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A bankruptcy approach to the core cover∗

A. Estévez-Fernández1 M.G. Fiestras-Janeiro2,3 M.A. Mosquera2

E. Sánchez-Rodríguez2

1 Tinbergen Institute and Department of Econometrics and Operations Research, VU University Amsterdam, The
Netherlands.

2 Department of Statistics and Operations Research, Vigo University, Spain.

Abstract

In this paper we establish a relationship between the core cover of a compromise admis-
sible game and the core of a particular bankruptcy game: the core cover of a compromise
admissible game is, indeed, a translation of the set of coalitional stable allocations captured
by an associated bankruptcy game. Moreover, we analyze the combinatorial complexity of
the core cover and, consequently, of the core of a compromise stable game.

Keywords: Cooperative game theory, compromise admissible games, bankruptcy, core cover,
complexity.

1 Introduction

In the theory of cooperative TU games, the investigation of relations among different set valued
solutions is crucial for a better understanding of these solutions. The core (Gillies (1953)) of a
TU game is the set of all efficient allocations that are coalitional stable. In other words, all the
core allocations are coalitional stable in the sense that there is no coalition S with incentives to
split off. The core cover (Tijs and Lipperts, 1982) is the set of all efficient allocations satisfying
that every player receives neither more than his utopia payoff, nor less than his minimal right.
Both set valued solutions are convex polytopes and therefore can be described by the convex
hull of their extreme points. Besides, when the game is convex, the set of extreme points of
the core coincides with the set of marginal vectors (Shapley, 1953; Ichiishi, 1981). Quant et al.
(2005) showed that the extreme points of the core cover of admissible games are the larginal
vectors. Recently, Platz et al. (2011) characterize sets of larginal vectors satisfying that the game
is compromise stable if, and only if, every larginal vector of the set is in the core.

3Correspondent author. E-mail: fiestras@uvigo.es
∗This paper was started while Arantza Estévez-Fernández was visiting the University of Vigo. Authors acknowl-

edge the financial support of Ministerio de Ciencia e Innovación through projects ECO2008-03484-C02-02/ECO and
MTM2011-27731-C03-03, and of Xunta de Galicia through project INCITE09-207-064-PR.
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As the name implies, the core cover is a core catcher. The games with a non-empty core
cover satisfying that all core cover allocations are coalitional stable are called compromise stable
games, that is, for this subclass of games, the core and the core cover coincide. The subclass
of compromise stable games contains both convex and not convex games. Quant et al. (2005)
showed that convex compromise stable games are strategically equivalent to bankruptcy games
(O’Neill, 1982 and Aumann and Maschler, 1985).

Our aim is to investigate new relations between the core cover of compromise admissible
games and the core of bankruptcy games. Our main contribution here is Theorem 3.2, where
we show that the core cover of a compromise admissible game is a translation of the core of a
particular associated bankruptcy game. Therefore, the core cover of a compromise admissible
game is, up to a translation, the set of coalitional stable allocations captured by the associated
bankruptcy game.

Shapley (1971) studied in detail the core of convex games. Recently, González-Díaz and
Sánchez-Rodríguez (2008) further analyzed the core of convex games by introducing face games.
Given a game (N, v) with a non-empty core and a coalition T ⊂ N, a T-face game is defined
in such a way that the core of this T-face game coincides with the core allocations of the game
(N, v) that provide the best payoff for coalition T and the worst payoff for its complementary
coalition N \ T. González-Díaz and Sánchez-Rodríguez (2008) showed that the core of convex
games can be rebuilt with the cores of the face games. Any face game is related to a specific
coalition T, and there are so many face games as coalitions. In this paper, we establish that all
bankruptcy face games are new bankruptcy games. Combining the results of González-Díaz
and Sánchez-Rodríguez (2008) and Theorem 3.2, we obtain that the core cover of a compromise
admissible game can also be rebuilt with the core covers of some specific bankruptcy games.

Several rules for bankruptcy problems have been redefined in the context of compromise
admissible games: the adjusted proportional rule (τ value) in González-Díaz et al. (2005), the
Talmud rule (nucleolus) in Quant et al. (2005), and the run to the bank rule (the Shapley value)
in Quant et al. (2006). Here, we consider a general formula, which is already used in the papers
previously mentioned, for extending bankruptcy rules to the class of compromise admissible
games. It turns out that, if the bankruptcy rule is invariant under claims truncation, then, the
corresponding value always belongs to the core cover. Particularly, we consider the constrained
equal awards rule (CEA) and show that its associated value for compromise admissible games
belongs to the core cover of a specific T-face game of an associated bankruptcy game.

Another goal of this paper is to show the complexity of the core cover with regard to the
maximal number of extreme points. It is well known that for an n-player game, n! is the max-
imal number of extreme core allocations. With the exception of 3-player games, the maximal
number of extreme core cover vertices is strictly less than n!. As an example, for a 7-player
game, the upper bound is 140, much less than 7! = 5040 (maximal number of marginal vec-
tors). In this paper, we derive the precise upper bound of the number of extreme points of the
core cover.

The paper is structured as follows. In Section 2, we present the basic definitions and nota-
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tions. We analyze, in Section 3, the relation between the core cover and the core of the associated
bankruptcy game, and introduce and study the CEA value for compromise admissible games.
Section 4 is devoted to the study of the complexity of the core cover. Finally, in Section 5, we
conclude with a summary of the major contributions of this paper.

2 Preliminaries

A cooperative n-player game with transferable utility, shortly a TU game, is an ordered pair (N, v)
where N is a finite set (the set of players) with |N| = n and v : 2N → R is a function assigning,
to each coalition S ⊆ N, a payoff v(S); by convention, v(∅) = 0. Let Gn be the set of n-player
TU games. Given S ⊆ N, let |S| be the number of players in S.

A TU game (N, v) ∈ Gn is said to be additive if there exists a vector a ∈ Rn such that v(S) =

∑i∈S ai for all S ⊆ N. The game (N, v) is then denoted by (N, a). A TU game (N, v) ∈ Gn is
strategically equivalent to another TU game (N, w) ∈ Gn if there exists a scalar k > 0 and an
additive game (N, a) ∈ Gn such that w = a + kv. A value is a function ϕ : Gn −→ Rn that
assigns to each TU game (N, v) ∈ Gn a vector ϕ(N, v) ∈ Rn.

The core (Gillies, 1953) of a cooperative TU-game (N, v) is defined as

C(v) =
{

x ∈ Rn : ∑
i∈N

xi = v(N), ∑
i∈S

xi ≥ v(S) for all S ⊂ N

}
,

that is, the core is the set of efficient allocations of v(N) such that there is no coalition with an
incentive to split off. A game is said to be balanced (see Bondareva, 1963; Shapley, 1967) if the
core is nonempty. Let BGn be the set of n-player balanced TU games.

An important subclass of balanced games is the class of convex games (see Shapley, 1971).
A game (N, v) is said to be convex if v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T) for all S, T ⊂ N. Let
CGn be the set of n-player convex TU games.

Given S ⊆ N, an order of the players in S is a bijection σS : {1, . . . , |S|} → S, where σS(k)
is the player in S that is in position k. We denote by Π(S) the set of all orders of the players
in S. For S = N, we denote σ instead of σS. Given σ ∈ Π(N) and a player σ(k) ∈ N we
denote Pσ(σ(k)) = {σ(1), . . . , σ(k− 1)}. For σ ∈ Π(N), we define the inverse order of σ, σin ∈
Π(N), as the order satisfying σin(k) = σ(n− k + 1), for every k ∈ {1, . . . , n}. Let (N, v) ∈ Gn

and σ ∈ Π(N). The marginal vector associated with (N, v) and σ, mσ(v), is defined, for each
k ∈ {1, . . . , n}, by mσ

σ(k)(v) = v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k − 1)}). It is known that
convexity of a game is equivalent to every marginal vector being a core element and, moreover,
C(v) = con{mσ(v) : σ ∈ Π(N)}1 (see Shapley, 1953; Ichiishi, 1981).

Next, we recall the terminology used in Shapley (1971) and in González-Díaz and Sánchez-
Rodríguez (2008). Let (N, v) ∈ BGn. For each ∅ 6= T ⊆ N, let HT be the hyperplane HT =

{x ∈ Rn : ∑i∈T xi = v(T)}. Next, for T ⊂ N, let FT = C(v) ∩ HN\T. Clearly, F∅ = C(v).
1Given a finite set A ⊂ Rn, con(A) represents the convex hull of A.
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For convenience, we define FN = C(v). For convex games, each FT is a nonempty face of C(v)
and we refer to FT as the T-face of C(v). By definition, for each allocation in FT, coalition T
receives v(N)− v(N \ T). Clearly, for each ∅ 6= T ⊂ N, since both FT and FN\T lie in HN , they
are parallel to each other. Subsequently, we recall, for each coalition T ⊆ N, the T-face game
(N, vFT ) that is closely related to FT. The T-face game (González-Díaz and Sánchez-Rodríguez,
2008) (N, vFT ) is defined, for each S ⊆ N, as

vFT (S) = v
(
(S ∩ T) ∪ (N \ T)

)
− v
(

N \ T
)
+ v
(

S ∩ (N \ T)
)

.

Face games were introduced in González-Díaz and Sánchez-Rodríguez (2008) in order to ana-
lyze the core of convex and strictly convex games. Hence, the idea behind the T-face game of
a convex game (N, v) is the following. FT are the best core allocations for coalition T and the
worst ones for coalition N \ T since coalition T always receives v(N)− v(N \ T) and coalition
N \ T gets exactly v(N \ T). Moreover, note that there is still freedom for v(N)− v(N \ T) to
be shared among the players in T and for v(N \ T) to be shared among the players in N \ T.

Proposition 2.1 (González-Díaz and Sánchez-Rodríguez, 2008). Let (N, v) ∈ CGn and let T ⊆ N.
Then, C(vFT ) = FT. Therefore, C(v) = con{C(vFT ) : ∅ 6= T ⊂ N}.

Following Tijs and Lipperts (1982), the utopia vector of a TU game (N, v), M(v) ∈ Rn, is
defined by Mi(v) = v(N)− v(N \ {i}) for all i ∈ N. The minimum right vector m(v) ∈ Rn is
defined, for all i ∈ N, by

mi(v) = max
S⊆N, i∈S

v(S)− ∑
j∈S\{i}

Mj(v)

 .

The core cover (Tijs and Lipperts, 1982) of a TU game (N, v) consists of all allocations of v(N)

giving each player at least his minimum right, but no more than his utopia payoff:

CC(v) =
{

x ∈ Rn : ∑
i∈N

xi = v(N), m(v) ≤ x ≤ M(v)

}
.

A TU game is called compromise admissible if it has a nonempty core cover. Let CAn be the set
of n-player compromise admissible TU games. Let us note that CGn ⊂ CAn. Mathematically, a
TU game (N, v) is compromise admissible if

m(v) ≤ M(v) and ∑
i∈N

mi(v) ≤ v(N) ≤ ∑
i∈N

Mi(v).

The extreme points of the core cover are called larginal vectors or larginals (see Quant et al.,
2005). Let (N, v) ∈ CAn and σ ∈ Π(N). The larginal vector `σ(v) is the allocation of v(N)

that gives the utopia payoffs to the first players with respect to σ as long as it is still possible to
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assign the remaining players their minimum rights:

`σ
σ(k)(v) =


Mσ(k)(v) if ∑k

r=1 Mσ(r)(v) + ∑n
r=k+1 mσ(r)(v) ≤ v(N),

mσ(k)(v) if ∑k−1
r=1 Mσ(r)(v) + ∑n

r=k mσ(r)(v) ≥ v(N),

v(N)−
k−1

∑
r=1

Mσ(r)(v)−
n

∑
r=k+1

mσ(r)(v) otherwise,

for every k = 1, . . . , n.
It is well-known that, for all compromise admissible game (N, v), C(v) ⊆ CC(v) (Tijs and

Lipperts, 1982). A TU game (N, v) ∈ CAn is said to be compromise stable (see Quant et al., 2005)
if C(v) = CC(v).

Theorem 2.1 (Quant et al., 2005). A TU game (N, v) ∈ CAn is compromise stable if, and only if, for
all ∅ 6= S ⊆ N,

v(S) ≤ max

{
∑
i∈S

mi(v), v(N)− ∑
i∈N\S

Mi(v)

}
.

A bankruptcy problem (cf. O’Neill, 1982; Aumann and Maschler, 1985) is a triple (N, E, d),
where E ≥ 0 is the estate to be divided and d ∈ Rn

+ is the vector of claims satisfying ∑i∈N di ≥
E. The corresponding bankruptcy game (N, v) is defined, for each S ⊆ N, by

v(S) = max

0, E− ∑
j∈N\S

dj

 .

We denote the class of bankruptcy problems with n players by BRn. The class of bankruptcy
games is a proper subclass of CGn. A bankruptcy rule is a function f : BRn −→ Rn

+ assign-
ing to each bankruptcy problem (N, E, d) ∈ BRn a payoff vector f (N, E, d) ∈ Rn

+ such that

∑i∈N fi(N, E, d) = E and fi(N, E, d) ≤ di for every i ∈ N.
Let us note that there exist compromise stable TU games that are not convex and that there

exist convex TU games which are not compromise stable. The next theorem, due to Quant et al.
(2005), relates bankruptcy games with convex and compromise stable games.

Theorem 2.2 (Quant et al., 2005). A TU game is both convex and compromise stable if, and only if, it
is strategically equivalent to a bankruptcy game.

3 The structure of the core cover via bankruptcy games

The main result of this section is the relation between the core cover of a compromise admis-
sible game and the core of an associated bankruptcy game. Based on this relation, we define
the family of values on the class of compromise admissible games that arise from bankruptcy
rules. It is shown that, if the bankruptcy rule is invariant under claims truncation, then, the
corresponding value on the class of compromise admissible games belongs to the core cover of
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the game. Particularly, we study the constrained equal awards (CEA) value and show that it
always belongs to the core of a specific face game of the associated bankruptcy game.

The next lemma describes the contribution of a player to any coalition in a bankruptcy
game.

Lemma 3.1. Let (N, E, d) be a bankruptcy problem and (N, v) be the associated TU game. For each
i ∈ N and each S ⊆ N \ {i},

v(S ∪ {i})− v(S) = min {di, v(S ∪ {i})} .

Proof. Let i ∈ N and S ⊆ N \ {i}. If v(S) = 0, then, E − ∑j∈N\S dj ≤ 0 and, consequently,
E−∑j∈N\(S∪{i}) dj ≤ di. Since v(S ∪ {i}) = max{0, E−∑j∈N\(S∪{i}) dj}, it follows

v(S ∪ {i})− v(S) = v(S ∪ {i}) = min {di, v(S ∪ {i})} .

If v(S) > 0, then, v(S) = E−∑j∈N\S dj > 0 and, consequently, 0 ≤ di < E−∑j∈N\(S∪{i}) dj.
Since v(S ∪ {i}) = max{0, E−∑j∈N\(S∪{i}) dj}, it follows

v(S ∪ {i})− v(S) = E− ∑
j∈N\(S∪{i})

dj − (E− ∑
j∈N\S

dj) = di = min {di, v(S ∪ {i})} .

Given a compromise admissible TU game (N, v), we can associate a bankruptcy problem
and the corresponding bankruptcy game to (N, v) as follows.

Definition 3.1. Let (N, v) ∈ CAn. We define the associated bankruptcy problem, (N, E, d), as

E = v(N)− ∑
j∈N

mj(v) and d = M(v)−m(v).

We denote by (N, v̄) the corresponding bankruptcy game.

Note that the game (N, v̄) in Definition 3.1 is, indeed, a bankruptcy game since m(v) ≤
M(v) and ∑i∈N mi(v) ≤ v(N) ≤ ∑i∈N Mi(v). Besides, Theorem 2.1 can be rewritten as follows.
A TU game (N, v) ∈ CAn is compromise stable if, and only if, for all ∅ 6= S ⊆ N, v(S) ≤
∑i∈S mi(v) + v̄(S), where (N, v̄) is the bankruptcy game of Definition 3.1.

Theorem 3.1. Let (N, v) ∈ CAn, (N, v̄) be its associated bankruptcy game, and σ ∈ Π(N). Then,
`σ(v) = m(v) + mσin

(v̄).

Proof. Let k ∈ {1, . . . , n}, it follows, by definition of σin, that σin(n − k + 1) = σ(k) and
Pσin(σin(n− k + 1)) = {σin(1), σin(2), . . . , σin(n− k)} = {σ(n), σ(n− 1), . . . , σ(k + 1)}. There-
fore,

mσin

σ(k)(v̄) = mσin

σin(n−k+1)(v̄)
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= v̄(Pσin(σin(n− k + 1)) ∪ {σin(n− k + 1)})− v̄(Pσin(σin(n− k + 1)))

= v̄({σ(n), σ(n− 1), . . . , σ(k)})− v̄({σ(n), σ(n− 1), . . . , σ(k + 1)}) (1)

= min{dσ(k), v̄({σ(n), σ(n− 1), . . . , σ(k)})}

= min{dσ(k), max{0, E−
k−1

∑
l=1

dσ(l)}}

= min{Mσ(k) −mσ(k), max{0, v(N)−
k−1

∑
l=1

Mσ(l)(v)−
n

∑
l=k

mσ(l)(v)}}

where the fourth equality follows by Lemma 3.1.
Following the three cases in the definition of larginals, we distinguish between three possi-

ble situations:

1. v(N)−∑k−1
l=1 Mσ(l)(v)−∑n

l=k mσ(l)(v) ≤ 0.

In this case `σ
σ(k)(v) = mσ(k)(v). Moreover, we obtain mσin

σ(k)(v̄) = 0 by Expression (1).

2. 0 < v(N)−∑k−1
l=1 Mσ(l)(v)−∑n

l=k mσ(l)(v) < Mσ(k)(v)−mσ(k)(v).

In this case, `σ
σ(k)(v) = v(N) − ∑k−1

l=1 Mσ(l)(v) − ∑n
l=k+1 mσ(l)(v). Moreover, we obtain

mσin

σ(k)(v̄) = v(N)−∑k−1
l=1 Mσ(l)(v)−∑n

l=k mσ(l)(v) by Expression (1).

3. Mσ(k)(v)−mσ(k)(v) ≤ v(N)−∑k−1
l=1 Mσ(l)(v)−∑n

l=k mσ(l)(v).

In this case, `σ
σ(k)(v) = Mσ(k)(v). Moreover, we obtain mσin

σ(k)(v̄) = Mσ(k)(v)−mσ(k)(v) by
Expression (1).

Therefore, `σ(v) = m(v) + mσin
(v̄).

Theorem 3.2. Let (N, v) ∈ CAn and (N, v̄) be its associated bankruptcy game. Then,

CC(v) = m(v) + C(v̄) = m(v) + CC(v̄).

Moreover, (N, v) is compromise stable if, and only if, C(v) = m(v) + C(v̄).

Proof. The first part of the theorem follows from Theorem 3.1 and because (N, v̄) is a bankruptcy
game. The second part of the theorem straightforwardly follows from the definition of com-
promise stability.

Note that from Theorem 3.2 we also derive Theorem 2.1 and Theorem 2.2. Namely, the
alternative proof for Theorem 2.1 is the following. If for all ∅ 6= S ⊆ N, v(S) ≤ ∑i∈S mi(v) +
v̄(S), then, m(v) + C(v̄) ⊆ C(v). By Theorem 3.2, CC(v) = m(v) + C(v̄) ⊆ C(v), and then,
C(v) = CC(v) and the game v is compromise stable. Reciprocally, if v is compromise stable,
then, C(v) = CC(v) = m(v) + C(v̄) where the last equality follows from Theorem 3.2. Since
the game m(v) + v̄ is convex, for every S ⊂ N there is xS ∈ m(v) + C(v̄) = C(v) such that

∑i∈S xS
i = ∑i∈S mi(v) + v̄(S). Then, ∑i∈S mi(v) + v̄(S) = ∑i∈S xS

i ≥ v(S).
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The alternative proof for Theorem 2.2 is the following. If (N, v) is convex and compromise
stable, then, the equality C(v) = m(v) + C(v̄) implies that v = m(v) + v̄, and, therefore, game
v is strategically equivalent to a bankruptcy game. Reciprocally, if v is strategically equivalent
to a bankruptcy game, then, clearly, v is convex and compromise stable.

Note that the second part of Theorem 3.2 can also be derived from the proof of Theorem 4.2
in Quant et al. (2005).

By Proposition 2.1, the core of a bankruptcy game can be rebuilt through the cores of the
face games. The following proposition shows that each face game of a bankruptcy game is
strategically equivalent to a bankruptcy game.

Proposition 3.1. Let (N, E, d) be a bankruptcy problem, (N, v) be the associated TU game, and T ⊆ N.
Then, the T-face game is strategically equivalent to a bankruptcy game in the following way: vFT =

ṽ + a, where

1. ai = 0, for every i ∈ N, and ṽ is the bankruptcy game associated to the bankruptcy problem
(N, E, d̃) where d̃i = di, for every i ∈ T, and d̃i = 0, for every i ∈ N \ T if ∑i∈T di ≥ E.

2. ai = di, for every i ∈ T, and ai = 0, for every i ∈ N \ T, and ṽ is the bankruptcy game associated
to the bankruptcy problem (N, E−∑i∈T di, d̃) with d̃ = d− a if ∑i∈T di < E.

Proof. Let T ⊆ N. The T-face game (N, vFT ) associated with the bankruptcy game (N, v) is
defined, for each S ⊆ N, by

vFT (S) = v
(
(S ∩ T) ∪ (N \ T)

)
− v
(

N \ T
)
+ v
(
S ∩ (N \ T)

)
= max{0, E−∑j∈T\S dj} −max{0, E−∑j∈T dj}+ max{0, E−∑j∈(N\S)∪(S∩T) dj}.

1. ∑i∈T di ≥ E. In this case, it follows that E−∑j∈(N\S)∪(S∩T) dj ≤ 0 since (N \ S)∪ (S∩ T) =
T ∪ (N \ (S ∪ T)). Therefore, v(N \ T) = v(S ∩ (N \ T)) = 0 and

vFT (S) = max{0, E− ∑
j∈T\S

dj}.

Hence,

vFT (S) =

0 if S ⊆ N \ T

max{0, E−∑j∈T\S dj} if S ∩ T 6= ∅

It is clear that vFT is the bankruptcy game associated to the bankruptcy problem (N, E, d̃),
where d̃i = di, for every i ∈ T, and d̃i = 0, for every i ∈ N \ T.

2. ∑i∈T di < E. Then,

vFT (S) = v((S ∩ T) ∪ (N \ T))− v(N \ T) + v(S ∩ (N \ T))
= E−∑j∈T\S dj − E + ∑j∈T dj + max{0, E−∑j∈(N\S)∪(S∩T) dj}
= ∑j∈T∩S dj + max{0, E−∑j∈T dj −∑j∈N\(S∪T) dj}
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It is clear that max{0, E− ∑j∈T dj − ∑j∈N\(S∪T) dj} is the bankruptcy game associated to
the bankruptcy problem (N, Ẽ, d̃), where Ẽ = E − ∑i∈T di, and d̃i = 0, for every i ∈ T,
and d̃i = di, for every i ∈ N \ T.

The following theorem states that the core cover of a compromise admissible game can be
rebuilt with the core covers of the bankruptcy face games.

Theorem 3.3. Let (N, v) ∈ CAn and (N, v̄) be its associated bankruptcy game. Then,

CC(v) = m(v) + con{CC(v̄FT ) : T ⊂ N}.

Proof. Combining the results in Theorem 3.2 and in Proposition 2.1, we rewrite the core cover
of a compromise admissible game (N, v) as

CC(v) = m(v) + con{C(v̄FT ) : T ⊂ N}.

By Proposition 3.1, for each T ⊂ N, it follows that v̄FT is a new bankruptcy game, and then,
CC(v̄FT ) = C(v̄FT ), which establishes the result.

Theorem 3.2 suggests that we may allocate the value v(N) of a compromise admissible
game among the players in a reasonable way using bankruptcy rules. This has been done in
González-Díaz et al. (2005) using the adjusted proportional rule (the τ value) and in Quant
et al. (2005) using the Talmud rule (the nucleolus for compromise stable games). Following
these two papers, Quant et al. (2006) describe a method to apply bankruptcy rules to compro-
mise admissible games and study the run to the bank rule and the Tal-family rules. A common
property of all these bankruptcy rules is the property of invariance under claims truncation. A
bankruptcy rule f satisfies invariance under claims truncation if for every bankruptcy problem
(N, E, d), f (N, E, d) = f (N, E, d′), where d′i = min{E, di} for every i ∈ N. Curiel et al. (1987)
show that a bankruptcy rule satisfies invariance under claims truncation if, and only if, the allo-
cation provided by the rule is always in the core of the associated bankruptcy game. We show
that if a bankruptcy rule satisfies invariance under claims truncation, then, the correspond-
ing value always provides allocations belonging to the core cover of compromise admissible
games. Moreover, we investigate the CEA-value and show that the corresponding allocations
always belong to a specific face of the core cover of compromise admissible games.

Definition 3.2. Let (N, v) ∈ CAn, let (N, E, d) be its associated bankruptcy problem, and let f be a
bankruptcy rule. We define the f -value, ϕ f (N, v), as

ϕ f (N, v) = m(v) + f (N, E, d).

The following result is an immediate consequence of Theorem 5 in Curiel et al. (1987) and
Theorem 3.2 and, therefore, the proof is omitted.

9



Theorem 3.4. Let (N, v) ∈ CAn and let f be a bankruptcy rule satisfying invariance under claims
truncation. Then, ϕ f (N, v) ∈ CC(v).

Subsequently, we consider the CEA-value which arises from the Constrained Equal Awards
(CEA) rule for bankruptcy problems and show that it always belongs to a face of the core
cover. From now on, given (N, v) a compromise admissible TU-game we assume, without
loss of generality and for easiness of exposition, that N = {1, . . . , n} and M1(v) − m1(v) ≤
M2(v)−m2(v) ≤ . . . ≤ Mn(v)−mn(v). Given a bankruptcy problem (N, E, d), the constrained
equal awards rule, CEA, provides an allocation CEA(N, E, d) ∈ Rn defined as CEAi(N, E, d) =
min{di, λ} for every i ∈ N, with λ chosen such that ∑i∈N min{di, λ} = E. Given a compromise
admissible TU-game (N, v) and (N, E, d) the associated bankruptcy problem, we denote by
k(v) ∈ N the player satisfying CEAi(N, E, d) = di for every i < k(v) and CEAi(N, E, d) < di

for every i ≥ k(v). By definition of the CEA-value, we have that ϕCEA
i (N, v) = Mi(v) for every

i < k(v) and ϕCEA
i (N, v) < Mi(v) for every i ≥ k(v). Note that the players in {1, . . . , k(v)− 1}

are receiving their utopia values and, therefore, they are allocated their maximum obtainable
payoffs.

Proposition 3.2. Let (N, v) ∈ CAn and let (N, v̄) be its associated bankruptcy game. Then, ϕCEA(N, v) ∈
m(v) + F{1,...,k(v)−1}(v̄).

Proof. Recall that F{1,...,k(v)−1}(v̄) = C(v̄) ∩ HN\{1,...,k(v)−1}(v̄) = C(v̄) ∩ H{k(v),...,n}(v̄). By Theo-
rem 3.4 and Theorem 3.2, ϕCEA(N, v) ∈ CC(v) = m(v) + C(v̄).

By definition of ϕCEA and of k(v),

n

∑
j=k(v)

ϕCEA
j (N, v) =

n

∑
j=k(v)

mj(v) +
n

∑
j=k(v)

CEAj(N, E, d)

=
n

∑
j=k(v)

mj(v) + v(N)− ∑
j∈N

mj(v)−
k(v)−1

∑
j=1

(Mj(v)−mj(v))

=
n

∑
j=k(v)

mj(v) + v̄({k(v), . . . , n})

where the last equality follows by definition of k(v). Therefore, ϕCEA ∈ m(v) + H{k(v),...,n}(v̄).
As a result,

ϕCEA(N, v) ∈ (m(v) + H{k(v),...,n}(v̄)) ∩ (m(v) + C(v̄)) = m(v) + F{1,...,k(v)−1}(v̄).

Note that if k(v) > 1, then, the CEA value belongs to a specific face of the core cover poly-
tope. Nevertheless, Proposition 3.2 applied to the case k(v) = 1 indicates that ϕCEA(N, v) ∈
m(v)+ C(v̄), which is the face of the empty set. In this case, the constrained equal awards value
coincides with the egalitarian value that assigns v(N)

n to every agent.
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4 Core cover complexity

In this section, we describe the complexity of the core-cover of a compromise admissible game
by looking at the maximal number of its extreme points. Consequently, the complexity of the
core of a compromise stable game is also analyzed and, particularly, the complexity of the core
of bankrupcty games.

We now focus on the maximal number of extreme points of the core cover. Since the core
cover is the convex hull of the larginal vectors, it has at most n! extreme points. However, this
number is never achieved for games with at least four players. Notice that the larginal vector
lσ(v) is the efficient payoff vector giving the first players in σ their utopia payoffs as long as it is
possible to assign the remaining players their minimum rights. Therefore, for each σ ∈ Π(N),
players can be divided into three groups: those receiving their utopia payoffs (group G1), those
receiving their minimum rights (group G2), and the player which is between both groups (the
pivot player). Clearly, given a game (N, v) ∈ CAn, for each order σ, the position of the pivot
player, l, varies between 1, . . . , n and depends on the vector of minimal rights and the utopia
vector.

To have some regularity inside the class of compromise admissible games, consider now
the subclasses of compromise admissible games where the position of the pivot player is fixed.
That is, take k ∈ {1, . . . , n}, a TU game (N, v) ∈ CAn

k if (N, v) ∈ CAn and, for each σ ∈ Π(N),

k−1

∑
r=1

Mσ(r)(v) +
n

∑
r=k

mσ(r)(v) < v(N) <
k

∑
r=1

Mσ(r)(v) +
n

∑
r=k+1

mσ(r)(v).

Given a game (N, v) ∈ CAn
k , the pivot player is always in position k for all the larginal

vectors. There are compromise admissible games with such property as we illustrate in the
following example

Example 4.1. Let (N, v) be a symmetric2 4-player compromise admissible game such that, for all i ∈ N,
v(S) = 0 for all S ⊂ N\{i}, v(N) = 10, and, for all i ∈ N,

1. v(N\{i}) = 0 (example of a game (N, v) ∈ CA4
1).

2. v(N\{i}) = 4 (example of a game (N, v) ∈ CA4
2).

3. v(N\{i}) = 6 (example of a game (N, v) ∈ CA4
3).

4. v(N\{i}) = 7 (example of a game (N, v) ∈ CA4
4).

In the four cases presented in Figure 1 we have C(v) = CC(v).3 However, there are compromise
admissible games in the classes CAn

k where the core is a strict subset of the core cover. Consider, for

2A TU game (N, v) is symmetric if the value of a coalition only depends on its cardinality. Although the sub-
classes CAn

k (k ∈ {1, . . . , n}) certainly contain games that are not symmetric, we restrict to symmetric games for
easiness of exposition.

3The graphics in Figure 1 and Figure 2 were built with the toolbox TUGlab of MATLABr (Mirás-Calvo and
Sánchez-Rodríguez, 2008). The web page of TUGlab can be found in http://eio.usc.es/pub/io/xogos/index.
php
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 1: n = 4, core covers of cases 1, 2, 3, and 4.

instance, the 4-player games (N, v) and (N, w) such that

v(S) =



0 if |S| = 1,

7 if |S| = 2,

0 if |S| = 3,

22 if S = N

and w(S) =



0 if |S| = 1,

7 if |S| = 2,

12 if |S| = 3,

22 if S = N

Their cores and core covers are represented in Figure 2. Clearly, (N, v) ∈ CA4
1 and (N, w) ∈ CA4

3.
Besides, the game (N, w) has the maximal number of core vertices (24) and, as we will show in Theo-
rem 4.1, the maximal number of core cover vertices (12).

Next, for each k ∈ {1, . . . , n}, we investigate the computational complexity of a game
(N, v) ∈ CAn

k attending to the maximal number of extreme points of its core cover.

Lemma 4.1. Let k ∈ {1, . . . , n}.

1. Let (N, v) ∈ CAn
k . The maximal number of extreme points is given by the number n(n−1

k−1).
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(a) Core cover and core of (N, v). (b) Core cover and core of (N, w).

Figure 2: Core cover contains the core.

2. The classes CAn
k and CAn

n−k+1 have the same combinatorial complexity. The maximal complexity
is obtained at k = n+1

2 if n is odd, and k = n
2 (or k = n

2 + 1) if n is even.

Proof. 1. If k = 1 (respectively, k = n), the pivot player is in the first (last) position for each
order σ ∈ Π(N). Take a pivot player j ∈ N, then, all the orders σ ∈ Π(N) where j is
in first (last) position give rise to the same larginal vector (an extreme point of the core-
cover). Hence, there are at most n different larginal vectors, one for each possible pivot
player.

Take 1 < k < n and fix j ∈ N as the pivot player. Then, any group of k− 1 players out
of the players in N \ {j} receive their utopia payoffs if they are located ahead of player
j according to an order σ ∈ Π(N). As a result, there are at most (n−1

k−1) different larginal
vectors associated with orders where the pivot player j is in position k. By changing the
pivot player, it is proved that there are at most n(n−1

k−1) larginal vectors.

2. The first part is clear since n(n−1
k−1) = n(n−1

n−k). Moreover, n(n−1
k−1) = n!

(k−1)!(n−k)! = (n
k)k

and therefore it can be seen that (n
k)k ≤ ( n

k+1)(k + 1) whenever k ≤ n
2 . If n is even,

n(n−1
n
2−1) = n(n−1

n
2
) and the result follows. If n is odd, we have just shown the result for

k ≤ n−1
2 . Then, we need to compare the case k = n−1

2 with the case k′ = n+1
2 . Note that(

n
n−1

2

)
n− 1

2
=

n!
( n−1

2 )!( n+1
2 )!

n− 1
2

<
n!

( n−1
2 )!( n+1

2 )!
n + 1

2
=

(
n

n+1
2

)
n + 1

2

and the result follows.

From point 2 in Lemma 4.1, it is clear that the maximal complexity of the class of compro-
mise admissible games CAn

k depends on the parity of n. For easiness of exposition, we define
k0 = n+1

2 if n is odd and k0 = n
2 if n is even.

Theorem 4.1. The computational complexity of the class of admissible games CAn is n(n−1
n−1

2
) when n is

odd and n(n−1
n−2

2
) when n is even.

Proof. Take an order σ ∈ Π(N), and let k be the position of the pivot player (where k ∈
{1, . . . , n}). Clearly, the number of larginal vectors that give rise to the same vector is given
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by (n− k)!(k− 1)!. By the proof of Lemma 4.1, this number is minimized whenever the pivot
player is in position k0.

Subsequently, we show that the core cover of a compromise admissible game has the max-
imal number of vertices when the pivot player is in position k0 (a middle position) for every
order σ ∈ Π(N). In other words, we show that the core cover has maximal number of vertices
when the game belongs to the class CAn

k0
. Let (N, v) ∈ CAn. For each k ∈ {1, . . . , n}, let pv

k be
the number of different core cover vertices of the game (N, v) that arise from orders σ ∈ Π(N)

such that the pivot player is in position k. Then, the number of core cover vertices of the game
(N, v) is given by ∑n

k=1 pv
k . Moreover, since each core cover vertex corresponds to some larginal

vector, the number of different orders of players in N can be written as

n! =
n

∑
k=1

pv
k(n− k)!(k− 1)! (2)

Let (N, w) ∈ CAn
k0

. The number of its core cover vertices is pw
k0

and

n! = pw
k0
(n− k0)!(k0 − 1)! (3)

Combining (2) and (3), it is obtained that

pw
k0
=

n

∑
k=1

pv
k
(n− k)!(k− 1)!
(n− k0)!(k0 − 1)!

≥
n

∑
k=1

pv
k

where the inequality follows because (n− k)!(k− 1)! is minimized at k0, as mentioned above.
Therefore, it follows that pw

k0
= n( n−1

k0−1) gives the computational complexity of CAn.

As an illustration, we compare some of these maximal numbers in Table 1.

n n! k0 n( n−1
k0−1)

3 6 2 6
4 24 2 12
5 120 3 30
6 720 3 60
7 5040 4 140
...

...
...

...

Table 1: Core and core cover complexity.

Easy computations show that the ratio between the complexity of the core cover of an (n +

1)-player game and of an n-player game is 2 when n is odd and 2(n+1)
n when n is even. Observe

that this ratio is always n + 1 for the extreme points of the core. Besides, given an n-player
game, the ratio between the complexity of the core and the complexity of the core cover is
(k0 − 1)!(n− k0)!. This shows that the convex structure of the core cover is much simpler than
the convex structure of the core.
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5 Concluding Remarks

In this paper we analyze the relationship between compromise admissible games and bankruptcy
games by establishing an identification, up to a translation, of the core cover of a compromise
admissible and the core of a particular bankruptcy game. In fact, given a compromise admis-
sible game, first, we assign each player his minimum right and, then, players are involved in a
particular bankruptcy problem. This bankruptcy problem has as demand vector the remainder
of the utopia vector and as the estate the remainder of v(N) once the minimum right vector is
allocated.

As a consequence of this, on the one hand, the study of the core cover of a compromise
admissible game, from a geometric point of view, is equivalent to the analysis of the core of
a bankruptcy game. Thus, we study this core by means of its faces. All the face games are
strategically equivalent to new bankruptcy games, but with specific interpretations: a coali-
tion of agents has priority over its complementary coalition. Since the face games are new
bankruptcy games, the same procedure can be applied several times to define a complete hier-
archical structure between coalitions. We show that the core cover of the original game can be
recovered with the core covers of the associated hierarchical bankruptcy games. On the other
hand, we can define values or allocations of v(N) among the players based on those allocation
rules which have been proposed in the context of bankruptcy problems and that satisfy invari-
ance under claims truncation. These allocations always propose core cover elements. Here,
we consider the CEA rule and corresponding CEA value. The CEA valeu gives some players
their utopia values whenever the value of the grand coalition, v(N), is high enough to ensure
all players their minimal right plus an extra amount, which is obtained as the smallest coordi-
nate of the difference between the utopia vector and the minimal rights vector. We show that
the CEA value belongs to the face of the core cover given by the coalition of players that get
their utopia values. It remains to analyze the natural hierarchical structure described above to
propose new rules and to find new axiomatic characterizations.

Finally, we emphasize that the core cover polytope is much simpler than the core polytope.
Their convex structures are determined by their extreme points, and therefore, the maximal
number of extreme points is a measure of their computational complexity. For a game with a
large number of players, the core cover has considerably less extreme points than the core.
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