suggests that subjects did not use the
clustering structure of objects to minimize binding
errors.

As objects were arranged in fewer clusters, subjects
recalled the locations of clusters with less bias toward
the global center (bc). The decreasing bias of clusters
toward the global center may suggest that subjects
relied on a representation of objects’ hierarchical
generative model when remembering the locations of
clusters, relying less on the location of the global center

4C1 2C2 1C4 8C1 4C2 2C4 1C8

pM .082 (.010) .076 (.017) .071 (.008) .14 (.017) .11 (.014) .096 (.028) .13 (.033)

bc .17 (.014) .14 (.015) NA .21 (.012) .19 (.015) .11 (.016) NA

bo NA .12 (.018) .024 (.006) NA .41 (.031) .25 (.040) .14 (.039)

rg 29.5 (2.0) 22.2 (3.3) 35.7 (2.5) 33.6 (2.1) 31.5 (3.0) 27.5 (4.0) 45.8 (2.0)

rc 44.0 (3.4) 29.8 (2.8) NA 77.7 (2.3) 45.8 (3.3) 40.0 (4.9) NA

ro NA 28.9 (1.9) 22.9 (1.9) NA 55.5 (2.6) 47.8 (2.4) 46.0 (4.8)

Table A1. Error model parameter fits for each clustering structure. Notes: Each cell indicates the mean parameter value, and the
values in parentheses indicate SEM. Cells containing ‘‘NA’’ indicate cases in which the parameter and clustering condition are not
compatible (e.g., because objects are not clustered in 4C1 and 8C1, the model cannot measure objects’ bias toward their cluster [bo]).
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as the number of clusters decreased. However, it is
unclear why this pattern did not extend to objects’ bias
toward their clusters.

Subjects also recalled the locations of clusters (rc)
and objects (ro) more accurately. The decreasing noise
of cluster and object memories is consistent with the
relative position model—organizing objects into fewer
clusters should decrease the magnitude of the relative
positions needed to represent the objects’ and clusters’
locations. The clustering structure of objects had an
unclear effect on the noise of the global center (rg), i.e.,
the error that is shared among all objects in a display.
Subjects appeared to remember the global center more
accurately as the number of clusters decreased, but this
benefit went away when objects were arranged in a
single cluster. The sudden increase in the noise of the
global center may reflect subjects focusing on encoding
the locations of the individual objects at the cost of the
global center when they do not need to remember the

clustering structure of objects. Consequently, it is
difficult to determine exactly how the objects’ clustering
structure influenced memories of the global center.

Appendix E: Did the nonparametric
clustering process predict subjects’
errors?

Our cognitive models used a nonparametric Dirichlet
process to infer the clustering structure of objects. To
determine whether subjects grouped objects like our
cognitive models, we examined how well the groupings
inferred by the Dirichlet process predicted the error
similarities (q) of objects compared to the actual
clustering structures used to generate the locations of
the objects. For each condition, we found the average
error similarity of objects in the same cluster (Figure
A3). If no objects were in the same cluster, we
calculated the average error similarity over all objects.

The groupings inferred by the Dirichlet process were
either comparable to or better than the actual
groupings at predicting the similarities of subjects’
errors. The Dirichlet process was notably better than
the actual clustering structures in unstructured condi-
tions 4C1, t(34) ¼ 8.20, p , 0.001, and 8C1, t(34) ¼
14.20, p , 0.001. This demonstrates that the Dirichlet
process grouped objects like subjects did even when
there was no intended clustering structure. In the other
conditions, the error similarity of objects that were
actually from the same cluster versus those that the
Dirichlet process inferred were from the same cluster
were similar, suggesting that both subjects and the
Dirichlet process recovered the intended clustering
structures.

DF

Number of objects Number of clusters

t p t p

pM 67 2.0 0.042 .71 0.48

bc 47 5.3 ,0.001 5.2 ,0.001

bo 47 9.4 ,0.001 7.1 ,0.001

rg 67 1.2 0.23 2.7 0.009

rc 47 9.2 ,0.001 7.7 ,0.001

ro 47 6.2 ,0.001 2.8 0.007

Table A2. The linear effects of a model, including the fixed effects of the number of objects and the number of clusters. Notes: DF
indicates the degrees of freedom. Under ‘‘Number of objects’’ and ‘‘Number of clusters,’’ values in the left and right columns indicate
t and p values, respectively.

Figure A3. The mean error similarity (q) of objects in the same

cluster. The black line indicates the error similarity of objects

that were actually generated from the same cluster. The blue

line indicates the error similarity of objects that the Dirichlet

process inferred were generated from the same cluster. The

green line indicates the difference between the actual and

inferred clusters. Error bars indicate SEM. The error similarity of

objects was indistinguishable or higher for objects using the

inferred groupings compared to the actual groupings used to

generate the objects.
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